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Abstract
This work studies the question of quantified derandomization, which was introduced by Goldreich
and Wigderson (STOC 2014). The generic quantified derandomization problem is the following:
For a circuit class C and a parameter B = B(n), given a circuit C ∈ C with n input bits, decide
whether C rejects all of its inputs, or accepts all but B(n) of its inputs. In the current work we
consider three settings for this question. In each setting, we bring closer the parameter setting
for which we can unconditionally construct relatively fast quantified derandomization algorithms,
and the “threshold” values (for the parameters) for which any quantified derandomization algo-
rithm implies a similar algorithm for standard derandomization.

For constant-depth circuits, we construct an algorithm for quantified derandomization
that works for a parameter B(n) that is only slightly smaller than a “threshold” parameter, and
is significantly faster than the best currently-known algorithms for standard derandomization.
On the way to this result we establish a new derandomization of the switching lemma, which
significantly improves on previous results when the width of the formula is small. For constant-
depth circuits with parity gates, we lower a “threshold” of Goldreich and Wigderson from
depth five to depth four, and construct algorithms for quantified derandomization of a remaining
type of layered depth-3 circuit that they left as an open problem. We also consider the question
of constructing hitting-set generators for multivariate polynomials over large fields that
vanish rarely, and prove two lower bounds on the seed length of such generators.

Several of our proofs rely on an interesting technique, which we call the randomized tests tech-
nique. Intuitively, a standard technique to deterministically find a “good” object is to construct
a simple deterministic test that decides the set of good objects, and then “fool” that test using a
pseudorandom generator. We show that a similar approach works also if the simple deterministic
test is replaced with a distribution over simple tests, and demonstrate the benefits in using a
distribution instead of a single test.
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13:2 Improved Bounds for Quantified Derandomization

1 Introduction

For a circuit class C, the standard (one-sided error) derandomization problem is the following:
Given a circuit C ∈ C, distinguish in deterministic polynomial time between the case that
C rejects all of its inputs and the case that C accepts most of its inputs. Impagliazzo
and Wigderson [12], following Nisan and Wigderson [15], showed that under reasonable
complexity-theoretic assumptions, the standard derandomization problem can be solved
even for a class as large as C = P/poly. However, at this time we do not know how to
unconditionally solve this problem even when C is the class of polynomial-sized CNFs.

A couple of years ago, Goldreich and Wigderson [9] put forward a potentially easier
problem, which they call quantified derandomization. Given a class C and a parameter
B = B(n), the problem is to decide whether a circuit C ∈ C over n input bits rejects all of its
inputs, or accepts all but B(n) of its inputs (rather than just “most” of its inputs). We call
B(n) the “badness” parameter, since it represents the number of bad random strings (i.e., the
ones that lead the algorithm to an incorrect decision). Indeed, the standard derandomization
problem is captured by the parameter B(n) = 2n/2, but we are typically interested in B(n)’s
that are much smaller. On the other hand, polynomially-bounded values (e.g., B(n) = O(n))
can be easily handled by an algorithm that simply evaluates C on B(n) + 1 fixed inputs.

Goldreich and Wigderson constructed algorithms that solve the quantified derandomiza-
tion problem for various classes C and parameters B = B(n). For example, they constructed
a polynomial time hitting-set generator for AC0 circuits that accept all but B(n) = 2n1−ε

of their inputs, for any ε > 0. On the other hand, they showed that for some classes C and
a sufficiently high badness parameter B(n), the quantified derandomization problem is as
difficult as the standard derandomization problem (since the latter can be reduced to the
former). We call such parameter values threshold values, since a quantified derandomization
with a badness parameter B(n) that surpasses this threshold will yield a result for a standard
derandomization problem.

Our contributions in this work are of two types. On the one hand, we construct quantified
derandomization algorithms that work for a broader range of parameters, compared to [9]
(e.g., larger values of B(n), or broader circuit classes). On the other hand, we show that
quantified derandomization of circuit classes that are more limited (compared to [9]) is still
at least as difficult as certain standard derandomization problems.

The “take-home” message: Considered together, our results bring closer two settings of
parameters: The parameter setting for which we can unconditionally construct relatively
fast quantified derandomization algorithms, and the “threshold” values (for the parameters)
for which any quantified derandomization algorithm implies a similar algorithm for standard
derandomization.

1.1 Brief overview of our results
Let us informally state the main results in this work, which we later outline in more detail:

Constant-depth circuits (see Section 1.2): For circuits of depth D, the badness param-
eter B(n) = exp

(
n/ logD−O(1)(n)

)
is a threshold value, since an algorithm for quantified

derandomization with such a B(n) implies an algorithm for standard derandomization of
circuits of smaller depth d ≤ D − 12 (see Theorem 1).
We show that taking B(n) to be only slightly smaller than the threshold value allows
for derandomization that is significantly faster than the best currently-known standard
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derandomization. Specifically, we construct a hitting-set generator for depth-D circuits
with badness B(n) = exp

(
n/ logD−2(n)

)
that has seed length Õ(log3(n)); in particular,

the seed length does not depend on the depth D (see Theorem 2).
The latter is a special case of a more general result that we prove, which extends the
main theorem of Goldreich and Wigderson [9]: We establish a trade-off between the
badness parameter and the seed length of hitting-set generators for AC0. This is done
by constructing a parametrized hitting-set generator that can work with large badness
parameters, at the expense of a super-logarithmic seed (see Theorem 3). The key part in
this construction is a new derandomization of the switching lemma, which is our main
technical contribution in the context of constant-depth circuits. The seed length in the
new derandomization is significantly shorter than in previous derandomizations when the
width w of the formula is small (i.e., w = o(log(n))).
Constant-depth circuits with parity gates (see Section 1.3): We show that a threshold
for derandomization of AC0[⊕] exists at depth four with the parameter 2nc , for any
c > 0. Hence, an appealing frontier is AC0[⊕] circuits of depth three with the parameter
B(n) = 2nc . Goldreich and Wigderson derandomized various types of such circuits, and
left one last type as an open problem. We make significant progress on the last remaining
type: Specifically, we construct a whitebox hitter for circuits with a top ⊕ gate, a middle
layer of ∧ gates, and a bottom layer of ⊕ gates, under various sub-quadratic bounds on
the number of gates in the different layers (see Theorem 6).
We also affirm a conjecture from [9], by showing a reduction of the problem of hitting such
⊕∧⊕-circuits to the problem of hitting biased F2-polynomials of bounded (non-constant)
degree (see Theorem 7).
Polynomials that vanish rarely (see Section 1.4): We study the problem of constructing
hitting-set generators for polynomials Fn → F that vanish rarely, where F is an arbitrary
finite field. We prove two lower bounds on the seed length of such hitting-set generators.
The main result is that any hitting-set generator for degree-d polynomials that vanish on
at most 1/poly(|F|) of their inputs requires a seed of length similar to that of hitting-set
generators for all degree-d polynomials (see Theorem 8).
As part the proofs, we reduce the task of constructing a hitting-set generator for degree-d
polynomials to the task of constructing a hitting-set generator for polynomials of degree
d′ that vanish rarely, where d ≤ d′ ≤ poly(d); this is a form of “error reduction” for
polynomials that incurs only a mild increase in the degree.

Several of our results are based on a general technique that might be of independent
interest, which we call the randomized tests technique (see Section 2.1). Intuitively, a
standard approach to deterministically find an object in some predetermined set G ⊆ {0, 1}n
is to construct a simple deterministic test that decides G, and then “fool” the test using a
pseudorandom generator. We show that a similar approach works if the simple deterministic
test is replaced with a distribution over simple tests, and the pseudorandom generator is
required to “fool” the residual deterministic tests. In many settings, the fact that we use
randomness (i.e., use a distribution over tests) yields residual tests that are simpler than any
corresponding deterministic test (see Section 2.2 for a concrete example).

Towards stating the results, recall that a hitting-set generator for a class of functions F
from {0, 1}n to {0, 1} is an algorithm G : {0, 1}` → {0, 1}n, for some ` = `(n), such that for
every f ∈ F there exists some s ∈ {0, 1}` such that f(G(s)) 6= 0. We say that the hitting-set
generator has density ε > 0 if for every f ∈ F it holds that Prs∈{0,1}` [f(G(s)) 6= 0] ≥ ε

(see Definition 10). The definition of hitting-set generators extends naturally to functions
Fn → F, for any field F (see Definition 11).

CCC 2017
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1.2 Constant-depth circuits
Let us first state the threshold values for quantified derandomization of AC0, and then turn
to describe our algorithms for quantified derandomization. Goldreich and Wigderson showed
that the value B(n) = 2n/ log0.99·D(n) is a threshold value for quantified derandomization
of depth-D circuits. Specifically, they reduced the standard derandomization problem of
depth-d circuits to the problem of quantified derandomization of circuits of depth D � d

with B(n) = 2n/ logD−O(d)(n) (see [9, Thm 3.4 (full version)]). Since their work, Cheng and
Li [5] improved the known techniques for error-reduction within AC0, which allows us to
further decrease the threshold value, as follows:

I Theorem 1 (Threshold for Quantified Derandomization of AC0). For any d ≥ 2 and
D > d+11, the standard derandomization problem of depth-d circuits reduces in deterministic
polynomial-time to the quantified derandomization problem of circuits of depth D that accept
all but B(n) = 2n/ logD−d−11(n) of their inputs.

Our main result for AC0 circuits is a derandomization of depth-D circuits with the badness
parameter B(n) = 2n/ logD−2(n), which is only slightly smaller than the threshold value in
Theorem 1. The quantified derandomization algorithm runs in time that is significantly
faster than the current state-of-the-art for derandomizing AC0:

I Theorem 2 (Quantified Derandomization of AC0 with Badness 2n/ logD−2(n)). For any D ≥ 2,
there exists a hitting-set generator with seed length Õ(log3(n)) for the class of depth-D circuits
over n input bits that accept all but at most B(n) = 2Ω(n/ logD−2(n)) of their inputs.

We stress that the power of the poly-logarithm in the seed length in Theorem 2 does not
depend on the depth D. Any standard hitting-set generator for AC0 (i.e., with B(n) = 2n/2)
with such a seed length would be a major breakthrough, and in particular would significantly
improve the lower bounds of Håstad for AC0 [11] (see, e.g., [24, Prob. 7.1] and [23, “Barriers
to Further Progress”]).

The badness parameters in Theorems 1 and 2 are indeed very close, yet the smaller
badness parameter allows for derandomization in time 2Õ(log3(n)) whereas the larger badness
parameter is a threshold for standard derandomization. This represents a progress towards
the goal of the quantified derandomization approach, which is to close the gap between the
two parameters: That is, to either increase the badness parameter in Theorem 2, or decrease
the parameter in Theorem 1, and obtain a standard derandomization of AC0.

Theorem 2 is a special case of the following, more general result, which extends the main
theorem of Goldreich and Wigderson [9]. Their algorithm works with logarithmic seed and
badness parameter B(n) = 2n1−Ω(1) . The following result is parametrized (by the parameter
t), and can work with badness parameters that are larger than 2n1−Ω(1) , at the expense of a
longer (i.e., super-logarithmic) seed; Theorem 2 is the special case where both the badness
parameter and the seed are the largest possible in this result.

I Theorem 3 (Quantified Derandomization of AC0: A General Trade-Off). For any D ≥ 2
and t : N → N such that t(n) ≤ O(log(n)), there exists a hitting-set generator that uses a
seed of length Õ(t2 · log(n)) for the class of depth-D circuits over n input bits that accept all
but at most B(n) = exp

(
n1−1/Ω(t)/td−2) of their inputs.

Indeed, the main result in [9] is essentially obtained (up to a poly log log(n) factor in the
seed length) by setting t = O(1), whereas Theorem 2 is obtained by setting t = O(log(n)).
Theorem 3 is based on a new derandomization of Hastad’s switching lemma, which is our
main technical contribution in this section.
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I Proposition 4 (New Derandomization of the Switching Lemma; Informal). Let n ∈ N
and w ≤ O(log(n)). Then, there exists an algorithm that on an input random seed of
length Õ(w2 · log(n)) outputs a restriction ρ ∈ {0, 1, ?}n such that for every depth-2 formula
F : {0, 1}n → {0, 1} of size poly(n) and width w the following holds:

There exist two formulas F low and F up such that for every x ∈ {0, 1}n it holds that
F low(x) ≤ F (x) ≤ F up(x).
With probability 1 − 1/poly(n) it holds that both F low�ρ and F up�ρ can be computed
by decision trees of depth O(log(n)), and that both F low�ρ and F up�ρ agree with F on
1− 1/poly(n) of the inputs in the subcube that corresponds to the living variables under ρ.

Note that the seed length of the algorithm from Proposition 4 depends on the width of
the formula F . Previous derandomizations of the switching lemma can also be adapted to
depend on the width, but when the width is o(log(n)) the seed length in Proposition 4 is
significantly shorter than in these adaptations; see Section 2.2 for further details.

1.3 Constant-depth circuits with parity gates
The next circuit class that we study is that of constant-depth circuits that also have gates
computing the parity function or the negated parity function (i.e., AC0[⊕]). Specifically, we
consider AC0[⊕] circuits that are layered, in the sense that all gates at a particular distance
from the input gates are of the same gate-type.

We first observe that the standard derandomization problem of CNFs can be reduced to
the problem of derandomizing layered AC0[⊕] circuits of depth four with B(n) = 2nc , which
yields a “threshold” at depth four with such a badness parameter. This improves on a similar
result of [9] that refers to depth five.

I Theorem 5 (A Threshold for Quantified Derandomization of AC0[⊕] at Depth Four). Assume
that, for some c > 0, there exists a polynomial-time algorithm A such that, when A is given as
input a layered depth-four AC0[⊕] circuit C over n input bits that accepts all but B(n) = 2nc

of its inputs, then A finds a satisfying input for C. Then, there exists a polynomial-time
algorithm A′ that, when given as input a polynomial-size CNF that accepts most of its inputs,
then A′ finds a satisfying input for the CNF.

An appealing way to approach this “threshold” at depth four (with B(n) = 2nc) is to
derandomize AC0[⊕] circuits of depth three with B(n) = 2nc . Goldreich and Wigderson
derandomized most types of layered depth-3 AC0[⊕] circuits with B(n) = 2nc , for any c < 1,
with the exception of circuits of the form ⊕ ∧ ⊕ (i.e., top ⊕ gate, middle layer of ∧ gates,
and a bottom layer of ⊕ gates), which they left as an open problem.

Our main result in this section is an algorithm that makes significant progress on this
problem, by derandomizing ⊕ ∧ ⊕ circuits with B(n) = 2nc under various sub-quadratic
upper bounds on the circuit size, where some of these bounds refer to each layer separately.

I Theorem 6 (Hitting Biased ⊕ ∧ ⊕ Circuits). Let ε > 0 be an arbitrary constant. Let C
be the class of circuits of depth three with a top ⊕ gate, a middle layer of ∧ gates, and a
bottom layer of ⊕ gates, such that every C ∈ C over n input bits satsifies (at least) one of
the following:
1. The size of C is O(n).
2. The number of ∧-gates is at most n2−ε, and the number of ⊕-gates is at most n+ nε/2.
3. The number of ⊕-gates is at most n1+ε, and the number of ∧-gates is at most 1

5 · n
1−ε.

Then, for some c = c(ε) > 0, there exists a polynomial-time algorithm that, when given a
circuit C ∈ C that accepts all but B(n) = 2nc of its inputs, outputs a satisfying input for C.

CCC 2017
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We stress that the algorithm from Theorem 6 makes essential use of the specific circuit C
that is given to the algorithm as input. For further details see Section 2.3.

1.4 Polynomials that vanish rarely
We now turn our attention to quantified derandomization of polynomials, and specifically
to the problem of constructing hitting-set generators for polynomials Fn2 → F2 that vanish
rarely. In this setting it is more convenient to work with a normalized badness parameter
b(n) = B(n)/2n: For an integer n and a degree bound d < n, we want to construct a hitting-
set generator (with seed length O(log(n))) for the class of polynomials p : Fn2 → F2 of total
degree d that vanish on at most a b(n) fraction of their inputs (i.e., Prx∈Fn2 [p(x) = 0] ≤ b(n)).

The problem is trivial when b(n) < 2−d, since in this case p is constant, and Goldreich
and Wigderson solved this problem when b(n) = O

(
2−d

)
; we provide an alternative proof

of their result in Appendix A. They suggested to try and extend this result to also handle
b(n) = m(n) · 2−d, where m(n) = poly(n), and conjectured that such a result would imply
a quantified derandomization of ⊕ ∧⊕ circuits of size m(n). 1 We affirm their conjecture,
by showing that any sufficiently dense hitting-set generator for degree-d polynomials with
b(n) = m(n) · 2−d also hits ⊕ ∧⊕ circuits of size m(n) with B(n) = Ω (2n).

I Theorem 7 (Reducing Hitting ⊕ ∧ ⊕ Circuits to Hitting Biased Polynomials of Bounded
Degree). Let C be the class of ⊕ ∧⊕ circuits over n input bits with m = m(n) ∧-gates that
accept all but B(n) = ε · 2n of their inputs, where m(n) = o(2n) and ε = ε(n) ≤ 1/8. Let P
be the class of polynomials Fn2 → F2 of degree d = blog(m(n)) + log(1/ε)c that accept all but
a b(n) = (4 ·m(n)) · 2−d = 4 · ε fraction of their inputs. Then, any hitting-set generator with
density 1/2 + 2 · ε for P is also a hitting-set generator for C.

Our main focus in the current section is an extension of the problem of hitting polynomials
that vanish rarely to fields larger than F2. Specifically, let F be a finite field of size |F| =
q ≤ poly(n), and let 1 ≤ d ≤ (q − 1) · n. We consider the problem of constructing hitting-set
generators for polynomials Fn → F of degree d that vanish on at most a b(n) fraction of
their inputs. Recall that any hitting-set generator for the class of all polynomial of total
degree d (i.e., regardless of the fraction of inputs on which they vanish) requires a seed of
log
((
n+d
d

))
bits, and that there exists a non-explicit pseudorandom generator for this class

with a seed of O
(

log
((
n+d
d

)))
bits. 2 Moreover, for d = O(1) and a sufficiently large q,

explicit constructions of pseudorandom generators with a seed of O(log(n)) bits are known
(see, e.g. [2, 6]).

Our question is whether it is possible to use a shorter seed if we only require that
the generator will hit degree-d polynomials that vanish on b(n) of their inputs. More
accurately, we ask how low must b(n) be in order for a hitting-set generator with seed length
o
(

log
((
n+d
d

)))
to exist, even non-explicitly. The setting of b(n) < q−d is trivial, since any

degree-d polynomial that has at least one root vanishes on at least q−d of its inputs (this
follows from Warning’s second theorem; see, e.g., [19, Sec. 4]). On the other hand, the

1 In [9, Sec. 6 (full version)] it is suggested to prove this result by modifying any ⊕ ∧ ⊕ circuit to a
bounded-degree polynomial, where the modification amounts to the removal of all ∧-gates with high
fan-in. However, as explained in Section 2.3, since the top gate is a ⊕-gate, we cannot simply remove
∧-gates with high fan-in (or remove some of the wires that feed into them).

2 For proof of the lower bound see, e.g., the proof of Theorem 41, and for the upper bound note that a
polynomial Fn → F of degree d can be represented by

(
n+d
d

)
· log(q) bits.
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setting of b(n) = d/q is essentially the standard (i.e., non-quantified) problem, since any
non-zero degree-d polynomial vanishes on at most d/q of its inputs.

Our first result for this problem is that for any degree d ≤ 0.99·q, any hitting-set generator
for degree-d polynomials with b(n) = O(1/q) requires a seed of Ω

(
log
((
n+d
d

)))
bits; that is,

the value b(n) = O(1/q) yields essentially no relaxation at all (with respect to seed length),
compared to the standard problem. Indeed, most polynomials of degree d vanish on at most
a O(1/q) fraction of their inputs, but the fact that this is the typical case does not a-priori
imply that it is not easier to handle.

Our main result for this problem, however, goes much further: It turns out that even
when considering the parameter b(n) = 1/poly(q), any hitting-set generator for degree-d
polynomials that vanish on b(n) of their inputs still requires a seed of length similar to that
of a hitting-set generator for all degree-d polynomials. Specifically, any hitting-set generator
for degree-d polynomials with b(n) = 1/poly(q) requires a seed of Ω

(
log
((
n+d1/O(1)

d1/O(1)

)))
bits.

It follows that for any super-constant degree d = ω(1), there does not exist a hitting-set
generator with seed length O(log(n)) for degree-d polynomials with b(n) = 1/poly(q).

I Theorem 8 (Hitting Polynomials that Vanish Rarely Over Large Fields; Informal). For a
constant k ∈ N, let n ∈ N, and let F be a field of size |F| = q ≤ nk. Then:
1. For any degree d ≤ 0.99 · q, any hitting-set generator with constant density for the class

of polynomials Fn → F of degree d that vanish on at most b(n) = O (1/q) their inputs
requires a seed of Ω

(
log
((
n+d
d

)))
bits.

2. For any even constant t ≥ 2 and degree d′ ≤ 0.99 · qt+1, any hitting-set generator for the
class of polynomials Fn → F of degree d′ that vanish on at most b(n) = O

(
q−t

2/4
)
of

their inputs requires a seed of Ω
(

log
((
n+d
d

)))
bits, where d = (d′)1/(t+1).

The proofs of both items of Theorem 8 consist of reducing the problem of constructing a
hitting-set generator for all polynomials of degree d ∈ N to the problem of constructing a
hitting-set generator for polynomials that vanish rarely and are of degree d′, where d′ = d in
the proof of Item (1) and d′ = poly(d) in the proof of Item (2). See Section 2.4 for details.

1.5 Organization of the paper
In Section 2 we explain, in high level, the techniques used to obtain our results. Section 3
contains preliminary definitions and statements of some well-known facts, and in Section 4
we prove two lemmas related to the technique of randomized tests that will be used in the
paper. Then, each of the subsequent sections includes proofs for a corresponding section from
the introduction: In Section 5 we prove Theorems 1 and 2; in Section 6 we prove Theorems 5
and 6; and in Section 7 we prove Theorems 7 and 8. In Appendix A we provide an alternative
proof of [9, Thm. 1.6], and in Appendices B and C we provide proofs for several claims from
Sections 5 and 7, respectively.

2 Our Techniques

In this section we give overviews of the proofs of the main theorems for each of the three
settings: Theorems 2 and 3 for constant-depth circuits; Theorem 6 for constant-depth circuits
with parity gates; and Theorem 8 for polynomials over large fields. Since several of our
proofs rely on a common technique, we will begin by describing this technique in general
terms (the results that use this technique are Theorems 3 and 7, Item (1) of Theorem 8, and
also Theorem 42 in Appendix A).

CCC 2017



13:8 Improved Bounds for Quantified Derandomization

2.1 A general technique: Randomized tests

Let G ⊆ {0, 1}n be a set of good objects, and assume that we want to efficiently and
deterministically find some x ∈ G. A known technique to do so is to design a simple
deterministic test T : {0, 1}n → {0, 1} such that T (x) = 1 if and only if x ∈ G. The existence
of such a test T is useful, since if T is sufficiently simple such that we are able to construct
a hitting-set generator for T , then the generator outputs x ∈ G with positive probability
(because the output distribution of the generator contains x ∈ {0, 1}n such that T (x) = 1).
Indeed, this approach reduces the task of finding x ∈ G to the task of designing a test T for
G that is sufficiently simple such that we are able to construct a hitting-set generator for T .

Intuitively, the randomized tests technique is based on the observation that an argument
similar to the one above holds also when we replace the deterministic test T by a distribution
T over simple (deterministic) tests such that, for every fixed x ∈ {0, 1}n, it holds that T(x)
computes the indicator function of G, with high probability (say, 0.9). To see this, assume
that T is indeed such a distribution, and let w be a distribution over {0, 1}n that is a
hitting-set with density 1− ε for every T ∈ T. Then, on the one hand, Pr[T(w) = 1] ≥ 1− ε
(because for every T ∈ T it holds that Pr[T (w) = 1] ≥ 1 − ε); and on the other hand,
Pr[T(w) = 0] ≥ Pr[w /∈ G] · maxx/∈G{Pr[T(x) = 0]}. Combining the two statements,
and recalling that for every x /∈ G it holds that Pr[T(x) = 0] ≥ 0.9, it follows that
Pr[w /∈ G] ≤ ε/0.9, which allows us to deduce that w contains an object in G.

Indeed, this approach reduces the task of finding x ∈ G to the tasks of designing a
distribution T over simple tests as above, and of constructing a hitting-set generator with
high density for the residual (deterministic) tests T ∈ T. The main benefit in this approach
over the previous one (in which we had a single deterministic test) is that in some cases, the
use of randomness allows us to obtain very simple residual tests, which are simpler than any
deterministic test for G; one appealing example for such a case appears in Section 2.2. We
stress that when designing the distribution T we can be wasteful in the use of randomness,
because the existence of T is only a part of the analysis: The actual algorithm for finding
x ∈ G is merely a hitting-set generator (for the residual tests T ∈ T), whereas only the proof
that the generator outputs x ∈ G relies on the existence of the distribution T.

Two relaxations of the hypotheses for the argument above can immediately be made.
First, in our argument we only used the fact that T(x) = 0 with high probability for every
x /∈ G (and did not explicitly rely on the hypothesis that T(x) = 1 with high probability
for every x ∈ G). And secondly, we do not have to assume that w is a hitting-set with high
density for every T ∈ T, but rather only need the hypothesis that Pr[T(w) = 1] is high.

Let us demonstrate one appealing setting in which the two relaxed hypotheses above
hold, which simplifies and abstracts the setting in the proof of Theorem 3. Assume that
there exists a set E ⊆ G of excellent objects, and that almost all objects are excellent; that
is, a random x ∈ {0, 1}n is not only good, but also has additional useful properties. Also
assume that we are able to construct a distribution T over simple tests that distinguishes
between excellent objects and bad ones (i.e., T solves a promise problem with some “gap”
between the “yes” instances and the “no” instances). Denoting the uniform distribution over
{0, 1}n by un, in this case we have that Pr[T(un) = 1] is high, whereas Pr[T(x) = 0] is high
for every x /∈ G. Indeed, in such a setting, in order to find x ∈ G it suffices to construct a
pseudorandom generator for the residual tests T ∈ T (see Lemma 15).
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2.2 Constant-depth circuits: Overview of the proofs of Theorems 2
and 3

Theorem 2 is a special case of the more general Theorem 3. However, since there is a simple
and more direct way to prove Theorem 2, we describe this simpler way first, and only then
turn to the describe the proof of the more general theorem.

Let C be a depth-D circuit that accepts all but B(n) = Ω
(

2n/ logD−2(n)
)
of its inputs. The

hitting-set generator first uses pseudorandom restrictions to simplify C to a depth-2 circuit,
by fixing values for all but n′ = Ω(n/ logD−2(n)) of the variables. These pseudorandom
restrictions are chosen using an adaptation of the derandomized switching lemma of Trevisan
and Xue [23] (either Tal’s [20] improvement or the adapted version in Proposition 26),
which requires a seed of length Õ(log3(n)). At this point, there are n′ ≥ log(B(n)) + 1
living variables, and therefore the simplified circuit (over n′ input bits) has acceptance
probability at least 1/2 (since C has at most B(n) unsatisfying inputs). Hence, we can use
any pseudorandom generator for depth-2 circuits with seed length at most Õ(log3(n)) (e.g.,
that of De et al. [7]) in order to fix values for the remaining n′ variables, thus finding a
satisfying input for C, with high probability. 3

Turning to the more general Theorem 3, the high-level structure of its proof is similar
to that of the proof of Theorem 2: We first use a derandomized switching lemma to
radically simplify the circuit, while keeping more than log(B(n)) variables alive, and then
use a pseudorandom generator for the simplified circuit to find a satisfying input. The key
difference from Theorem 2 is that the first step uses a new derandomization of the switching
lemma, which we establish.

The new derandomization of the switching lemma depends on the width (i.e., bottom
fan-in) of the depth-2 formula that we want the restriction to simplify. Previous known
derandomizations of the lemma can also be adapted to depend on the width of the formula:
For typical settings of the parameters (e.g., polynomially-small error), the derandomization
of Goldreich and Wigderson [9] can be adapted to yield a seed length of Õ(2w) · log(n) for
formulas of width w (see Proposition 44), and the derandomization of Trevisan and Xue [23]
can be adapted (using the pseudorandom generator of Gopalan, Meka, and Reingold [10]) to
yield a seed length of Õ(w) · log2(n) (see Proposition 26). We show a derandomization that
requires a seed of length Õ(w2 · log(n)) (see Proposition 28). Indeed, in this new result, the
dependency of the seed length on w is exponentially better than in [9], and the seed length is
shorter than in [23] for any w = o(log(n)). The caveat, however, is that we do not show that
the formula itself is simplified in the subcube corresponding to the restriction; instead, we
show that the formula is approximated by a decision tree of bounded depth in this subcube
(i.e., there exists such a decision tree that agrees with the formula on almost all inputs in the
subcube). This weaker conclusion suffices for our main application (i.e., for Theorem 3) as
well as for all other applications of derandomized switch lemmas that we are aware of.

Our starting point in the proof of this lemma is a result of Gopalan, Meka, and Rein-
gold [10], which asserts that for any depth-2 formula F of width w and any β > 0, there
exists a formula F low of width at most w and size at most m′ = 2Õ(w)·log log(1/β) such
that F low is “lower-sandwiching” for F (i.e., F low(x) ≤ F (x) for all x ∈ {0, 1}n) and

3 Actually, there is one minor subtlety in this description: In the derandomizations of [23, 20], the
expected number of living variables is close to n/ logd−2(n), but it is not guaranteed that approximately
this many variables remain alive with high (or even constant) probability. Nevertheless, the latter does
hold when instantiating their generic construction in a specific manner; see the proof of Theorem 3 for
further details.
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Prx∈{0,1}n [F (x) 6= F low(x)] ≤ β. Now, since F low is both small (i.e., m′ is upper bounded)
and of bounded width, we can find a restriction that simplifies it using a relatively short
seed; specifically, we can use an adapted version of the lemma of [23] (see Proposition 26),
and the required seed length (when we want the probability of error to be 1/poly(n)) is only
Õ(w) · log(m′) · log(n) = Õ(w2) · log(n) · log log(1/β).

The main challenge that underlies this approach is that, while F low agrees with F on
most inputs x ∈ {0, 1}n, it is not clear that F low also agrees with F on most inputs in the
subcube that corresponds to ρ; that is, it is not guaranteed that F low�ρ will agree with F �ρ on
most of their inputs. To make sure that F low�ρ will agree with F �ρ on most of their inputs,
we will choose ρ such that it “fools” additional tests that check whether or not F low�ρ and
F �ρ indeed typically agree. To design these tests we use the randomized tests technique:
Specifically, a natural randomized test to decide whether or not F low�ρ and F �ρ typically
agree is to sample random inputs inside the subcube that corresponds to ρ, and accept if
and only if F low�ρ and F �ρ agree on the sampled inputs.

Indeed, the residual tests under this distribution are simpler (in any reasonable sense)
than any deterministic test that decides whether or not F low�ρ and F �ρ agree on most of their
inputs. The remaining task is thus to construct a hitting-set generator with high density for
these residual tests. We will now describe how to do so, relying both on the specific details
of the construction of F low from [10], in order to construct circuits with a specific structure
that will be convenient for us for each residual test, and on relaxations of the randomized
tests technique that follow the ones suggested in the end of Section 2.1.

We want to use the lemma to simplify polynomially-many depth-2 formulas (i.e., simplify
an entire “layer” of a constant-depth circuit). Thus, we want that for every fixed formula
F it will hold that F low�ρ and F �ρ agree on an all but an α-fraction of their inputs, where
α = 1/poly(n). We say that a restriction ρ is good if F low�ρ and F �ρ agree with probability at
least 1− α. If we start from a formula F low with the approximation parameter β = poly(α),
then almost all restrictions ρ′ are excellent, in the sense that F low�ρ′ and F �ρ′ agree with
probability 1 −

√
β � 1 − α. For each fixed F and F low, to distinguish between excellent

restrictions and restrictions that are not good, the distribution T of tests uniformly samples
poly(α) inputs inside the subcube that corresponds to its input restriction ρ, and accepts ρ
if and only if F and F low agree on the sampled inputs.

The next step is to show that each residual test T ∈ T can be computed by a circuit
with a convenient structure. To do so, we observe that the construction of F low in [10] is
based on a sequence of specific syntactic modifications to F : Each syntactic modification is a
simplification of a quasi-sunflower, a notion introduced by Rossman [18] (for more specific
details see Section 5.2.1). We define the tests T ∈ T to accept if and only if the specific
syntactic modifications used to transform F into F low did not affect the formula at the
relevant inputs. Then, we show that each such test T can be decided by a depth-3 circuit
with a top AND gate and bottom fan-in w (relying on the hypothesis that the original
formula F has width w; see Claim 29.3).

Now, since almost all restrictions are excellent, and each excellent restriction is accepted
with high probability by T, it follows that almost all tests in T belong to the subset T′ ⊆ T of
tests that accept almost all of their input restrictions. We will in fact construct a hitting-set
generator for the residual tests T ∈ T′. This can be done relying both on the fact that
T ∈ T′ has very high acceptance probability and on the fact that it can be computed by a
depth-3 circuit with a top AND gate and bottom fan-in w (the latter allows us to use the
pseudorandom generator of [10] for formulas of small width; see Claim 29.4).

To prove Theorem 3, we will repeat the following step: First reduce the width of the
formulas in the next-to-bottom layer by a pseudorandom restriction (see Claim 30.1), and
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then use the new switching lemma to approximate the circuit by a circuit in which all the
formulas in the next-to-bottom layer are simplified (and thus the latter circuit has smaller
depth). Since all our approximations are “lower-sandwiching”, any satisfying input for the
latter circuit is also satisfying for the former circuit.

2.3 Constant-depth circuits with parity gates: Overview of the proof of
Theorem 6

Let us now describe the high-level strategy of the algorithms of Theorem 6. First observe
that any ⊕ ∧ ⊕ circuit C computes an n-variate polynomial over F2, and that the total
degree of this polynomial equals the maximal fan-in of ∧-gates in the circuit. Our approach
will be to find an affine subspace W of dimension more than log(B(n)) such that when C
is restricted to the affine subspace, the fan-in of all ∧-gates becomes constant. Thus, when
restricted to W , the circuit C becomes a non-zero polynomial of constant degree, which
means that we can then hit it using a pseudorandom generator for polynomials of constant
degree (i.e., Viola’s [25]).

In order to find the affine subspace W , we use affine restrictions, which are obtained by
fixing values to some of the bottom ⊕-gates. These are analogous to standard “bit-fixing”
restrictions, but in contrast to the latter, we cannot consider any sequence of fixed values
to the bottom ⊕-gates: This is the case because the bottom ⊕-gates might not be linearly
independent (and thus the values of some ⊕-gates might depend on the values of other
⊕-gates). In particular, this means that we cannot use random (or pseudorandom) restrictions
in which the value of each ⊕-gate is chosen obliviously of the ⊕-gates of the circuit.

Our algorithm circumvents this problem by constructing a restriction that corresponds to
the specific ⊕∧⊕ circuit that is given to the algorithm as input. For concreteness, let us now
describe the construction of Item (2) of Theorem 6, and let us also fix specific parameter
values to work with: We assume, for simplicity, that the number of bottom ⊕-gates is exactly
n; and we assume that the number of ∧-gates is n1.1, and that the circuit accepts all but
Ω
(

2n1/3
)
of its inputs.

First assume, for a moment, that the fan-in of each ∧-gate in the middle layer of the
circuit is upper bounded by

√
n. In this case we can restrict the ⊕-gates as follows. Consider

a random restriction process in which each bottom ⊕-gate is fixed independently with
probability 1− p = 1− n−2/3, and the values for the fixed gates are chosen afterwards, in an
arbitrary consistent manner. With high probability, the restriction will yield a subspace of
dimension approximately p · n = n1/3 > log(B(n)). Also, since each ∧-gate g has fan-in at
most w =

√
n, and p = 1/w1+Ω(1), with high probability, all but O(1) of the gates that feed

into g are fixed by this process.4 In fact, the above two statements hold even if we choose
the restriction according to an O(1)-independent distribution, rather than uniformly.

Needless to say, we cannot actually assume that the fan-in of ∧-gates is bounded by
√
n.

Thus, our strategy will be to first mildy reduce the fan-in of ∧-gates (from n to
√
n), and

then invoke the restriction process described above. A standard approach to mildly reduce
the fan-in of ∧-gates is to simply remove some of the incoming wires to each ∧-gate. However,
this approach does not work in our setting, since the top gate is a ⊕-gate, which means that
such a modification might turn unsatisfying inputs into satisfying ones (and thus hitting the
modified circuit might not yield a satisfying input to the original circuit).

4 For any ∧-gate g with initial fan-in d∧, the probability that there exists a set of size c of ⊕-gates that
feed into g that are all unfixed is at most

(
d∧
c

)
· pc = 1/poly(n), for a sufficiently large c = O(1).
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To reduce the fan-in of ∧-gates to
√
n, we follow Kopparty and Srinivasan [13] in adapting

the approach of Chaudhuri and Radhakrishnan [4] to the setting of⊕∧⊕ circuits. 5 Specifically,
we first iteratively fix each ⊕-gate that has fan-out more than n1/4 to a non-accepting value;
note that such an action also fixes n1/4 ∧-gates in the middle layer, and hence in this step
we fix values for at most n1.1/n1/4 = o(n) bottom ⊕-gates (because afterwards there are no
more living ∧-gates). At this point, the number of wires feeding the middle layer is at most
n ·n1/4 = n1.25. Now, for each ∧-gate g with fan-in more than

√
n, we fix a ⊕-gate that feeds

into g to a non-accepting value, thereby also fixing g; each such action eliminates
√
n wires

that feed into the middle layer, and therefore in this step we fix at most n1.25/
√
n = o(n)

bottom ⊕-gates. Overall, the fan-in of each ∧-gate has been reduced to
√
n, and we imposed

at most o(n) affine conditions.
To see that the final subspace W is of dimension more than log(B(n)), note that the

dimension of W equals the number of living ⊕-gates (because we assumed that the initial
number of ⊕-gates is exactly n). After the first step of the algorithm (i.e., reducing the
fan-in of ∧-gates to

√
n), we are left with (1− o(1)) · n living ⊕-gates, and the second step

(i.e., the pseudorandom restriction) leaves a fraction of p = n−2/3 of them alive. Thus, the
expected dimension of W is Ω(p · n) = Ω

(
n1/3) > log(B(n)).

The approach above actually works for a broader range of parameters, and in particular
when the number of ∧-gates is n2−ε, for any constant ε > 0, and when the number of ⊕-gates
is n + nc, for any c < ε (see details in Section 6.2.3). In Items (1) and (3), we consider
circuits in which the number of ⊕-gates is significantly larger than n, namely O(n) and
O
(
n1+ε), respectively. The proofs of both these items use algorithms that are variations of

the first step of the algorithm described above, and these proofs are detailed in Sections 6.2.2
and 6.2.4, respectively.

2.4 Polynomials that vanish rarely: Overview of the proof of
Theorem 8

The main component in the proof of Theorem 8 is a reduction of the task of constructing
a hitting-set generator for polynomials Fn → F of degree d ≤ 0.99 · |F| to the task of
constructing a hitting-set generator for polynomials FO(n) → F of degree d′ ≥ d that vanish
rarely. Since any hitting-set generator for all polynomials of degree d requires a seed of
Ω
(

log
((
n+d
d

)))
bits, we obtain the lower bound on hitting-set generators for polynomials

FO(n) → F of degree d′ that vanish rarely. The aforementioned reduction can be thought of
as a form of “randomness-efficient error reduction” for polynomials such that the increase in
degree from d to d′ is mild (or even d′ = d).

Let p : Fn → F be of degree d. The first observation is that since d ≤ 0.99 · |F|, it holds
that Prx∈Fn [p(x) = 0] ≤ 0.99, which implies that the probability over a random subspace
W ⊆ Fn of constant dimension that p�W ≡ 0 is very small (because such a subspace consists
of poly(|F|) points that are O(1)-wise independent). Our strategy will be to try and construct
a polynomial p′ : FO(n) → F that satisfies the following: The polynomial p′ gets as input a
tuple ~u ∈ FO(n) that defines a subspace W = W~u, and outputs zero if and only if p�W ≡ 0.
Note that any polynomial p′ that satisfies this condition vanishes rarely, because p�W 6≡ 0

5 Originally, [4] applied their approach to AC0 circuits, and [13] later adapted this approach to AC0[⊕]
circuits. Our adaptation is slightly different technically than in [13], to suit the specific circuit structure
⊕∧⊕; but more importantly, while both [4, 13] use the approach as part of the analysis (to prove lower
bounds), we use this approach as a (non-black-box) algorithm for derandomization.
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for almost all subspaces W . And indeed, hitting p′ yields a subspace W such that p�W 6≡ 0,
which allows us to hit p, by using additional O(log(|F|)) ≤ O(log(n)) random bits to choose
w ∈ W . (This approach is reminiscent of Bogdanov’s [2] reduction of the construction of
pseudorandom generators to the construction of hitting-set generators.)

The main challenge in constructing such a polynomial p′ is the following: Given a tuple
~u ∈ FO(n) that defines a subspace W = W~u ⊆ Fn, how can we test efficiently (i.e., with
degree d′ that is not much larger than d) whether or not p�W 6≡ 0? Indeed, a naive solution
is to compute the OR function of the values {p(w) : w ∈W} (i.e., compute the polynomial
that outputs 1 if and only if there exists w ∈ W such that p(w) 6= 0), but this solution
requires a very high degree d′ ≥ poly(|F|). We present two solutions for this problem: The
first yields d′ = poly(d), and corresponds to Item (2) of Theorem 8, and the second yields
d′ = d, and corresponds to Item (1) of Theorem 8.

The first solution relies on the observation that instead of testing whether or not there
exists w ∈ W such that p(w) 6= 0, we can test whether or not there exists a non-zero
coefficient in the representation of p�W as a polynomial FO(1) → F. Since p�W is of degree
d, the number of coefficients of p�W is poly(d). Moreover, each of the coefficients of p�W is
actually a polynomial of degree d in ~u (see Claim 39.1). Thus, instead of taking an OR of
poly(|F|) values (i.e., of the values in {p(w) : w ∈W}), we can take an OR of poly(d) values,
where each of these values can be computed by a polynomial of degree d in ~u.

The first solution is not complete yet, since computing the OR function of k = poly(d)
values requires degree (|F| − 1) · k. To solve this problem, observe that we do not actually
need to output 1 on every non-zero input; in fact, it suffices that on every non-zero input, we
output some non-zero value in F. We call such functions multivalued OR functions, and show
that there exists a polynomial Fk → F of degree less than 2 · k that computes a multivalued
OR function of its inputs (see Proposition 38). It follows that there exists a polynomial
p′ : FO(n) → F of degree d′ = poly(d) that vanishes on at most 1/poly(|F|) of its inputs
(corresponding to the probability that p�W ≡ 0) such that every non-zero input ~u to p′ yields
a subspace W = W~u such that p�W 6≡ 0.

The solution described above yields the lower bound in Item (2) of Theorem 8, which
refers to the badness parameter b(n) = 1/poly(|F|). To obtain the lower bound in Item (1),
we will again reduce the task of hitting p : Fn → F to the task of finding a subspace W
such that p�W 6≡ 0, but we will then further reduce the latter task to the task of hitting
polynomials of degree d that vanish on at most O(1/|F|) of their inputs. To do so, we use a
variation on the technique of randomized tests. Specifically, we construct a distribution h
over polynomials FO(n) → F that satisfies: (1) For every ~u ∈ FO(n) such that p�W~u

≡ 0 it
holds that h(~u) = 0, with probability one; (2) The distribution h is typically in the class P
of degree-d polynomials that vanish on at most O(1/|F|) of their inputs. We will then rely
on arguments similar to those in Section 2.1, to deduce that any sufficiently dense hitting-set
generator for P outputs ~u such that p�W~u

6≡ 0 (see Lemma 16).
Recall that the coefficients of p�W~u

are degree-d polynomials in ~u. The aforementioned
distribution, denoted by h, is simply a random F-linear combination of these degree-d
polynomials. Note that h is supported on polynomials of degree d, and indeed for every ~u
such that p�W~u

≡ 0 it holds that h(~u) = 0, with probability one. Moreover, since almost all
~u’s are such that p�W~u

6≡ 0, and for each such ~u it holds that Pr[h(~u) 6= 0] = 1− 1/|F|, the
expected fraction of inputs on which a polynomial in h vanishes is at most O(1/|F|). Thus,
most of the polynomials in the support of h are in P. We can therefore deduce that any
sufficiently dense hitting-set generator for P also outputs ~u such that p�W~u

6≡ 0, which allows
us to hit p using additional O(log(|F|)) = O(log(n)) bits.
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3 Preliminaries

Throughout the paper, the letter n will always denote the number of input variables to a
function or a circuit. We denote by {D→ R} the set of functions from domain D to range R.
Distributions and random variables will always be denoted by boldface letters. Given a set Σ,
which will typically be clear from the context, we denote by uk the uniform distribution over
Σk. Given a distribution d, we write x ∼ d to denote a value x that is sampled according to
d; when we write x ∈ Σk in probabilistic expressions, we mean the uniform distribution over
Σk.

3.1 Circuit classes and restrictions
We will consider Boolean circuit families {Cn}n∈N such that Cn gets n input bits and outputs
a single bit. The circuit class AC0 consists of all circuit families over the De-Morgan basis
(i.e., the gates of the circuit can compute the ∧,∨, and ¬ functions) such that the circuit
gates have unbounded fan-in and fan-out, and for every n ∈ N, the size of Cn (i.e., number
of gates) is at most poly(n), and the depth of Cn (i.e., longest path from an input gate to
the output gate) is upper bounded by a constant. We also assume that for every n ∈ N it
holds that Cn has 2 · n input gates that correspond to the input literals (i.e., the input bits
x1, ..., xn and their negations ¬x1, ...,¬xn); and that Cn is layered, in the sense that in a
fixed circuit, for every integer d, all gates at distance d from the input gates are of the same
gate-type (i.e., either ∧ or ∨).

The circuit class AC0[⊕] is defined similarly to AC0, the only difference being that the
basis is extended: The gates can compute the ∧,∨,¬, and ⊕ functions (rather than only
∧,∨, and ¬). We stress that a ⊕-gate can compute either the parity of its input gates, or
the negated parity of its input gates. We also assume that all AC0[⊕] circuits are layered, in
the sense that in a fixed circuit, for every integer d, all gates at distance d from the input
gates are of the same gate-type (i.e., either ∧, or ∨, or ⊕).

Given a function f : {0, 1}n → {0, 1}, a restriction of f is a subset W ⊆ {0, 1}n. We say
that a function f simplifies under a restriction W to a function from a class H if there exists
h ∈ H such that for every w ∈W it holds that h(w) = f(w). A restriction to a subcube is
represented by a string ρ ∈ {0, 1, ?}n, where the subcube consists of all x ∈ {0, 1}n such that
for every i ∈ [n] for which ρi 6= ? it holds that xi = ρi. The living variables under ρ are the
input bits indexed by the set {i ∈ [n] : ρi = ?}. The restricted function f�ρ : {0, 1}n → {0, 1}
is defined by f�ρ(x) = f(y), where for every i ∈ [n] it holds that yi = xi if ρi = ? and
yi = ρi otherwise. We will also consider the composition of restrictions, where a composition
ρ = ρ1 ◦ ρ2 yields the restricted function f�ρ =

(
f�ρ2

)
�ρ1 .

3.2 Pseudorandom generators and hitting-set generators
We will use the following two standard definitions of pseudorandom generators and of
hitting-set generators.

I Definition 9 (Pseudorandom Generators). Let F =
⋃
n∈N Fn, where for every n ∈ N it

holds that Fn is a set of functions {0, 1}n → {0, 1}, and let ε : N → [0, 1] and ` : N → N.
An algorithm G is a pseudorandom generator for F with error parameter ε and seed length
` if for every n ∈ N, when G is given as input 1n and a random seed of length `(n), it
outputs a string in {0, 1}n such that for every f ∈ Fn it holds that

∣∣∣Prx∈{0,1}n [f(x) =

1]− Pry∈{0,1}`(n) [f(G(1n, y)) = 1]
∣∣∣ < ε.



R. Tell 13:15

If G is a pseudorandom generator with error parameter ε for a class of functions F , then
we say that functions from F are ε-fooled by G.

I Definition 10 (Hitting-Set Generators). Let F =
⋃
n∈N Fn, where for every n ∈ N it holds

that Fn is a set of functions {0, 1}n → {0, 1}, and let ` : N → N. An algorithm G is a
hitting-set generator for F with seed length ` if for every n ∈ N, when G is given as input 1n
and a random seed of length `(n), it outputs a string in {0, 1}n such that for every f ∈ Fn it
holds that Pry∈{0,1}`(n) [f(G(1n, y)) 6= 0] > 0. For ε : N→ (0, 1], we say that G has density ε
if for every n ∈ N and f ∈ Fn it holds that Pry∈{0,1}`(n) [f(G(1n, y)) 6= 0] ≥ ε(n).

We now extend Definition 10 by defining hitting-set generators for functions over fields
larger than F2. The following definition requires that the generator G will output a value x
such that the relevant function evaluates to any non-zero value on x.

I Definition 11 (Hitting-Set Generators Over Large Fields). For every n ∈ N, let F be a
finite field of size that may depend on n, and let Fn be a set of functions Fn → F. Let
F =

⋃
n∈N Fn. For a function ` : N→ N, an algorithm G is a hitting-set generator for F with

seed length ` if for every n ∈ N, when G is given as input 1n and a random seed of `(n) bits
(i.e., a random string in {0, 1}`(n)), it outputs n elements of F such that for every f ∈ Fn it
holds that Pry∈{0,1}`(n) [f(G(1n, y)) 6= 0] > 0. For ε : N→ (0, 1], we say that G has density ε
if for every n ∈ N and f ∈ Fn it holds that Pry[f(G(1n, y)) 6= 0] ≥ ε(n).

In Definition 11, the generator G gets a seed from {0, 1}`, rather than from F` (as is also
common in some texts); indeed, the seed length `(n) of the generator G might depend on the
size of F. This choice was made because it is more general, and because we want to measure
the seed length in bits.

3.3 Distributions with limited independence
We say that random variables x1, ...,xn ∈ {0, 1}n are t-wise independent if for every set
S ⊆ [n] of size |S| = t, the marginal distribution (xi)i∈S is uniform over {0, 1}t. We will use
the following well-known tail bound (for a proof see [1, Lemma 2.3]):

I Fact 12 (Tail Bound for t-Wise Independent Distributions). Let n ∈ N, and let t ≥ 4 be an
even number. Let x1, ...,xn be random variables in {0, 1} that are t-wise independent, and
denote µ = E

[
1
n ·
∑
i∈[n] xi

]
. Then, for any ζ > 0 it holds that Pr

[∣∣∣ 1
n ·
∑
i∈[n] xi − µ

∣∣∣ ≥ ζ] ≤
8 ·
(
t·µ·n+t2
ζ2·n2

)t/2
.

We say that x1, ...,xn ∈ {0, 1}n are δ-almost t-wise independent if for every set S ⊆ [n] of
size |S| = t, the statistical distance between (xi)i∈S and the uniform distribution over {0, 1}t
is at most δ. Then, the following well-known tail bound holds:

I Fact 13 (Tail Bound for Almost t-Wise Independent Distributions). Let n ∈ N, let t ≥ 4 be
an even number, and let δ > 0. Let x1, ...,xn be random variables in {0, 1} that are δ-almost
t-wise independent, and denote µ = E

[
1
n ·
∑
i∈[n] xi

]
. Then, for any ζ > 0 it holds that

Pr
[∣∣∣ 1
n ·
∑
i∈[n] xi − µ

∣∣∣ ≥ ζ] < 8 ·
(
t·µ·n+t2
ζ2·n2

)t/2
+ (2 · n)t · δ.

For a proof of Fact 13 see, e.g., [14, Lemma 18]. We will frequently use Fact 13 with the
parameters t = O(1), and ζ = µ/2, and δ = 1/p(n) where p is a sufficiently large polynomial;
in this case, we have that Pr

[
1
n ·
∑
i∈[n] xi 6∈ µ± (µ/2)

]
= O

(
1/ (µ · n)t/2

)
.
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We will also need the following fact, which, loosely speaking, asserts that concatenating two
independently-chosen distributions that are almost t-wise independent yields a distribution
that is still almost t-wise independent.

I Fact 14 (Concatenating Almost t-Wise Independent Distributions). Let n, n′ ∈ N, let δ, δ′ < 1
2 ,

and let t ∈ N. Let y be a distribution over {0, 1}n that is δ-almost t-wise independent, and
let z be a distribution over {0, 1}n′ that is δ′-almost t-wise independent. Let r = y ◦ z be a
distribution that is obtained by concatenating a sample from y and an independent sample
from z. Then, the distribution r is (δ + δ′)-almost t-wise independent.

Proof. Fix a set S ⊆ [n+ n′] of size |S| = t, and let us prove that the `1-distance between
rS and the uniform distribution is at most 2 · (δ + δ′) (which implies that the statistical
distance between them is at most δ + δ′). Partition S into W = S ∩ [n] and W ′ = S \ [n],
and denote w = |W | and w′ = |W ′|. Then, we have that:

‖rS − ut‖1 = ‖yW ◦ zW ′ − uw ◦ uw′‖1
≤ ‖yW ◦ zW ′ − yW ◦ uw′‖1 + ‖yW ◦ uw′ − uw ◦ uw′‖1
= ‖zW ′ − uw′‖1 + ‖yW − uw‖1 ,

which is upper-bounded by 2 · δ′ + 2 · δ. J

4 Randomized tests

In this section we state and prove three lemmas that are related to the technique of
randomized tests. The first lemma (i.e., Lemma 15) corresponds to the high-level description
in Sections 2.1 and 2.2, and will be useful for us in Section 5. The next two lemmas (i.e.,
Lemmas 16 and 18) are variations that will be useful for us in Section 7.

Towards stating Lemma 15, let us recall the setting that was described in Sections 2.1
and 2.2: For a set G ⊆ {0, 1}n of good objects, our goal is to find some x ∈ G; almost all
objects are excellent, i.e. not only good but also in a subset E ⊆ G with additional useful
properties; there exists a distribution T over simple tests that distinguishes between excellent
objects and objects that are not good; and the distribution w “fools” almost all tests T ∈ T.
In this case, w contains an object in G.

I Lemma 15 (Randomized Tests). Let n ∈ N, and let ε1, ε2, ε3, ε4, ε5 > 0 be error parameters.
Let G ⊆ {0, 1}n, and let E ⊆ G such that Prx∈{0,1}n [x ∈ E] ≥ 1− ε1.
Let T be a distribution over functions T : {0, 1}n → {0, 1} such that for every x ∈ E it
holds that PrT∼T[T (x) = 1] ≥ 1 − ε2 and for every x /∈ G it holds that PrT∼T[T (x) =
0] ≥ 1− ε3.
Let w be a distribution that ε5-fools all but an ε4-fraction of the tests in T; that is, the
probability over T ∼ T that

∣∣∣Pr[T (un) = 1]− Pr[T (w) = 1]
∣∣∣ > ε5 is at most ε4.

Then, the probability that w ∈ G is at least 1− (ε1 + ε2 + ε3 + 2ε4 + ε5).

Recall that in the proof of Theorem 3, the set of tests that are “fooled” by w is the set of
tests that accept almost all of their inputs.

Proof of Lemma 15. Let T be the set of tests in the support of T that are ε5-fooled by
w; that is, T =

{
T ∈ supp(T) :

∣∣∣Pr[T (un) = 1]− Pr[T (w) = 1]
∣∣∣ ≤ ε5}. To upper-bound
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the probability that w /∈ G, first note that a random test T ∼ T accepts a random input
x ∈ {0, 1}n with high probability; this is the case because

Pr
T∼T

[T (un) = 1] ≥ Pr[un ∈ E] ·min
x∈E

{
Pr
T∼T

[T (x) = 1]
}
≥ 1− (ε1 + ε2) . (4.1)

It follows that a random test T ∼ T also accepts a pseudorandom input from the
distribution w with high probability, since

Pr
T∼T

[T (w) = 1] ≥ Pr
T∼T

[T ∈ T ] · Pr
T∼T

[T (w) = 1|T ∈ T ]

≥ (1− ε4) ·
(

Pr
T∼T

[T (un) = 1|T ∈ T ]− ε5
)

≥ (1− ε4) ·
(

Pr
T∼T

[T (un) = 1]− ε4 − ε5
)

,

which, relying on Eq. (4.1), is lower-bounded by 1− ε1 − ε2 − 2ε4 − ε5.
However, if Pr[w /∈ G] is high, then there is significant probability that a random test

from T will reject a pseudorandom input from w. Specifically,

Pr
T∼T

[T (w) = 0] ≥ Pr[w /∈ G] ·min
x/∈G

{
Pr
T∼T

[T (x) = 0]
}
≥ Pr[w /∈ G]− ε3 ,

and it follows that Pr[w /∈ G] ≤ ε1 + ε2 + ε3 + 2ε4 + ε5. J

We now present two variations on the argument above that are applicable in the setting
of polynomials over finite fields. For a finite field F, let G ⊆ Fn, and assume that there exists
a distribution h over polynomials Fn → F such that for every x /∈ G it holds that h(x) = 0,
with high probability. Further assume that there exists a hitting-set generator with high
density for the polynomials h in the support of h. Then, using an argument similar to the
one in the beginning of Section 2.1, the hitting-set generator contains x ∈ G. 6

I Lemma 16 (Randomized Tests Over Finite Fields). Let n ∈ N, let F be any finite field, and
let ε1, ε2, ε3 > 0 be three parameters. Assume that, for some G ⊆ Fn, it holds that:
1. There exists a distribution h over {Fn → F} such that for every x /∈ G it holds that

Prh∼h[h(x) = 0] ≥ 1− ε1.
2. There exists a set H ⊆ {Fn → F} such that Prh∼h[h ∈ H] ≥ 1− ε2.
3. There exists a distribution w over Fn such that for every h ∈ H it holds that Pr[h(w) 6=

0] ≥ 1− ε3.
Then, Pr[w ∈ G] ≥ 1− ε1 − ε2 − ε3.

Proof. We first show that Pr[w ∈ G] ≥ Eh∼h[Pr[h(w) 6= 0]]− ε1. This is the case because

Eh∼h [Pr[h(w) 6= 0]] = Ex∼w

[
Pr
h∼h

[h(x) 6= 0]
]

≤ Pr
x∼w

[x ∈ G] + Pr
x∼w

[x /∈ G] ·max
x/∈G

{
Pr
h∼h

[h(x) 6= 0]
}

≤ Pr[w ∈ G] + ε1 .

6 Recall that this argument is different than the argument in Lemma 15: On the one hand, we do not
assume that G is dense, or that for every x ∈ G it holds that h(x) 6= 0, with high probability; but on
the other hand, we require a hitting-set generator with high density for h ∈ supp(h) (rather than a
pseudorandom generator).
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Now, by our hypothesis, the probability that h ∈ H is at least 1− ε2, and for every h ∈ H
it holds that Pr[h(w) 6= 0] ≥ 1− ε3. Therefore,

Eh∼h[Pr[h(w) 6= 0]] ≥ Pr
h∼h

[h ∈ H] · Pr
h∼h

[h(w) 6= 0|h ∈ H] ≥ 1− ε2 − ε3 ,

which implies that Pr[w ∈ G] ≥ 1− ε1 − ε2 − ε3. J

In the next argument, instead of trying to hit a fixed set G ⊆ Fn, we will fix a polynomial
p : Fn → F, and try to “fool” p (i.e., we want to construct a pseudorandom generator for
p). Indeed, we will need to explain exactly what we mean by “fooling” in the context of
functions over finite fields. Towards presenting the argument, let us first define the notion of
randomly computing p by a distribution of functions that is typically over simpler functions.

I Definition 17 (Randomly Computing a Function). Let F be a finite field, let p : Fn → F,
and let H be a class of functions Fn → F. For ρ, ρ′ > 0, we say that p can be randomly
computed with error ρ by a distribution h that is (1− ρ′)-typically in H, if:
1. For every x ∈ Fn it holds that Pr [p(x) = h(x)] ≥ 1− ρ.
2. The probability that h ∈ H is at least 1− ρ′.

The following claim extends an argument that is implicit in the work of Bogdanov and
Viola [3, Proof of Lemma 23]. Loosely speaking, our claim is the following: If p can be
computed with small error by a distribution h that is typically in H, then any distribution
w over Fn that “fools” every h ∈ H also “fools” p, where “fooling” a function f means that
for some (fixed) mapping ξ : F→ C it holds that

∣∣∣E[ξ(f(w))]− E[ξ(f(un))]
∣∣∣ is small. 7

I Lemma 18 (An Extension of a Claim that is Implicit in [3]). Let n ∈ N, and let F be any
finite field. Let ε1, ε2, ε3 > 0 be three parameters. Let p : Fn → F, let H ⊆ {Fn → F}, and
assume that p can be randomly computed with error ε1 by a distribution h over {Fn → F}
that is (1− ε2)-typically in H.

Let ξ : F → C be any mapping, and let δ = maxv,w∈F {|ξ(v)− ξ(w)|}. Let w be a
distribution over Fn such that for every h ∈ H it holds that

∣∣∣E[ξ(h(un))]− E[ξ(h(w))]
∣∣∣ < ε3.

Then,
∣∣∣E[ξ(p(un))]− E[ξ(p(w))]

∣∣∣ < 2δ · ε1 + δ · ε2 + ε3.

Proof. For simplicity of notation, define p′ = ξ ◦ p : Fn → C and h′ = ξ ◦ h : Fn → C. By
the triangle inequality, we have that∣∣∣E[p′(un)]− E[p′(w)]

∣∣∣ ≤∣∣∣E[p′(un)]− Eh∼h [h′(un)]
∣∣∣+∣∣∣Eh∼h [h′(un)]− Eh∼h [h′(w)]
∣∣∣+∣∣∣Eh∼h [h′(w)]− E[p′(w)]

∣∣∣ . (4.2)

To upper bound the first term in Eq. (4.2), note that∣∣∣E[p′(un)]− Eh∼h [h′(un)]
∣∣∣ ≤ Eu∈Fn,h∼h

[∣∣∣p′(u)− h′(u)
∣∣∣]

≤ Eu∈Fn
[

Pr
h∼h

[h(u) 6= p(u)] · max
v,w∈F

{|ξ(v)− ξ(w)|}
]

≤ δ · ε1 ,

7 A standard choice for ξ is any fixed non-trivial character e : F→ C.
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where the last inequality holds because for every fixed u ∈ Fn it holds that Prh∼h[h(u) 6=
p(u)] ≤ ε1. The third item is similarly upper bounded by δ · ε1, by replacing the uniform
choice of u ∈ Fn with a choice of u according to the distribution w.

To upper bound the second term in Eq. (4.2), note that∣∣∣Eh∼h[h′(un)]− Eh∼h[h′(w)]
∣∣∣ ≤ Eh∼h

[∣∣∣E[h′(un)]− E[h′(w)]
∣∣∣]

≤ Pr
h∼h

[h /∈ H] · max
v,w∈F

{|ξ(v)− ξ(w)|}

+ Eh∼h

[
|E[h′(un)]− E[h′(w)]|

∣∣∣h ∈ H] ,

which is upper bounded by δ · ε2 + ε3. (Specifically, the first term is upper bounded by δ · ε2,
whereas to bound the second term by ε3 we use the hypothesis that for every h ∈ H it holds
that

∣∣∣E[h′(un)]− E[h′(w)]
∣∣∣ < ε3.) J

5 Constant-depth circuits

5.1 Proof of Theorem 1

Let c = D−d−11. Starting from a depth-d circuit C : {0, 1}n → {0, 1}, we will employ error-
reduction within AC0, by first sampling inputs for C using the seeded extractor of Cheng and
Li [5], and then taking the disjunction of the evaluation of C on these inputs. The extractor
will be of depth c+ 10, and will work for min-entropy n′/ logc(n′), where n′ is the number of
random bits that it uses. Thus, this construction will yield a circuit C ′ : {0, 1}n′ → {0, 1} of
depth D = d+ (c+ 10) + 1 that accepts all but 2n′/ logc(n′) = 2n′/ logD−d−11(n′) of its inputs.
Details follow.

Let C : {0, 1}n → {0, 1} be a circuit of depth d. We will rely on the following theorem
from [5], which we cite with minor changes of notation:

I Theorem 19 (An AC0-Computable Seeded Extractor [5, Thm 1.5]). For any constant c ∈ N,
and k = Ω (n′/ logc(n′)) and any ε = 1/poly(n′), there exists an explicit construction of a
strong (k, ε)-extractor Ext : {0, 1}n′ × {0, 1}d → {0, 1}n that can be computed by an AC0

circuit of depth c+ 10, where d = O(log(n)), n = kΩ(1) and the extractor family has locality
O(logc+5(n)).

We will not need the strongness property or the locality property in the current proof.
Let n′ = poly(n) such that for k = Ω (n′/ logc(n′)) it holds that n = kΩ(1), and let Ext :
{0, 1}n′ ×{0, 1}d → {0, 1}n be the seeded extractor from Theorem 19, instantiated with error
parameter ε = 1/4. We construct a circuit C ′ : {0, 1}n′ → {0, 1} that first computes the
values Ext(x, z), for each possible seed z ∈ {0, 1}d, then evaluates C on each value E(x, z),
and finally takes an OR of these evaluations; that is, C ′(x) = ∨z∈{0,1}sC (Ext(x, z)).

Note that C ′ has depth D and size poly(n). Also note that the number of inputs
x ∈ {0, 1}n′ for which Prz[C(Ext(x, z))] < 1/4 is at most 2n′/ logc(n′). 8 In particular, C ′
accepts all but at most 2n′/ logc(n′) of its inputs, and for each satisfying input x for C ′, we
can find a corresponding satisfying input for C among {Ext(x, z)}z∈{0,1}s .

8 Otherwise, the uniform distribution on such inputs yields a source X of min-entropy n′/ logc(n′) such
that C distinguishes Ext(X) from the uniform distribution over {0, 1}n with probability 1/4.
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5.2 Proofs of Theorems 2 and 3
The first step towards proving Theorems 2 and 3 is to establish a derandomized switching
lemma that simplifies depth-2 formulas of bounded-width; after presenting several required
definitions in Section 5.2.1, we prove the lemma in Section 5.2.2. Then, in Section 5.2.3, we
use the lemma to prove Theorems 2 and 3.

5.2.1 Preliminary definitions, and results from [10]
For any restriction ρ ∈ {0, 1, ?}n, denote by C(ρ) the subcube that corresponds to the living
variables under ρ; that is, C(ρ) = {x ∈ {0, 1}n : ∀i ∈ [n] s.t. ρi 6= ? it holds that xi = ρi}.
We identify strings r ∈ {0, 1}(q+1)·n, where n, q ∈ N, with restrictions ρ = ρr ∈ {0, 1, ?}n, as
follows: Each variable is assigned a block of q+ 1 bits in the string; the variable remains alive
if the first q bits in the block are all zeroes, and otherwise takes the value of the (q+ 1)th bit.
When we refer to a “block” in the string that corresponds to a restriction, we mean a block
of q + 1 bits that corresponds to some variable. When we say that a restriction is chosen
from a distribution r over {0, 1}(q+1)·n, we mean that a string is chosen according to r, and
interpreted as a restriction. Moreover, when we say that an algorithm “reads bits” in the
restriction, we mean that it reads bits in the corresponding string.

In addition, we will sometimes identify a pair of strings y ∈ {0, 1}q·n and z ∈ {0, 1}n
with a restriction ρ = ρy,z. In this case, the restriction ρ = ρy,z is the restriction ρr that is
obtained by combining y and z to a string r in the natural way (i.e., appending a bit from z

to each block of q bits in y). Note that the string y determines which variables ρ keeps alive,
and the string z determines the values that ρ assigns to the fixed variables.

Throughout the section, whenever we consider a depth-2 formula for a function F :
{0, 1}n → {0, 1}, we allow the formula to be a redundant representation of F (i.e., not
necessarily the most concise representation of F as a formula), and in particular we allow
formulas in which some clauses are simply constants. We will identify any clause of a depth-2
formula with the corresponding subset of the literals; the clause is a conjunction of the
literals if the formula is a DNF, and otherwise it is a disjunction of the literals. We say that
a function F low : {0, 1}n → {0, 1} is lower-sandwiching for F if for every x ∈ {0, 1}n it holds
that F low(x) ≤ F (x). Similarly, we say that F up : {0, 1}n → {0, 1} is upper-sandwiching for
F if for every x ∈ {0, 1}n it holds that F (x) ≤ F up(x).

5.2.1.1 Refinements: Definition and basic facts

We need several definitions that are related to the results of Gopalan, Meka, and Reingold [10].
Their main theorem involves a process of sparsification of a depth-2 formula. The sparsification
process is iterative: In each iteration, they identify a quasi-sunflower in the formula (a notion
that was introduced by Rossman [18]), and simplify the quasi-sunflower using one of two
operations. The first operation is simply the removal of a clause from the formula; and the
second operation is the removal of a set f1, ..., fu of u ≥ 2 clauses, replacing them with a new
clause that consists of the set of literals that are shared by all the u clauses (i.e., replacing
f1, ..., fu with the clause

⋂
j∈[u] fj). The following definition generalizes this sparsification

process. 9

9 The reason that we need this generalization is in order to facilitate the proof of Claim 23; this is also
the reason that we allow formulas to have redundant clauses that compute constant functions.
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I Definition 20 (Refinements of a Depth-2 Formula). Let F : {0, 1}n → {0, 1} be a depth-2
formula with at least two clauses. We define the following three syntactic operations on F ,
which we call refinement steps.
1. A removal step is simply the removal of a clause from F .
2. A merging step is the removal of u ≥ 2 clauses f1, ..., fu from F , and the addition of a new

clause that consists of the set of literals that appear in all the u clauses (i.e., replacing
f1, ..., fu with the new clause

⋂
j∈[u] fj). If

⋂
j∈[u] fj = ∅, then the new clause computes

the constant one function if F is a DNF, and the constant zero function if F is a CNF.
3. A clean-up step is the removal of one or more clauses that compute the constant zero

function from a DNF, or of one or more clauses that compute the constant one function
from a CNF.

We say that a depth-2 formula F ′ : {0, 1}n → {0, 1} is a refinement of another depth-2
formula F : {0, 1}n → {0, 1} if F ′ can be obtained from F either by a sequence of removal
steps and clean-up steps, or by a sequence of merging steps and clean-up steps.

We now state some basic facts about refinements, which will be useful for us later on.
The following two facts follow from Definition 20:

I Fact 21 (Refinements Under Negations). Let F : {0, 1}n → {0, 1} and F ′ : {0, 1}n → {0, 1}
be depth-2 formulas. Then, F ′ is a refinement of F if and only if ¬(F ′) is a refinement of
¬F .

I Fact 22 (Sandwiching Refinements). Let F : {0, 1}n → {0, 1} be a DNF. Then, any
refinement of F that is obtained by a sequence of removal steps and clean-up steps is lower-
sandwiching for F , and any refinement of F that is obtained by a sequence of merging steps
clean-up steps is upper-sandwiching for F .

Loosely speaking, the following claim asserts that if F ′ is a refinement of F , then for any
restriction ρ it holds that (F ′)�ρ is a refinement of F �ρ. That is, intuitively, restricting both
F and F ′ by ρ does not affect the fact that the latter formula is a refinement of the former.

I Claim 23 (Refinements Under Restrictions). Let F : {0, 1}n → {0, 1} be a depth-2 formula
of width w and size m, and let F ′ : {0, 1}n → {0, 1} be a refinement of F . Then, for any
restriction ρ ∈ {0, 1, ?}n it holds that F �ρ can be computed by a depth-2 formula Φ of width
w and size m such that F ′�ρ is a refinement of Φ.

The proof of Claim 23 relies on an elementary (and tedious) case analysis, so we defer it
to Appendix B.

5.2.1.2 Two theorems from [10]

For ε > 0 and two Boolean functions F and F ′ over a domain D, we say that F and F ′

are ε-close if Prx∈D[F (x) = F ′(x)] ≥ 1− ε. We say that F ′ is an ε-refinement of F if F ′ is
both a refinement of F , and ε-close to F . Similarly, we say that F ′ is an ε-lower-sandwiching
refinement (resp., ε-upper-sandwiching refinement) of F if F ′ is both ε-close to F and a
lower-sandwiching (resp., upper-sandwiching) refinement of F . Then, the main result of
Gopalan, Meka, and Reingold [10] can be stated as follows:

I Theorem 24 ([10, Thm 1.2]). Let F : {0, 1}n → {0, 1} be a depth-2 formula of width w,
and let β > 0. Then, there exist β-lower-sandwiching and β-upper-sandwiching refinements
of F , denoted by F low and F up, respectively, such that the size of F low and of F up is at most
m′ = 2Õ(w)·log log(1/β), and their width is at most w.
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We will also need a pseudorandom generator construction from [10]. In fact, we will rely
on an assertion from the proof of their generator construction.

I Theorem 25 ([10, In the proof of Thm 3.1]). Let F : {0, 1}n → {0, 1} be a depth-2 formula
of width w, and let δ0 > 0. Then, every δ-almost t-wise independent distribution δ0-fools F ,
where log(1/δ) = O(w2 · log2(w)+w · log(w) · log(1/δ0)) and t = O(w2 · log(w)+w · log(1/δ0)).

5.2.2 Width-dependent derandomizations of the switching lemma
In the proposition statements in this section, the letter n denotes the number of input bits
for a formula, the number of clauses (i.e., size) is denoted by m, the width is denoted by
w, and δ > 0 is an error parameter (which will typically take the value δ = 1/poly(n) in
our applications). As a first step, we need to adapt the derandomized switching lemma of
Trevisan and Xue [23] such that it will depend on the width of the depth-2 formula that we
wish to “switch”. Then, we will state and prove our new derandomized switching lemma,
which is the main technical part in this section.

I Proposition 26 (An Adaptation of the Derandomized Switching Lemma of [23]). Let m :
N → N, let w : N → N such that w(n) ≤ O (log(m(n))), and let δ : N → [0, 1) such that
δ(n) ≤ 2−O(w(n)). Let r be a distribution over {0, 1}O(log(w))·n that is δ′-almost t′-wise
independent, where log(1/δ′) = O(t′) = Õ(w) · log(1/δ) · log(m) +O(log(n/δ)). Then, for any
depth-2 formula F : {0, 1}n → {0, 1} of width w = w(n) and size m = m(n), with probability
at least 1− 2δ (where δ = δ(n)) over choice of ρ ∼ r it holds that:
1. The restricted formula F �ρ can be computed by a decision tree of depth D = O(log(1/δ)).
2. The number of variables that are kept alive by ρ is at least Ω (n/w).
In particular, a restriction ρ ∼ r can be sampled using a seed of length Õ(w) · log(1/δ) ·
log(m) +O(log(n/δ)).

Proof. Loosely speaking, the main lemma of Trevisan and Xue [23] reduces the task of
finding a restriction that simplifies F to the task of “fooling” a large number of auxiliary
CNFs. Going through their proof, we observe is that if F has width w, then each of the
auxiliary CNFs also has width (roughly) w; that is, their proof can be adapted to show the
following:

I Lemma 27 (A Variation on [23, Lemma 7]). Let F : {0, 1}n → {0, 1} be a depth-2 formula of
size m and width w. For q ∈ N and p = 2−q, let ρ ∈ {0, 1, ?}n be a restriction that is chosen
according to a distribution over {0, 1}(q+1)·n that δ0-fools all CNFs of width w′ = w · (q + 1).
Then, the probability that F �ρ cannot be computed by a decision tree of depth D is at most
2D+w+1 · (5pw)D + δ0 · 2(D+1)·(2·w+log(m)).

The proof of Lemma 27 is a relatively straightforward adaptation of the original proof
in [23], so we defer it to Appendix B. We will use the lemma with the parameters p = 1/O(w)
and δ0 = 2−O(D·(w+log(m))), in order to get the probability of error down to δ. Relying
on Theorem 25, the auxiliary CNFs of width w′ are δ0-fooled by r, 10 and therefore with
probability 1− δ it holds that F �ρ can be computed by a decision tree of depth D.

The expected number of variables that the pseudorandom restriction leaves alive is
Ω(n/w) (because the distribution on each block of O(log(w)) bits in r, which corresponds

10This is because according to Theorem 25, CNFs of width w′ are δ0-fooled by any distribution that is
δ′′-almost t′′-wise independent, where t′′ = O

(
(w′)2 · log(w′) + w′ · log(1/δ0)

)
= Õ(w) · log(1/δ) · log(m)

and log(1/δ′′) = O
(
(w′)2 · log2(w′) + w′ · log(w′) · log(1/δ0)

)
= Õ(w) · log(1/δ) · log(m).
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to a variable, is of statistical distance at most δ′ from uniform, where δ′ < 2−w). Since r
is δ′-almost t′-wise independent, where δ′ < 1/poly(n/δ) and t′ > O(log(w)), the blocks in
r that correspond to each variable are 1

poly(n/δ) -almost O(1)-wise independent. Relying on
Fact 13, the probability that Ω(n/w) variables remain alive is at least 1− δ. J

We mention that the derandomized switching lemma of Goldreich and Wigderson [9,
second step of the proof of Lemma 3.3] can also be adapted to depend on the width w of the
formula that we want to “switch”; in this case, the required seed length is Õ(w) ·2w · log(1/δ),
where δ is the probability of error (and the target depth of the decision tree is D =
O(log(1/δ))). We provide the details in Appendix B. We now turn to state the new width-
dependent derandomization of the switching lemma and prove it:

I Proposition 28 (A New Width-Dependent Derandomization of the Switching Lemma). Let
m : N → N, let w : N → N such that w(n) ≤ O (log(m(n))), let δ : N → [0, 1), and let
α : N → [0, 1). Let δ′ > 0 and t′ ∈ N such that log(1/δ′) = O(t′) = Õ(w2) · log(1/δ) ·
log log(m/αδ)+ Õ(w) · log(m/αδ)+O(log(n/δ)). Let y be a distribution over {0, 1}O(log(w))·n

that is δ′-almost t′-wise independent, and let z be a distribution over {0, 1}n that is δ′-almost
t′-wise independent. Finally, let ρ = ρy,z be a restriction that is chosen by using a sample
from y to determine which variables are kept alive, and an independent sample from z to
determine values for the fixed variables.

Then, for any depth-2 formula F : {0, 1}n → {0, 1} of width w = w(n) with m = m(n)
clauses, with probability at least 1− 4δ (where δ = δ(n)) over choice of ρ it holds that:
1. There exists a lower-sandwiching refinement F low of F such that F low�ρ and F �ρ are

α-close (i.e., Prx∈C(ρ)[F low(x) = F (x)] ≥ 1− α) and such that the restricted refinement
F low�ρ can be computed by a decision tree of depth D = O(log(1/δ)).

2. There exists an upper-sandwiching refinement F up of F such that F up�ρ and F �ρ are
α-close and such that F up�ρ can be computed by a decision tree of depth D = O(log(1/δ)).

3. The number of variables that are kept alive by ρ is at least Ω (n/w).
In particular, a restriction ρ can be sampled using a seed of length Õ(w2) · log(1/δ) ·
log log(m/αδ) + Õ(w) · log(m/αδ) +O(log(n/δ)).

Note that when m = Θ(1/δ) = Θ(1/α) = poly(n), the seed length in Proposition 28 is
Õ(w2 · log(n)). As in the overview in Section 2.2, our strategy in the proof of Proposition 28
will be as follows. Let F low and F up be the refinements of F from Theorem 24. Using the fact
that F low and F up are of width w and of size 2Õ(w)·log log(m/αδ), we will rely on Proposition 26
to prove that, with high probability, both F low�ρ and F up�ρ simplify to depth-D decision
trees. The main challenge will be to prove that with high probability it holds that F low�ρ
(resp., F up�ρ) and F �ρ are α-close. The following lemma is the key one needed to establish
the latter assertion, and after proving the lemma, we will use it to prove Proposition 28.

I Lemma 29. Let m : N → N, let w : N → N such that w(n) ≤ O (log(m(n))), and let
δ : N → [0, 1). Let F : {0, 1}n → {0, 1} be a depth-2 formula of size m = m(n) and width
w = w(n). For α > 0 and β ≤ α6·(δ/4)4

m4·log6(1/δ) , let F
′ : {0, 1}n → {0, 1} be a β-refinement of F .

Fix I ⊆ [n], and let z be a distribution over {0, 1}n that β-fools all DNFs of width w.
Let ρ = ρI,z ∈ {0, 1, ?}n be the restriction that is obtained by fixing values to the variables
indexed by [n] \ I according to the corresponding bits of z. Then, with probability at least
1− δ over choice of z it holds that F ′�ρ is an α-refinement of a depth-2 formula of size m
and width w for F �ρ.

Proof. We will prove the claim assuming that F is a DNF; if F is a CNF, then we can rely
on Fact 21 to deduce that the assertion of the lemma holds for F if and only if it holds
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for the DNF ¬F . Also note that by Claim 23, for any ρ ∈ {0, 1, ?}n it holds that F ′�ρ is a
refinement of a depth-2 formula of size m and width w for F �ρ. Thus, we only need to prove
that with probability at least 1− δ it holds that F ′�ρ is α-close to F �ρ. Recall that I ⊆ [n]
is fixed throughout the proof; for brevity of notation, for any z ∈ {0, 1}n denote ρz = ρI,z.

In high-level, the proof follows the overview that was presented in Section 2.2, and in
particular relies on Lemma 15. We first define a set E of excellent restrictions, which are
restrictions ρ such that F ′�ρ is

√
β-close to F �ρ, and show that almost all restrictions are

excellent. We will then define a set B of bad restrictions, which are restrictions ρ such
that F ′�ρ is not α-close to F �ρ. After defining E and B we will define the distribution
T over tests that accepts, with high probability, every restriction in E, and rejects, with
high probability, every restriction in B. Then, we will show that the residual tests T ∈ T
are relatively “simple”, in the sense that they can be computed by depth-3 circuits with a
specific structure (i.e., top AND gate and bottom fan-in w). And finally, we will show a
hitting-set generator for the set of tests in the support of T that accept almost all of their
input restrictions, and conclude the argument using Lemma 15.

Excellent restrictions and bad restrictions. For any ρ ∈ {0, 1, ?}n, let err(ρ) =
Prx∈C(ρ)[F ′(x) 6= F (x)] be the fraction of inputs in C(ρ) on which F and F ′ disagree.
Our goal is to show that Prz∼z [err(ρz) ≤ α] ≥ 1− δ. Consider the following two sets:

I Definition 29.1 (Excellent and Bad Restrictions). Let E = {z ∈ {0, 1}n : err(ρz) ≤
√
β}

be the set of excellent choices of restrictions, and let B = {z ∈ {0, 1}n : err(ρz) > α} be the
set of bad choices of restrictions.

Since F ′ is β-close to F , a random restriction ρI,un is excellent with probability at least
1 −
√
β. 11 We want to show that a pseudorandom restriction ρz = ρI,z is not bad, with

probability at least 1− δ.

A distribution over simple tests. Let t = O(log(1/δ)/α). We now define a distribution T
over tests {0, 1}n → {0, 1}, such that the random variable T(z) will essentially be the result
of the following random test: Given z ∈ {0, 1}n, the test uniformly samples t inputs in C(ρz),
and accepts z if and only if F and F ′ agree on all the t inputs.

For x ∈ {0, 1}|I| and z ∈ {0, 1}n, denote by x�z ∈ C(ρz) the string that is obtained by
fixing the variables indexed by I according to x, and the rest of the variables (i.e., the ones
indexed by [n] \ I) according to the corresponding bits from z. For any x ∈ {0, 1}|I|, let
Tx : {0, 1}n → {0, 1} be the function such that Tx(z) = 1 if and only if F ′(x�z) = F (x�z).
Also, for x̄ = x(1), ..., x(t) ∈ {0, 1}t·|I|, let Tx̄ be the function Tx̄(z) = ∧ti=1Tx(i)(z). Finally,
let T be the distribution over tests that is obtained by uniformly choosing x̄ ∈ {0, 1}t·|I| and
outputing Tx̄. Note that T(z) is indeed the result of uniformly sampling t inputs in C(ρz),
and accepting z if and only if F ′ and F agree on all the t sampled inputs.

By our choice of the parameter t, and since β is sufficiently small, the distribution T
indeed distinguishes between E and B:

I Fact 29.2. For any z ∈ E it holds that PrT∼T[T (z) = 1] ≥ (1−
√
β)t ≥ 1− t ·

√
β, and

for any z ∈ B it holds that PrT∼T[T (z) = 1] < (1− α)t < δ/3.

For η =
√
t+ 1 · β1/4, let T′ be the set of tests Tx̄ ∈ T that accept at least 1 − η of

their inputs (i.e., T′ = {Tx̄ : Prz∈{0,1}n [Tx̄(z) = 1] ≥ 1− η}). We will abuse the notations T

11Because E[err(ρI,un )] = Prx∈{0,1}n [F ′(x) 6= F (x)] ≤ β, which implies that Pr[err(ρI,un ) >
√
β] <

√
β.
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and T′, by using them both to denote sets and to denote the uniform distribution over the
corresponding set. To see that the set T′ is dense in T, note that

ETx̄∈T

[
Pr

z∈{0,1}n
[Tx̄(z) = 1

]
= Ez∈{0,1}n

[
Pr
Tx̄∈T

[Tx̄(z) = 1]
]

≥ Pr
z∈{0,1}n

[z ∈ E] ·min
z∈E

{
Pr
Tx̄∈T

[Tx̄(z) = 1]
}

,

which is at least 1−
√
β − t ·

√
β = 1− η2. Therefore, the probability over Tx̄ ∈ T that Tx̄

rejects more than η of its input restrictions is at most η.

A hitting-set generator for T′. Towards designing a hitting-set generator with high density
for every Tx̄ ∈ T′, we first show that each Tx̄ ∈ T can be computed by a depth-3 circuit
with a top AND gate and small bottom fan-in. To do so, we first show that for a single
x ∈ {0, 1}|I| (rather than for x̄ = x(1), ..., x(t)) it holds that Tx can be computed by a depth-3
circuit with a top AND gate and small bottom fan-in.

I Claim 29.3. For every fixed x ∈ {0, 1}|I|, the function Tx : {0, 1}n → {0, 1} can be
computed by a depth-3 circuit with a top AND gate of fan-in at most m such that the bottom
fan-in of the circuit is at most w.

Proof. Denote the number of refinement steps that were applied to F to obtain F ′ by k ≤ m.
For any i ∈ [k], let F (i) be the formula in the beginning of the ith refinement step in the
transformation of F to F ′, and let F (k+1) = F ′. Note that Tx(z) = 1 if and only if for every
i ∈ [k] it holds that F (i)(x�z) = F (i+1)(x�z) (one direction is immediate, whereas the other
direction follows by the monotonicity of the sequence F (1)(x�z), ..., F (k+1)(x�z) 12).

For every i ∈ [k], let Tx,i be the function such that Tx,i(z) = 1 if and only if F (i)(x�z) =
F (i+1)(x�z). We will show that each Tx,i can be computed by a DNF of width w. This claim
suffices to conclude the proof, since it implies that Tx can be computed by a circuit with a
top AND gate that is connected to k ≤ m DNFs of width w. To prove the claim, fix i ∈ [k],
and let us conduct a case analysis:

If the ith refinement step was a clean-up step, then Tx,i ≡ 1.
If the ith step was a removal step, then let f (i) be the clause that was removed from
F (i) in the ith step, and let F (i+1) =

(
F (i) \ f (i)) be the formula that is obtained by

dropping the clause f (i) from F (i). Note that F (i+1)(x�z) = F (i)(x�z) if and only if either
f (i)(x�z) = 0 or

(
F (i) \ f (i)) (x�z) = 1. The latter event is a disjunction of at most m

events (because
(
F (i) \ f (i)) is a DNF of size at most m− 1), each of which depends on

the values of at most w bits in x�z. Thus, each of the (at most m) events depends on at
most w bits in z, and can therefore be decided by a DNF of width w. It follows that Tx,i
is the disjunction of width-w DNFs, which is a width-w DNF.
If the ith refinement step in the transformation of F to F ′ was a merging step, denote the
u ≥ 2 clauses that were removed from F (i) in the step by f (i)

1 , ..., f
(i)
u , and the new clause

that was added in their stead by h(i). Note that F (i+1)(x�z) = F (i)(x�z) if and only if
either h(i)(x�z) = 0 or F (i)(x�z) = 1. This is a disjunction of at most m+ 1 events, each
of which depends on at most w bits in x�z (and thus on at most w bits in z). Thus, in
this case too it holds that Tx,i can be computed by a DNF of width w. J

12 If F ′ was obtained by merging steps and clean-up steps, then F (1)(x�z) ≤ ... ≤ F (k+1)(x�z), whereas if
F ′ was obtained by removal steps and clean-up steps, then F (1)(x�z) ≥ ... ≥ F (k+1)(x�z).
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For a fixed x̄ = x(1), ..., x(t) ∈ {0, 1}t·|I|, we can compute Tx̄ by taking a conjunction
of t circuits for the corresponding Tx’s (i.e., ∧i∈[t]Tx(i)), which is a depth-3 circuit with
bottom fan-in at most w and top fan-in at most t ·m. We are now ready to prove that z is a
hitting-set generator with density 1− δ/3 for every Tx̄ ∈ T′:

I Claim 29.4. For every Tx̄ ∈ T′ it holds that Pr[T (z) = 1] ≥ 1− δ/3.

Proof. Fix Tx̄ ∈ T′, and recall that by the definition of T′ it holds that Tx̄ accepts at
least 1− η of its inputs. Thus, each of the DNFs in the middle layer of the circuit that we
constructed for Tx̄ accepts 1− η of the inputs. It follows that when using the distribution z,
which is β-pseudorandom for such DNFs, each of these DNFs accepts with probability at
least 1− η − β. By a union-bound, it follows that

Pr
z∼z

[Tx̄(z) = 1] ≥ 1− (η + β) · (t ·m)

> 1− (2 · t ·m) · η

= 1−O
(

(log(1/δ)/α)3/2 ·m · β1/4
)

,

which is larger than 1− δ/3 by the hypothesis that β is sufficiently small. J

Invoking Lemma 15. We now conclude the argument by invoking Lemma 15. Let E
be as in Definition 29.1, and let G = {0, 1}n \ B; recall that for ε1 =

√
β it holds that

Prz∈{0,1}n [z ∈ E] ≥ 1 − ε1. Denoting ε2 = t ·
√
β and ε3 = δ/3, according to Fact 29.2,

for any z ∈ E it holds that PrTx̄∼T[Tx̄(z) = 1] ≥ 1 − ε2 and for any z /∈ G it holds that
PrTx̄∼T[Tx̄(z) = 0] ≥ 1− ε3.

Finally, for ε4 = η it holds that the set T′ is of density at least 1 − ε4 in T, and for
every Tx̄ ∈ T′, by Claim 29.4 it holds that z fools Tx̄ with error at most ε5 = δ/3 (because
Prz∈{0,1}n [Tx̄(z) = 1] ≥ 1 − η ≥ 1 − δ/3 and Prz∼z[Tx̄(z) = 1] ≥ 1 − δ/3). Relying on
Lemma 15, the probability that z /∈ G is at most√

β + t ·
√
β + δ/3 + 2 · η + δ/3 = 2δ/3 + η2 + 2 · η < δ ,

where the inequality relied on the fact that β (and hence also η) is sufficiently small. J

We are now ready to prove Proposition 28.

Proof of Proposition 28. Let F : {0, 1}n → {0, 1} be a depth-2 formula of width w and size
m. Let F low : {0, 1}n → {0, 1} and F up : {0, 1}n → {0, 1} be the β-lower-sandwiching and the
β-upper-sandwiching formulas for F from Theorem 24, respectively, where β = α6·(δ/4)4

m4·log6(1/δ) .
Note that the width of F low and of F up is at most w, and that their size is at most
2Õ(w)·log log(m/αδ).

According to Fact 14, the distribution of strings r over {0, 1}O(log(w))·n, which is obtained
by combining y and z and represents the pseudorandom restriction ρ = ρy,z, is (2 · δ′)-almost
t′-wise independent. Hence, relying on Proposition 26, with probability at least 1 − 2δ it
holds both that F low�ρ and F up�ρ can be computed by decision trees of depth D, and that ρ
keeps at least Ω(n/w) variables alive.

According to Theorem 25, all DNFs of width w are β-fooled by the distribution z. 13

Therefore, relying on Lemma 29, for any fixed choice of y ∼ y, with probability at least 1−2δ

13Theorem 25 requires that the distribution z will be δ′′-almost t′′-wise independent, where t′′ = O(w2 ·
log(w) +w · log(1/β)) = Õ(w) · log(m/αδ) < t′ and log(1/δ′′) = O(w2 · log2(w) +w · log(w) · log(1/β)) =
Õ(w) · log(m/αδ) < log(1/δ′).



R. Tell 13:27

over z ∼ z it holds that both F low�ρ and F up�ρ are α-close to F �ρ. Thus, the probability
over choice of both y and z that F low�ρ and F up�ρ are α-close to F �ρ is at least 1− 2δ. J

5.2.3 Proofs of Theorems 2 and 3
We are now ready to prove Theorem 3. Recall that Theorem 3 asserts the existence of a
hitting-set generator that is parametrized by a parameter t > 0.

I Theorem 30. (Theorem 3, restated). Let d ≥ 2, let m : N→ N such that m(n) ≤ poly(n),
and let t : N → N such that c0 ≤ t(n) ≤ 2 · log(m(n)), where c0 is a sufficiently large
constant. For every n ∈ N, let Cn be the class of circuits C : {0, 1}n → {0, 1} of size
m = m(n) and of depth at most d that accept all but at most B(n) of their inputs, where
log(B(n)) = Ω

(
n1−1/Ω(t)/td−2) and t = t(n). Then, there exists a hitting-set generator for

C = ∪n∈NCn with seed length ` = `(n) = Õ
(
t2 · log(n)

)
.

Theorem 2 follows as a corollary of Theorem 30, by using the specific parameter value
t = 2 · log(m), in which case B(n) = 2Ω(n/ logd−2(n)) and the seed length is Õ

(
log3(n)

)
.

Proof. Given input 1n and a random seed in {0, 1}`, the hitting-set generator works in two
steps. In the first step, the generator outputs a restriction ρ̄ ∈ {0, 1, ?}n such that for any
circuit C over n input bits of depth d and size m = m(n), with high probability it holds that
there exists a depth-2 formula C ′ of size poly(n) and width t that is both (1/2)-close to C�ρ̄
and lower-sandwiching for C�ρ̄. Moreover, with high probability the restriction ρ̄ keeps at
least log(B(n)) + 2 variables alive.

Since the subcube C(ρ̄) contains at least 4 ·B(n) inputs, the acceptance probability of
C�ρ̄ is at least 3/4. Hence, the acceptance probability of C ′ is at least 1/4 (because C ′ is
(1/2)-close to C�ρ̄), and every satisfying input for C ′ is also satisfying for C (because C ′ is
lower-sandwiching for C�ρ̄). Thus, in the second step, we use a pseudorandom generator for
depth-2 circuits to “fool” C ′: The pseudorandom generator outputs a satisfying input for C ′
in C(ρ̄) with positive probability, and any such input yields a satisfying input for C.

Parameter settings. Let ε > 0 be a sufficiently small constant, and let δ = (ε/m). Let
D = O(log(1/δ)) > 2 · log(2m/δ), and let m′ = m · 2D = poly(n). Let β =

(
δ

2dm
)102d

; we will
use β as the approximation parameter whenever using Theorem 24. Let δ′ > 0 and t′ ∈ N
such that log(1/δ′) = O(t′) = Õ

(
t2 · log(n)

)
.

The pseudorandom choice of restrictions. The algorithm that we will describe below
constructs a sequence of restrictions. We mention in advance that when describing the
algorithm, whenever we will say that we choose a restriction with a parameter p = 2−q, the
pseudorandom choice of restriction is the following:

Let y be a distribution over {0, 1}log(1/p)·n that is δ′-almost t′-wise independent.
Let z be a distribution over {0, 1}n that is δ′-almost t′-wise independent.
The restriction ρ = ρy,z is chosen by sampling y ∼ y in order to determine which variables
are kept alive, and independently sampling z ∼ z in order to determine values for the
fixed variables.

Note that such a restriction keeps every variable alive with probability approximately p
(i.e., with probability p±δ′). The above process yields a distribution r over {0, 1}(log(1/p)+1)·n,
which is obtained by combining y and z as detailed in the beginning of Section 5.2.1; according
to Fact 14, the distribution r is (2 · δ′)-almost t′-wise independent.
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The first step. The generator constructs the restriction ρ̄ as the composition of 2d − 2
retrictions ρ̄ = ρ(2d−3) ◦ ρ(2d−4) ◦ ... ◦ ρ(1) ◦ ρ(0). The initial restriction ρ(0) is chosen with
parameter p = 1/O(1), and with probability 1− ε it reduces the bottom fan-in of the circuit
to D = O(log(1/δ)). 14 The next 2 · (d − 2) restrictions are applied in d − 2 iterations.
Loosely speaking, in each iteration, we apply a restriction that reduces the bottom fan-in
to t, then define an approximating circuit (by replacing the formulas in the next-to-bottom
layer, which have small width at this point, with small lower-sandwiching refinements, using
Theorem 24), and finally apply a second restriction in order to “switch” the formulas in the
next-to-bottom layer of the approximating circuit, and reduce the depth of the circuit.

Let C(0) = C�ρ(0) be the circuit in the beginning of the first iteration, and note that
C(0) is of depth d, size at most m < m′, and bottom fan-in at most D. For i ∈ [d − 2],
let us describe the ith iteration. Assuming all previous iterations were successful, in the
beginning of the ith iteration we start with a circuit C(i−1) of depth at most d − (i − 1),
bottom fan-in at most D, and with at most m′ = m · 2D gates in its bottom layer. We will
produce two restrictions, denoted ρ(2i−1) and ρ(2i), and define a circuit C(i) whose domain is
C(ρ(2i) ◦ ρ(2i−1) ◦ ... ◦ ρ(0)) such that with probability 1−O(ε) it holds that C(i) is of depth
at most d− i, bottom fan-in D, and the number of gates in its bottom layer is at most m′.
(After we finish the description of a single iteration, we will also prove that for any i ∈ [d− 2]
it holds that C(i)�ρ̄ is close to C(i−1)�ρ̄; see Claim 30.2 below.)

The first restriction in iteration i, denoted ρ(2i−1), is chosen with the parameter p =(
ε/
(
m · 22D+1))1/t = n−1/Ω(t). We now show that with probability at least 1 − O(ε) the

bottom fan-in of the circuit C(i−1)�ρ(2i−1) is less than t. To do so, first note the following:

I Claim 30.1. Let S be a fixed set of at most D variables. Then, with probability at least
1− ε/m′ it holds that less than t variables in S are kept alive by ρ(2i−1).

Proof. Recall that the restriction ρ(2i−1) is chosen such that the distribution y over
{0, 1}log(1/p)·n, which determines which variables will be kept alive, is δ′-almost t′-wise
independent. We will only need the fact that the blocks of size dlog(1/p)e in y are (pt)-
almost t-wise independent; this holds because t · dlog(1/p)e < O(log(m/ε)) < t′, and
δ′ < pt = 1/poly(n).

For any fixed set of t variables in S, the probability that all variables in the set remain
alive after applying a uniformly-chosen restriction with the parameter p is pt. Since the
blocks of size dlog(1/p)e in y are (pt)-almost t-wise independent, the probability that ρ(2i−1)

keeps all t variables alive is at most 2 · (pt). Thus, the probability that ρ(2i−1) keeps t
variables in S alive is at most

(|S|
t

)
· 2 · pt < 2D+1 · pt < ε/m′. J

Recall that the number of gates in the bottom layer of C(i−1) is at most m′, and that
each of them is of fan-in at most D. Using Claim 30.1 and a union-bound, with probability
at least 1− ε it holds that the bottom fan-in of C(i−1)�ρ(2i−1) is less than t.

Assuming that the bottom fan-in of C(i−1)�ρ(2i−1) is indeed less than t, we now use
Theorem 24 to replace each formula F in the next-to-bottom layer of C(i−1)�ρ(2i−1) with a

14To see that such a restriction indeed reduces the bottom fan-in, fix a gate in the bottom layer of fan-in
more than 2 · log(2m/ε). The probability under a uniformly-chosen restriction with p = 1/4 that none
of the lexicographically-first 2 · log(2m/ε) variables feeding into the gate is fixed to a satisfying value
is
( 1+p

2

)2·log(2m/ε)
< ε/2m. Since this event depends only on the values that the restriction assigns

to 2 · log(2m/ε) variables, and the value for each variable depends on log(1/p) = O(1) bits, the event
depends on at most O(log(m/ε)) bits of the restriction. Thus, the event happens with probability at
most ε/m when the restriction is chosen from a 1/poly(m/ε)-biased set.
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Table 1 Summary of the restrictions that are applied in the first step.

Value of p Goal of the restriction

ρ(0) 1/O(1) Reduce the bottom fan-in to D

i = 1, ..., d− 2 :

ρ(2i−1) n−1/Ω(t) Reduce the bottom fan-in to t

ρ(2i) 1/O(t) “Switch” the width-t formulas

at the next-to-bottom-layer

ρ(2d−3) n−1/Ω(t) Reduce the bottom fan-in to t

β-lower-sandwiching refinement F low such that the size of F low is at most 2Õ(t)·log log(1/β).
Let ˜C(i−1)�ρ(2i−1) be the circuit that is obtained by replacing all the formulas in the next-to-
bottom layer of C(i−1)�ρ(2i−1) in this manner.

The final step in the ith iteration is to apply a restriction ρ(2i) with parameter p = 1/O(t)
that is intended to simplify each formula F low in the next-to-bottom layer of ˜C(i−1)�ρ(2i−1)

to a decision tree of depth at most D. Let C(i) =
(

˜C(i−1)�ρ(2i−1)

)
�ρ(2i) . Relying on

Proposition 26, the restriction ρ(2i) is successful with probability at least 1−O(ε), and in
this case the circuit C(i) is of depth at most d− i, and the bottom layer of C(i) has at most
m′ = m · 2D gates, each of fan-in at most D. 15

We now apply one final restriction ρ(2d−3), with parameter p =
(
ε/
(
m · 22D+1))1/t, in

order to reduce the bottom fan-in of C(d−2) to t. Using Claim 30.1 and a union-bound,
with probability at least 1−O(ε) it holds that the width of C(d−2)�ρ(2d−3) is at most t. For
convenience, in Table 1 we summarize the restrictions that were applied in the first step.

Let C(d−1) = C(d−2)�ρ(2d−3) , and recall that ρ̄ = ρ(2d−3) ◦ ρ(2d−2) ◦ ... ◦ ρ(0). The above
shows that if all the iterations are successful, then C(d−1) is a formula of depth 2, size at
most m′, and width t. Also note that if all the iterations are successful, then C(d−1) is
lower-sandwiching for C�ρ̄. This is because for every i ∈ [d− 2] it holds that ˜C(i−1)�ρ(2i−1)

is lower-sandwiching for C(i−1)�ρ(2i−1) (since ˜C(i−1)�ρ(2i−1) is obtained by replacing every
formula F in the next-to-bottom-layer of C(i−1)�ρ(2i−1) with a lower-sandwiching refinement

F low), which implies that C(i)�ρ̄ =
(

˜C(i−1)�ρ(2i−1)

)
�ρ̄ is lower-sandwiching for C(i−1)�ρ̄.

The main thing that is left to prove in the analysis of the first step is that with probability
at least 1−O(ε) it holds that C(d−1) is (1/2)-close C�ρ̄. To do so, we will show that with
probability at least 1− O(ε), for every i ∈ [d− 2] it holds that C(i−1)�ρ̄ is (1/2d)-close to
C(i)�ρ̄. Assuming that the latter holds, we can deduce that C�ρ̄ = C(0)�ρ̄ is 1/2-close to
C(d−1) = C(d−2)�ρ̄. Thus, it suffices to prove the following claim:

I Claim 30.2. For any i ∈ [d− 2], with probability at least 1−O(ε) it holds that C(i)�ρ̄ is
(1/2d)-close to C(i−1)�ρ̄.

15Specifically, we rely on Proposition 26 with width parameter t, error parameter δ, size parameter
2Õ(t)·log log(1/β), and depth bound D for the decision trees. Proposition 26 requires that the distribution
r of restrictions will be δ′′-almost t′′-wise independent, where log(1/δ′′) = O(t′′) = Õ(t2) · log(1/δ) ·
log log(1/β) = Õ(t2 · log(n)). The latter holds by our choice of δ′ and t′.
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Proof. Let i ∈ [d− 2], let F be a formula in the next-to-bottom layer of C(i−1)�ρ(2i−1) , and
let F low be a β-refinement of F . We will prove that with probability 1−O(δ) it holds that
F low�ρ̄ is (1/2dm)-close to F �ρ̄. This suffices to prove Claim 30.2, since by a union-bound
over m formulas it follows that with probability at least 1−O(ε) it holds that the circuit(

˜C(i−1)�ρ(2i−1)

)
�ρ̄ = C(i)�ρ̄ is (1/2d)-close to

(
C(i−1)�ρ(2i−1)

)
�ρ̄ = C(i−1)�ρ̄.

For every j ∈ {2i, ..., 2d− 3}, let ρ(2i,...,j) be the composed restriction ρ(2i,...,j) = ρ(j) ◦
... ◦ ρ(2i), and let βj = (δ/2dm)102d−3−j

. We will prove the following statement: For every
j ∈ {2i, ..., 2d − 3}, with probability at least 1 − O(δ) it holds that F low�ρ(2i,...,j) is a βj-
refinement of a depth-2 formula of size m′ and width t for F �ρ(2i,...,j) . Invoking this statement
with j = 2d− 3, we can deduce that with probability at least 1−O(δ) it holds that F low�ρ̄
is β2d−3-close to F �ρ̄, where β2d−3 < 1/2dm.

We prove the aforementioned statement by induction on j. For the base case j = 2i,
we start with a formula F of size m′ and width t, and a β-refinement F low of F , where
β < β0 ≤ βj−1. Now, ρ(j) is chosen according to a distribution such that for every fixed
choice of variables to keep alive (i.e., every fixed y ∼ y), the choice of values for the fixed
variables (i.e., z ∼ z) is δ′-almost t′-wise independent. Relying on Theorem 25 and on our
choice of δ′ and t′, the distribution distribution z β-fools all DNFs of width w. We can
therefore rely on Lemma 29 to deduce that with probability at least 1−O(δ) it holds that
F low�ρ(j) is a βj-refinement of F �ρ(j) . 16

The induction step, for j ≥ 2i + 1, is very similar to the base case. By the induction
hypothesis, with probability at least 1 − O(δ) it holds that F low�ρ(2i,...,j−1) is a (βj−1)-
refinement of a size m′ and width w′ depth-2 formula for F �ρ(2i,...,j−1) . We can then use
Theorem 25 and Lemma 29 similarly to the base case. J

To conclude the analysis of the first step, note that with probability at least 1−O(ε) it
holds that at least log(B(n)) + 2 = Ω

(
n1−1/Ω(t)/td−2) variables remain alive. To see that

this is the case, recall that ρ̄ is comprised of one restriction with parameter p0 = 1/O(1),
and d− 1 restrictions with parameter p1 = n−1/Ω(t), and d− 2 restrictions with parameter
p2 = 1/O(t). Let p̄ = p0 · pd−1

1 · pd−2
2 · n, and note that p̄ = Ω

(
n1−1/Ω(t)/td−2).

The expected number of living variables under ρ̄ is Θ(p̄) (because in each restriction with
parameter p, every variable is kept alive with probability p±O(δ′) ∈ p± (p/2)). Since all
the choices of variables to keep alive are according to distributions that are δ′-almost t′-wise
independent, we can use Fact 13 to deduce that with probability at least 1−O(ε) it holds
that at least Ω (p̄) = Ω

(
n1−1/Ω(t)/td−2) > log(B(n)) + 2 variables remain alive after the first

step. (When using Fact 13, we relied on the fact that t is larger than a sufficiently large
constant c0 to deduce that n1−1/Ω(t)/td−2 > nΩ(1)).

The second step. We now invoke the pseudorandom generator from Theorem 25 for depth-2
circuits of width t, instantiated with error parameter 1/8, and output the string that the
generator outputs, completed to a string of length n according to ρ̄. The generator requires
a seed of length O(t2 · log2(t)) = Õ(t2).

16We invoke Lemma 29 with width parameter t, size bound m′, and error parameter δ. We know that
F low is a βj−1-refinement of F , and we want to deduce that with probability at least 1−O(δ) it holds
that F low�ρ(j) is an α-refinement of F �ρ(j) , where α = βj . The lemma requires that the distribution z

will (βj−1)-fool all DNFs of width t, and that βj−1 ≤
β6
j ·(δ/4)4

m4·log6(1/δ) , both of which indeed hold.
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Let us now prove this yields a satisfying input for C, with positive probability. If the
first step was successful, then ρ̄ kept more than log(B(n)) + 2 live variables, and hence the
acceptance probability of C�ρ̄ is at least 3/4. Since C(d−1) is 1/2-close to C�ρ̄, it follows that
Prx∈C(ρ̄)[C(d−1)(x) = 1] ≥ 1/4. Thus, the generator outputs a satisfying input for C(d−1),
with positive probability, and this input (when completed to a string of length n according
to ρ̄) is satisfying for C, because C(d−1) is lower-sandwiching for C�ρ̄. J

6 Constant-depth circuits with parity gates

In this section we prove the claims made in Section 1.3: In Section 6.1 we prove Theorem 5,
and in Section 6.2 we prove Theorem 6.

6.1 Proof of Theorem 5
The proof is similar to the proof of Theorem 1, and is a variation on [9, Thm 4.2 and Remark
4.4]. Starting from a CNF C, we will employ error-reduction within AC0[⊕], by first sampling
inputs for C using Trevisan’s extractor [22], and then taking the disjunction of the evaluation
of C on these inputs (rather than an approximate majority, as in [9]). This will yield a
layered circuit of the form ∨∧∨⊕ that accepts all but 2nc of its inputs, for any desired c > 0.
Details follow.

Let C : {0, 1}n → {0, 1} be a CNF that accepts most of its inputs. For n′ = n(1/c)+1

and s = O(log(n)), let E : {0, 1}n′ × {0, 1}s → {0, 1}n be Trevisan’s extractor instantiated
for min-entropy (n′)c = n1+Ω(1) and error parameter 1/4. We construct a circuit C ′ :
{0, 1}n′ → {0, 1} that first computes the values E(x, z), for each possible seed z ∈ {0, 1}s,
then evaluates C on each value E(x, z), and finally takes an OR of these evaluations; that is,
C ′(x) = ∨z∈{0,1}sC (E(x, z)).

Note that C ′ is a layered depth-4 circuit of the form ∨∧∨⊕, since for each seed z ∈ {0, 1}s,
the residual function Ez(x) = E(x, z) is just a linear transformation of x. Also note that
the number of inputs x ∈ {0, 1}n′ for which Prz[C(E(x, z))] < 1/4 is at most 2(n′)c . In
particular, C ′ accepts all but at most 2(n′)c of its inputs, and for each satisfying input x for
C ′, we can find a corresponding satisfying input for C among {E(x, z)}z∈{0,1}s .

6.2 Proof of Theorem 6
The current section is organized as follows. In Section 6.2.1 we present two algorithmic
tools that will be used in the proof: An adaptation of the approach of Chaudhuri and
Radhakrishnan [4] to the setting of ⊕∧⊕ circuits, and an adaptation of Viola’s pseudorandom
generator [25] to polynomials that are defined over an affine subspace. Then, in the next
three sections, we prove the corresponding three items of Theorem 6.

We rely on the notion of affine restrictions. A restriction of a circuit C : {0, 1}n → {0, 1}
to an affine subspace W ⊆ {0, 1}n will be constructed by accumulating a list of (independent)
affine conditions that defines W . That is, each of the various algorithms will construct a
full-rank matrix A and a vector b such that W = {x : Ax = b}. For an affine function g,
when we say that an algorithm “adds g = 0 to the list of affine conditions”, we mean that it
extends A by adding the linear part of g as an additional row to A, and extends b by adding
the constant term of g as an additional bit to b (i.e., if g(x) =

∑n
i=1 cixi + c0 then the row

c = (c1, ..., cn) is added to A and c0 is added to b). After each addition of a condition, we
will say that the algorithm “simplifies the circuit accordingly”; by this we mean that for
any ⊕-gate g′ in the bottom layer whose linear function is dependent on the rows of A, the

CCC 2017



13:32 Improved Bounds for Quantified Derandomization

algorithm fixes g′ to the appropriate value determined by A and b, and, if g′ was fixed to
zero, then the algorithm removes all the ∧-gates that g′ feeds into.

6.2.1 Two algorithmic tools
Let us first adapt the approach of Chaudhuri and Radhakrishnan [4], which was originally
used to construct “bit-fixing” restrictions for AC0 circuits, to the setting of ⊕ ∧⊕ circuits
and affine restrictions.

I Proposition 31 (Whitebox Affine Restrictions for ⊕ ∧ ⊕ Circuits). For two integers m∧
and m⊕, let C be the class of ⊕ ∧⊕ circuits over n input bits with m∧ gates in the middle
layer and m⊕ gates in the bottom layer. Then, for any two integers d⊕ and d∧, there exists
a polynomial-time algorithm that, when given as input a circuit C ∈ C, outputs an affine
subspace W ⊆ {0, 1}n such that:
1. In the restriction of C to W , each ∧-gate in the middle layer has fan-in at most d∧.
2. The subspace W is of co-dimension at most m∧

d⊕
+ d⊕·m⊕

d∧
.

Proof. The algorithm operates in two steps. In the first step, as long as there exists a ⊕-gate
g in the bottom layer with fan-out at least d⊕, the algorithm adds the condition g = 0 to
the list of affine conditions, and simplifies the circuit accordingly. Note that each addition of
a condition as above fixes at least d⊕ of the ∧-gates in the middle layer, and thus at most
m∧/d⊕ conditions are added (or else the entire circuit simplifies to a constant). Hence, after
the first step concludes, the fan-out of each ⊕-gate in the bottom layer is d⊕, and at most
m∧/d⊕ affine conditions have been accumulated.

In the second step, as long as there exists an ∧-gate g in the middle layer with fan-in
at least d∧, the algorithm (arbitrarily) chooses one ⊕-gate g′ that feeds into g, adds the
condition g′ = 0 to the list of affine conditions, and simplifies the circuit accordingly. Note
that, in the beginning of the second step, the number of wires feeding the middle layer is
at most d⊕ ·m⊕ (since there are at most m⊕ gates in the bottom layer, each of them with
fan-out at most d⊕). Now, note that each addition of an affine condition in the second step
eliminates at least d∧ wires; thus, the algorithm adds at most d⊕

d∧
·m⊕ conditions in the

second step. After the second step is complete, each ∧-gate in the middle layer has fan-in at
most d∧, and the list of affine conditions contains at most m∧/d⊕ + d⊕

d∧
·m⊕ conditions. J

We now verify that we can use Viola’s pseudorandom generator [25] in order to “fool”
⊕∧⊕ circuits that, when restricted to an affine subspace, have a constant maximal fan-in of
the ∧-gates.

I Proposition 32 (Invoking Viola’s PRG in an Affine Subspace). There exists an algorithm G

that, for every n ∈ N, when G is given as input an integer D, a seed of ` = O(log(n)) bits,
and a basis for an affine subspace W ⊆ {0, 1}n, then G runs in time poly(n) and satisfies
the following: For every ⊕ ∧⊕ circuit C over n input bits such that C simplifies under the
restriction W to a ⊕ ∧⊕ circuit in which the maximal fan-in of ∧-gates is D and such that
C�W 6≡ 0, it holds that Pr[C(G(u`)) = 1] > 0.

Proof. Denote the dimension of W by m = dim(W ). The algorithm G first finds a full-rank
n × m matrix B and s ∈ {0, 1}n such that x 7→ Bx + s maps {0, 1}m to W . Then, the
algorithm G uses its random seed to invoke Viola’s pseudorandom generator for polynomials
Fm2 → F2 of degree D, with error parameter 2−(D+1), thus obtaining a string x ∈ {0, 1}m.
Finally, the algorithm G outputs the string Bx+ s.
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Now, let C be ⊕∧⊕ circuit as in the hypothesis, and consider the polynomial p : Fm2 → F2
such that p(x) = C(Bx + s). Note that p is of degree D, because C computes an sum of
monomials of degree D over F2, and the affine transformation does not increase the degree.
Also, using our hypothesis that p is non-zero, it follows that the acceptance probability of p
is at least 2−D. Thus, the probability that Viola’s generator will output x such that p(x) = 1
is at least 2−(D+1) > 0, and each such x yields a string y = Bx+ s such that C(y) = 1. J

6.2.2 Linear-sized circuits with B(n) = 2−Ω(n)

We prove the first item of Theorem 6 by invoking the whitebox algorithm from Proposition 31
with appropriate parameters d∧, d⊕ = O(1), and then using the generator from Proposition 32.

I Proposition 33 (Theorem 6, Item (1): Hitting Biased Linear-Sized ⊕∧⊕ Circuits). Let ε > 0
be an arbitrarily small constant, and let c > 0 be an arbitrarily large constant. Let C be
the class of ⊕ ∧ ⊕ circuits such that any circuit C ∈ C over n input bits has at most c · n
gates and accepts all but at most 2(1−ε)·n of its inputs. Then, there exists a polynomial-time
algorithm that, when given any circuit C ∈ C, finds a satisfying input for C.

Proof. The algorithm first invokes the algorithm from Proposition 31 with parameters
d⊕ = 4·c

ε and d∧ = d2
⊕, to obtain an affine subspace W of co-dimension at most

m∧
d⊕

+ d⊕ ·m⊕
d∧

< 2 · c · n
(4 · c)/ε = ε

2 · n

such that in the restriction of C to W , every ∧-gate in the middle layer has fan-in at most
d∧ = O(1). Since the circuit C has at most 2(1−ε)·n unsatisfying inputs, it follows that
Prw∈W [C(w) = 1] ≥ 1− 2−(ε/2)·n. Thus, the algorithm concludes by invoking the algorithm
from Proposition 32. J

6.2.3 Sub-quadratic circuits with (1 + o(1)) · n bottom ⊕-gates and
B(n) = 2nc

We now prove the second item of Theorem 6.

I Proposition 34 (Theorem 6, Item (2): Hitting Biased Sub-quadratic ⊕ ∧ ⊕ Circuits). Let
ε > 0 and let 0 < c < ε. Let C be the class of ⊕ ∧ ⊕ circuits such that any C ∈ C over n
input bits has at most n+ nc bottom ⊕-gates, and at most n2−ε middle ∧-gates, and accepts
all but B(n) = 2nc of its inputs. Then, there exists a polynomial-time algorithm that, when
given any circuit C ∈ C, finds a satisfying input for C.

Proof. Recall that a high-level overview of the proof, which used the parameter values
m∧ = n1.1 and m⊕ = n, appeared in Section 2.3. Let us first explain, in high-level, how
to handle the setting of m∧ ≤ n2−ε; for the moment, we are still assuming that m⊕ = n.
As in the overview in Section 2.3, the algorithm works in two steps. In the first step, we
use Proposition 31 to fix o(m⊕) of the ⊕-gates such that after the restriction, the fan-in
of the ∧-gates is bounded by w = n1−α·ε, where α < 1 is a constant slightly smaller than
1; this is possible because m∧ ≤ n2−ε (see the proof details below). In the second step,
we restrict the ⊕-gates using an O(1)-independent distribution, keeping each ⊕-gate alive
with probability p = n−(1−β·ε), where β < α (and recall that we choose arbitrary consistent
values for the gates that are fixed). The crucial point is the following: On the one hand,
since p ≤ 1/w1+Ω(1), after the second step the fan-in of the ∧-gates is upper-bounded by a
constant (as explained in Section 2.3); and on the other hand, the number of living ⊕-gates
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after the second step is approximately p · (1− o(1)) · n = Ω
(
nβ·ε

)
> nc = log(B(n)), where

the inequality holds if we choose β > c/ε (which is possible if we initially choose α ∈ (c/ε, 1)).
To see how we handle the setting of m⊕ ≤ n+ nc (rather than m⊕ = n), note that the

overall number of affine conditions that the algorithm imposes is m⊕ − Ω(p ·m⊕). Since
m⊕ ≤ n+ o(p · n), the number of affine conditions is at most n−Ω(p · n), which means that
the affine subspace W is of dimension Ω(p · n) > log(B(n)).

Let us now provide the full details for the proof. Assume, without loss of generality,
that m⊕ ≥ n (we can add dummy gates if necessary). We first invoke the algorithm from
Proposition 31 with parameters d∧ = n1−α·ε, where α = (c/ε)+1

2 , and d⊕ = n1−α′·ε, where
α′ = (c/ε) + (2/3) · (1− c/ε) > α. The algorithm outputs an affine subspace of co-dimension
at most

m∧
d⊕

+ d⊕ ·m⊕
d∧

≤ n2−ε−(1−α′·ε) + n1−α′·ε−(1−α·ε) ·m⊕

= n1−(1−α′)·ε + n−(α′−α)·ε ·m⊕ ,

which is o(m⊕), such that in the restriction of C to the subspace, every ∧-gate in the middle
layer has fan-in at most d∧ = n1−α·ε.

Denote the number of ⊕-gates that were not fixed in the previous step by m′, and
consider the following pseudorandom restriction process. For a sufficiently large constant
γ > 1 (which will be determined later), we use a γ-wise independent distribution over [1/p]n′ ,
where p = n−(1−β·ε) and β = (c/ε) + (1/3) · (1− c/ε) < α. 17 Denote the random variable
that is the output string of this distribution by ρ ∈ [1/p]n′ . For every ⊕-gate that has not
been restricted by the algorithm from Proposition 31, the algorithm now marks the gate
as “alive” if and only if the corresponding element in the string ρ equals zero; otherwise, it
marks the gate as “fixed”.

For any ∧-gate g in the middle-layer, the probability that at least γ gates that feed into
g are marked “alive” is at most(

d∧
γ

)
· pγ < n(1−α·ε)·γ · n−(1−β·ε)·γ = n−(α−β)·ε·γ ,

which can be made less than 1/m∧ = n−(2−ε) by an appropriate choice of γ (i.e., γ > 2−ε
(α−β)·ε ).

After union-bounding over all ∧-gates, we have that with probability at least 0.99, each
∧-gate is fed by less than γ of the “alive” ⊕-gates. Also note that with probability at least
0.99, the number of ⊕-gates that were marked as “alive” is at least (p ·m′) /2; this is because
the distribution is γ-wise independent (so we can use Fact 12). The algorithm and finds a
choice of ρ, denoted by ρ0, that meets both these conditions (by enumerating the outputs
of the γ-wise independent distribution). Then, the algorithm iteratively fixes values for
the ⊕-gates that are marked as “fixed” by ρ0. Specifically, as long as there is a ⊕-gate g
that is marked as “fixed” by ρ0, the algorithm adds the condition g = 0 to the list of affine
conditions that defines W , and simplifies the circuit accordingly.

Let us now count the number of affine conditions that the algorithm imposed (i.e., the
co-dimension of W ). After all the restrictions, the number of living variables is at least
(p/2) ·m′ ≥ (p/2) · (1 − o(1)) ·m⊕ ≥ (p/3) ·m⊕, which implies that the number of affine

17We will actually use the value p = 2−d(1−β·ε)·log(n)e, such that 1/p is a power of 2, but the difference
between this value and n−(1−β·ε) is insignificant in what follows.
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conditions is at most m⊕ − (p/3) ·m⊕. Since m⊕ ≤ n+ nc, we have that

m⊕ − (p/3) ·m⊕ < n+ nc − (p/3) · n

= n+ nc − 1
3 · n

β·ε ,

which is less than n− nc, because nc = o(nβ·ε) (since β · ε = c+ Ω(1)).
Thus, the algorithm is left with a subspace W of dimension more than nc = log(B(n))

such that when the circuit C is restricted to the subspace W , the fan-in of every ∧-gate in
the middle layer is at most γ = O(1). Hence, at this point the algorithm can invoke the
algorithm from Proposition 32, and find a satisfying input for C in W . J

6.2.4 Circuits with a slightly super-linear number of bottom ⊕-gates
and slightly sub-linear number of ∧-gates

We now prove the third item of Theorem 6. The crucial observation here is that after invoking
the algorithm from Proposition 31, the number of ⊕-gates is at most m∧ · d∧, since this is
the number of wires that feed into the middle layer.

I Proposition 35 (Theorem 6, Item (3): Hitting Biased ⊕ ∧ ⊕ Circuits with a Super-Linear
Number of ⊕-Gates). For any constant ε > 0, let C be the class of ⊕ ∧⊕ circuits such that
any circuit C ∈ C over n input bits has at most n1+ε gates in the bottom layer and at most
(1/5) · n1−ε gates in the middle layer, and accepts all but at most B(n) = 2n/15 of its inputs.
Then, there exists a polynomial-time algorithm that, when given any circuit C ∈ C, finds a
satisfying input for C.

Proof. We first invoke the algorithm from Proposition 31 with parameters d⊕ = 1 and
d∧ = (5/2) · nε. The algorithm outputs an affine subspace W ′ of co-dimension at most

m∧
d⊕

+ d⊕ ·m⊕
d∧

≤ (1/5) · n1−ε + (2/5) · n

such that in the restriction of C to W ′, every ∧-gate in the middle layer has fan-in at most
d∧ = (5/2) · nε. Since there are at most m∧ = (1/5) · n1−ε gates in the middle layer, it
follows that there are at most m∧ · d∧ = n/2 bottom ⊕-gates that influence the output
of C�W ′ . By fixing values for these gates, we obtain a subspace W of dimension at least
(1/2− (2/5)− o(1)) · n > n/15 such that C�W is constant. Since B(n) = 2n/15, it follows
that C�W ≡ 1, and thus we can output any w ∈W . J

7 Polynomials that vanish rarely

In the current section we prove Theorem 7 (in Section 7.1) and Theorem 8 (in Section 7.2).
Recall that throughout the currnet section we consider a normalized “badness” parameter
b(n) = B(n)/2n.

7.1 Proof of Theorem 7
We now prove a more general version of Theorem 7, which depends on additional parameters;
after stating this general version, we will spell out the parameter choices that yield Theorem 7.
The proof relies on Lemma 16.
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I Proposition 36 (Theorem 7, Parametrized Version). For m : N → N and b : N → [0, 1
2 ],

let C be the class of ⊕ ∧⊕ circuits over n input bits with m = m(n) ∧-gates that accept all
but a b(n) fraction of their inputs. For any d ≥ 2 and c′ ≤ 2d/m, let Pc′d be the class of
polynomials Fn2 → F2 of degree d that accept all but a c′ ·

(
m · 2−d

)
fraction of their inputs.

Let d be an integer such that log(m) < d ≤ min {log(m) + log (1/b(n)) , n}, and let
2 < c′ ≤ 2d/m be a real number. Assume that there exists a hitting-set generator G with
density more than (2/c′) +m · 2−d for Pc′d . Then, G is a hitting-set generator for C.

To obtain parameters as in Theorem 7, let ε = ε(n) such that 2−n/2 ≤ ε ≤ 1/8, and let
m = m(n) ≤ 2n/2. For d = blog(m) + log(1/ε)c ≤ n and c′ = 4 ≤ 2d/m, assume that there
exists a hitting-set generator G for the class Pc′d with density 1/2 + 2 · ε ≥ (2/c′) +m · 2−d.
Then, Proposition 36 asserts that G is a hitting-set generator for the class of ⊕ ∧⊕ circuits
with m ∧-gates that accept all but ε · 2n of their inputs.

Proof. Let C : {0, 1}n → {0, 1} be a ⊕ ∧ ⊕ circuit with m ∧-gates that accepts all but a
b(n) fraction of its inputs. We will show how to randomly compute C by a distribution that
is typically in the class Pc′d , and then rely on Lemma 16 to deduce that any sufficiently dense
hitting-set generator for Pc′d also hits C.

The distribution over polynomials is obtained using Razborov’s approximating polynomials
method [17]. Our goal is to randomly replace each ∧-gate g that has fan-in more than d with a
polynomial g′ : {0, 1}n → {0, 1} of degree d such that for every fixed input x ∈ {0, 1}n it holds
that g(x) = g′(x) with probability at least 1− 2−d. To this purpose, given g(x) = ∧kj=1Lj(x),
where k > d and the Lj ’s are linear functions, we randomly choose d subsets S1, ..., Sd ⊆ [k],
and replace g with the F2-polynomial g′(x) = Πd

i=1

(
1 +

∑
j∈Si (Li(x) + 1)

)
. 18

The above yields a random polynomial p : Fn2 → F2 of degree at most d such that for
every fixed x ∈ {0, 1}n it holds that Pr[p(x) = C(x)] ≥ 1−m · 2−d. The expected fraction of
unsatisfying inputs for p is at most 2m · 2−d; this is because

Ep
[
Pr
x

[p(x) = 0]
]

= Ex
[
Pr
p

[p(x) = 0]
]

≤ Pr
x

[C(x) = 0] + Pr
x

[C(x) = 1] ·max
x

{
Pr
p

[p(x) 6= C(x)]
}

≤ b(n) +m · 2−d ,

and since d ≤ log(m) + log(1/b(n)) we have that m · 2−d ≥ b(n). Thus, the probability that
the fraction of unsatisfying inputs for p is more than c′ ·

(
m · 2−d

)
is at most 2/c′.

Thus, there exists a distribution that is (1− 2/c′)-typically in Pc′d and that rejects every
x /∈ C−1(1) with probability at least 1−m · 2−d. Now, let w be the output distribution of a
hitting-set generator with density 1− c > (2/c′) +m · 2−d for Pc′d . Relying on Lemma 16,

Pr[C(w) = 1] ≥ 1−m · 2−d − (2/c′)− c > 0 ,

which concludes the proof. J

18Using the standard analysis, if g(x) = 1, then Lj(x) = 1 for all j ∈ [k], which implies that g′(x) = 1
with probability one; and if g(x) = 0, then for every i ∈ [d], with probability 1/2 over choice of Si it
holds that

∑
j∈Si

(Li(x) + 1) = 1, which implies that g′(x) = 0 with probability 1− 2−d.
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7.2 Proof of Theorem 8
For this section, we first define and construct multivalued OR functions. We say that a
function f : Fk → F is a multivalued OR function if f(0, ..., 0) = 0, and for every x 6= (0, ..., 0)
it holds that f(x) 6= 0. Indeed, for any non-zero input x 6= (0, ..., 0), we require that f
outputs some non-zero value.

I Definition 37 (Multivalued OR Functions). Let F be a finite field, and let k be an integer. We
say that f : Fk → F is a multivalued OR function if for every x ∈ Fk such that x 6= (0, 0, ..., 0)
it holds that f(x) 6= 0.

Note that the function that outputs 1 on all non-zero inputs (and vanishes at (0, ..., 0))
satisfies Definition 37, but this function has a very high degree as a polynomial (i.e., it has
degree k · |F − 1|, which is in fact the maximal degree). In contrast, we are interested in
computing multivalued OR functions by polynomials of much lower degree. We now show
that for any k, there exists a polynomial Fk → F of degree at most 2 · k that computes a
multivalued OR function of its k variables.

I Proposition 38 (Construction of a Multivalued OR Function). Let F be a finite field, and let
k be an integer. Then, there exists a polynomial p : Fk → F of degree 2dlog(k)e that computes
a multivalued OR function of its k variables.

Proof. Let us first assume that k is a power of two. We want to construct a k-variate
polynomial of degree k that vanishes only at (0, ..., 0). We will first construct a bivariate
polynomial that vanishes only at (0, 0), and then recurse the construction, to repeatedly
double the number of variables as well as the degree, while maintaining the invariant that
the polynomial vanishes if and only if all of its inputs are zero.

Let α ∈ F be a quadratic non-residue (i.e., for every c ∈ F it holds that c2 6= α). The
initial bivariate polynomial is defined by f (2)(x1, x2) = x2

1 + α · x2
2. Observe that there

does not exist a solution other than (0, 0) to the equation f (2)(x1, x2) = 0, since α is not
a quadratic residue. Now, for every k ≥ 4 that is a power of two, let f (k)(x1, ..., xk) =(
f (k/2)(x1, ..., xk/2)

)2 + α ·
(
f (k/2)(xk/2+1, ..., xk)

)2. Observe that f (k)(x1, ..., xk) = 0 if and
only if xi = 0 for every i ∈ [k], whereas deg(f (k)) = k. Finally, for any k that is not a power
of two, we can use a straightforward padding argument to obtain a polynomial of degree
2dlog(k)e. J

We are now ready to prove the main claim that will be used in the proof of Theorem 8.
The following proposition reduces the task of hitting any polynomial p : Fn → F of degree d
to the task of hitting a polynomial p′ : Ft·n → F of degree d′ = poly(d) that vanishes very
rarely.

I Proposition 39 (Reducing Hitting Polynomials to Hitting Polynomials that Vanish Rarely).
Let t ≥ 2 be an even integer, and let ε > 0 be a real number. Let n ∈ N, let F be a finite
field of cardinality |F| = q, and let 1 ≤ d ≤ (1− ε) · q. Assume that there exists a hitting-set
generator with seed length s for the class of polynomials Ft·n → F of degree d′ = (2 · d)t that
vanish on at most a b(n) = O

(
q−t

2/4
)
fraction of their inputs, where the O-notation hides

a constant that depends on t and on ε. Then, there exists a hitting-set generator with seed
length s′ = s+ (t− 1) · dlog(q)e for the class of all polynomials Fn → F of degree d.

A high-level overview of the proof of Proposition 39 appeared in Section 2.4. We stress
that the field size |F| = q is the same both for the polynomials Fn → F and for the polynomials
Ft·n → F.
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Proof. For any tuple of t elements ~u =
(
u(0), u(1), ..., u(t−1)) ∈ Ft·n, denote by W~u ⊆ Fn the

affine subspace W~u = {u(0) + α1 · u(1) + ...+ αt−1 · u(t−1) : α1, ..., αt−1 ∈ F}. Also, denote
by Pd′ the class of polynomials Ft·n → F of degree d′ that vanish on at most b(n) of their
inputs.

Our proof strategy is as follows. For any polynomial p : Fn → F of degree d, we will
construct a corresponding polynomial p′ : Ft·n → F of degree at most d′ = (2 · d)t such that
p′(~u) = 0 if and only if p�W~u

≡ 0. We will show that with high probability over choice of ~u it
holds that p�W~u

6≡ 0, which implies that the polynomial p′ vanishes rarely; that is, we will
show that p′ ∈ Pd′ . Thus, for every p : Fn → F of degree d, a hitting-set generator G for Pd′
also hits p′, which means that the generator finds a subspace W~u such that p�W~u

6≡ 0. This
allows us to find a satisfying input for p by invoking G and then choosing a random input in
W~u. Details follow.

Let us first fix an arbitrary p : Fn → F, and construct the corresponding polynomial
p′ : Ft·n → F. For an input ~u ∈ Ft·n and i ∈ [t], denote u(i) = (u(i)

1 , ..., u
(i)
n ) ∈ Fn, and

observe that the polynomial p�W~u
(α1, ..., αt−1) is of the form

p�W~u
(α1, ..., αt−1) = p

(
u(0) + α1 · u(1) + ...+ αt−1 · u(t−1)

)
= p

(
u

(0)
1 + α1 · u(1)

1 + ...+ αt−1 · u(t−1)
1 , ...,

u(0)
n + α1 · u(1)

n + ...+ αt−1 · u(t−1)
n

)
=

∑
i1+i2+...+it−1≤d

ci1,...,it−1(~u) · αi11 · ... · α
it−1
t−1 , (7.1)

where for every i1 + i2 + ... + it−1 ≤ d it holds that ci1,...,it−1(~u) is the coefficient of the
monomial αi11 · ... · α

it−1
t−1 in p�W~u

.
Note that p�W~u

≡ 0 if and only if for every tuple (i1, ..., it−1) such that i1 + ...+ it−1 ≤ d it
holds that ci1,...,it−1(~u) = 0. Thus, we wish to construct a polynomial p′ such that p′(~u) 6= 0
if and only if there exists (i1, ..., it−1) such that i1 + ... + it−1 ≤ d and ci1,...,it−1(~u) 6= 0.
Note that the number of coefficients of p�W~u

is k =
(
d+t−1
t−1

)
. The polynomial p′ : Ft·n → F

is a multivalued OR function of these k coefficients ci1,...,it−1(~u), which we construct using
Proposition 38. To upper-bound the degree of p′ (by d′), note that each ci1,...,it−1 is a
polynomial of degree at most d in ~u.

I Claim 39.1. For every (i1, ..., it−1) such that i1 + ...+ it−1 ≤ d it holds that ci1,...,it−1 , as
defined in Eq. (7.1), is a polynomial of degree at most d in ~u = (u(0), ..., u(t−1)) ∈ Ft·n.

Proof. Consider the polynomial p�W~u
[α1, ..., αt−1] as a function of ~u. By the definition of

p�W~u
, it holds that p�W~u

[α1, ..., αt−1] = p[β1, ..., βn], where for every i ∈ [n] it holds that
βi = u

(0)
i +αi · u(1)

i + ...+αt−1 · u(t−1)
i . Note that for every i ∈ [n] it holds that βi is a linear

function of ~u. Since p is of total degree d, the polynomial p[β1, ...βn] is a sum of monomials
of degree at most d in β1, ..., βn, and because each βi is linear in ~u, each such monomial is a
polynomial of degree at most d in ~u. J

Therefore, the degree of p′ is less than 2 ·
(
d+t−1
t−1

)
· d < (2 · d)t = d′. Finally, let us

upper-bound the probability that p′ vanishes, in order to show that p′ ∈ Pd′ . To do so, note
that Prx∈Fn [p(x) = 0] ≤ d/q ≤ 1 − ε (where the first inequality is by the Schwartz-Zippel
lemma, and the second inequality is by the hypothesis that d ≤ (1− ε) · q). Also recall that
when uniformly choosing ~u ∈ Ft·n, the points in W~u are t-wise independent. Relying on
Fact 12, we deduce that:
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I Claim 39.2. The probability over choice of ~u that p�W~u
≡ 0 is at most O

(
dt/2 · q−t2/2

)
,

where the O-notation hides a constant that depends on t and on ε.

The proof of Claim 39.2 amounts to a straightforward calculation, so we defer it to
Appendix C. Relying on Claim 39.2 and on the hypothesis that d ≤ (1− ε) · q, we deduce
that Pr~u [p′(~u) = 0] = Pr~u

[
p�W~u

≡ 0
]
< O

(
q−t

2/2+t/2
)
≤ O

(
q−t

2/4
)

= b(n).
Now, assuming that we have a hitting-set generator G for Pd′ , we construct a hitting-set

generator for degree-d polynomials as follows. We invoke G to obtain a tuple ~u ∈ Ft·n, and
then use additional (t− 1) · dlog(q)e bits of randomness to choose an element in the affine
subspace W~u. Since G finds ~u such that p�W~u

6≡ 0, with positive probability, our hitting-set
generator hits p, with positive probability. J

Proposition 39 reduces the task of hitting a polynomial Fn → F of degree d to the task of
hitting of a polynomial p′ : Ft·n → F of higher degree d′ = poly(d) that vanishes very rarely.
The following proposition shows how to reduce the task of hitting p to the task of hitting
polynomials of the same degree as p that vanish with probability at most O(1/|F|).

I Proposition 40 (Reducing Hitting Polynomials to Hitting Polynomials of the Same Degree
that Vanish Infrequently). Let n ∈ N, and let F be a finite field of cardinality |F| = q. For any
c′ > 0 and d ≥ 1, let Pd,c′ be the class of polynomials F2·n → F of degree d that vanish on at
most a b(n) = c′/q fraction of their inputs. Then, for any integer d such that d+ 2

√
d ≤ q

and any 2 ≤ c′ ≤ d, the following holds:
If there exists a hitting-set generator for the class Pd,c′ with seed length s = s(n, q, d, c′)

and density more than 2/c′, then there exists a hitting-set generator for polynomials Fn → F
of degree d with seed length s′ = s+ dlog(q)e.

Proof. The starting point of the current proof is the proof of Proposition 39, with the fixed
parameter t = 2. 19 Let G =

{
~u ∈ F2·n : p�W~u

6≡ 0
}
be the set of subspaces on which p is not

identically zero. Our goal is to show a distribution h over polynomials F2·n → F of degree d
that satisfies the following:

For every ~u /∈ G it holds that Pr[h(~u) = 0] = 1.
The probability that h ∼ h vanishes on more than c′/q of its inputs is at most 2/c′.

We can then rely on Lemma 16, to deduce that any sufficiently dense hitting-set generator
for degree-d polynomials that vanish on at mos c′/q of their inputs also hits G, which allows
us to hit p with additional dlog(q)e random bits.

Towards constructing h, recall that for every fixed ~u ∈ F2·n, the d+ 1 coefficients of p�W~u

are degree-d polynomials in ~u, denoted c1(~u), ..., cd+1(~u). The distribution h is simply a
random F-linear combination of the ci’s. That is, for a random tuple ~β = (β0, β1, ..., βd) ∈
F(d+1)·n, we define h~β(~u) =

∑d
i=0 βi · ci(~u). Note that for every ~β ∈ F(d+1)·n it holds that h~β

is of degree d. Also, if ~u /∈ G (i.e., all the ci(~u)’s equal zero), then h~β(~u) = 0 with probability
one, and otherwise, h~β(~u) 6= 0 with probability 1− 1/q.

We now show that at least a (1− 2/c′) fraction of the h~β ’s vanish on at most c′/q of their
inputs. Since the points in W are pairwise-independent, we have that:

19Larger values of t will not help to reduce the vanishing probability of the polynomials in the target of
the reduction, due to the error of 1/q in the randomized computation of p′. However, larger values of t
can help us relax the requirement that d+ 2

√
d ≤ q, and allow for slightly larger values of d (that are

still below q). We do not pursue this direction in the current text.
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I Claim 40.1. For any ε > 0, if d ≤ (1 − ε) · q, then the probability over choice of ~u that
p�W~u

≡ 0 is at most 4 ·
(

d
ε2·q2

)
.

The proof of Claim 40.1 appears in Appendix C. In our case, we have that d ≤ (1− ε) · q,
where ε = 2

√
d
q (because d+ 2

√
d ≤ q); therefore, Claim 40.1 implies that Pr~u[~u /∈ G] ≤ 1/q.

Hence, over a random choice of ~β, the expected fraction of inputs on which h~β vanishes is

E~β

[
Pr
~u

[
h~β(~u) = 0

]]
= E~u

[
Pr
~β

[
h~β(~u) = 0

]]

≤ Pr
~u

[~u /∈ G] + Pr
~u

[~u ∈ G] ·max
~u∈G

{
Pr
~β

[h~β(~u) = 0]
}

,

which is upper bounded by 2/q. It follows that the probability that h~β vanishes on more
than c′/q fraction of its inputs is at most 2/c′.

Now, let w be the output distribution of a hitting-set generator with density µ > 2/c′
for Pd,c′ ; then, Lemma 16 implies that Pr[w ∈ G] > µ− 2/c′ > 0. Finally, similarly to the
proof of Proposition 39, after obtaining ~u ∈ F2·n we can use another log(q) bits to uniformly
choose an element in W~u, thus hitting p with positive probability. J

Let us now formally state Theorem 8, and prove it as a corollary of Propositions 39
and 40.

I Theorem 41 (Theorem 8, Restated). Let k ∈ N, let t ≥ 2 be an even integer, and let ε > 0
be a real number. Let n ∈ N be sufficiently large, and let F be a field of size |F| = q ≤ nk.
Then, the following holds:
1. Let d ∈ N such that d ≥ k+ 1 and d+ 2 ·

√
d ≤ q, and let c′ ∈ (2, d]. Then, any hitting-set

generator with density more than 2/c′ for polynomials Fn → F of degree d that vanish on
at most a b(n) = c′/q fraction of their inputs requires seed of Ω

(
log
((
n+d
d

)))
bits.

2. Let d′ be an integer such that (2k)t(t+1) ≤ d′ ≤ (1 − ε) · qt+1. Then, any hitting-set
generator for the class of polynomials Fn → F of degree d′ that vanish on at most a
b(n) = O

(
q−t

2/4
)
fraction of their inputs requires seed of Ω

(
log
((
n+d
d

)))
bits, where

d = (d′)1/(t+1).
In the two items above, the constants hidden in the Ω-notation of the lower bound may depend
on k, on ε, and (in the first item) on t.

Proof. Recall that any hitting-set generator for the class of all polynomials Fn → F of degree
d (i.e., without any assumption about their vanishing probability) must use a seed of at least
s′ ≥ log

((
n+d
d

))
bits. This is the case because otherwise we can interpolate the 2s′ <

(
n+d
d

)
points in the image of the hitting-set generator by a non-zero degree-d polynomial. Also
note that it suffices to prove the lower bounds for n that is a multiple of t = O(1), due to a
padding argument (i.e., because any hitting-set generator for polynomials Fn → F that vanish
on at most O

(
q−t

2/4
)
of their inputs can be used as a hitting-set generator for polynomials

Fn−O(1) → F that vanish on the same fraction of inputs, by adding dummy variables; and
ditto for O(1/q)).

To prove Item (1), assume that there exists a hitting-set generator with seed length s
and density more than 2/c′ for polynomials of degree d that vanish on c′/q of their inputs.
Relying on Proposition 40, there exists a hitting-set generator for all polynomials Fn/2 → F
of degree d with seed length s′ = s + dlog qe. Since s′ ≥ log

((
n/2+d
d

))
, we deduce that
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s ≥ log
((
n/2+d
d

))
− dlog(q)e = Ω

(
log
((
n/2+d
d

)))
, where the equality holds because q ≤ nk

and d ≥ k + 1. Finally, we rely on the following elementary fact:

I Fact 41.1. Let t be a constant integer. Let n and d be two integers such that the sum
n+ d is sufficiently large. Then, we have that log

((
n/t+d
d

))
= Ω

(
log
((
n+d
d

)))
, where the

constant hidden inside the Ω-notation depends on t.

The proof of Fact 41.1 appears in Appendix C. It follows from Fact 41.1 that s ≥ Ω
(

log
((
n+d
d

)))
,

which concludes the proof of Item (1).
The proof of Item (2) is similar to that of Item (1). Assume that there exists a hitting-set

generator with seed length s for the class of degree-d′ polynomials Fn → F that vanish on
at most a O

(
q−t

2/4
)
fraction of their inputs. Let d =

⌊
(d′)1/t/2

⌋
(such that d′ ≥ (2 · d)t).

According to Proposition 39, there exists a hitting-set generator for all polynomials Fn/t → F
of degree d with seed length s′ = s+ (t− 1) · dlog(q)e. Since we know that s′ ≥ log

((
n/t+d
d

))
,

it holds that s is lower bounded by

log
((

n/t+ d

d

))
− (t− 1) · dlog(q)e = Ω

(
log
((

n/t+ d

d

)))
= Ω

(
log
((

n+ d

d

)))
= Ω

(
log
((

n+ (d′)1/(t+1)

(d′)1/(t+1)

)))
,

where the first equality is because q ≤ nk and d ≥ (2k)t+1

2 ≥ (t+ 1) · k, the second equality is
due to Fact 41.1, and the last equality is because d ≥ (d′)1/(t+1). J
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A An alternative proof for Theorem 1.6 in [9]

Goldreich and Wigderson [9, Thm 1.6] proved that for any d < n, there exists a pseudorandom
generator with seed length O(log(n)) for the class of polynomials p : Fn2 → F2 of degree d
that vanish at most a b(n) = O

(
2−d

)
fraction of their inputs (the theorem statement in [9]

asserts the existence of a hitting-set generator, but in their proof they actually construct
a pseudorandom generator). Their proof is based on a refinement of a lemma of Viola [25,
Lemma 4]. We present an alternative proof of their result, which relies on Lemma 18.

High-level outline

Let p : Fn2 → F2 be a polynomial of degree d that vanishes on at most b(n) = O
(
2−d

)
of

its inputs. We will randomly compute p by a distribution over polynomials of constant
degree, and rely on Lemma 18 to deduce that any pseudorandom generator for polynomials
of constant degree also “fools” p.

The family of polynomials of constant degree that we will use to randomly compute p is
defined as follows. For d′ = d− O(1) and a tuple ~r = (r1, ..., rd′) ∈ Fd′·n2 , let h~r : Fn2 → F2
be defined by

h~r(x) = 1 + ∆~rp(x) = 1 +
∑
S⊆[d′]

p

(
x+

∑
i∈S

ri

)
, (A.1)

where ∆~rp(x) is the iterated directional derivative of p in directions r1, ..., rd′ (for a definition
see, e.g., [16, Def. 6.48]). Note that h~r is a polynomial of degree at most d− d′ = O(1). The
family H of polynomials that we will use to randomly compute p is induced by all possible
choices of ~r ∈ Fd′·n2 ; that is, H =

{
h~r : ~r ∈ Fd′·n2

}
.

The key argument is that for every fixed input x ∈ Fn2 , when uniformly choosing h~r ∈ H,
with sufficiently good probability it holds that p(x) = h~r(x). To see this, note that if for every
non-empty S ⊆ [d′] it holds that p

(
x+

∑
i∈S ri

)
= 1, then ∆~rp(x) = p(x)+(2d′−1) = p(x)+1,

which implies that h~r(x) = p(x). Since p vanishes on at most b(n) of its inputs, the latter
event happens with probability at least 1− 2d′ · b(n) = Ω(1). Thus, relying on Lemma 18,
any pseudorandom generator for H also “fools” p. Let us now formalize and parametrize this
argument.

I Theorem 42 (F2-Polynomials with b(n) = O(2−d)). Let c > 0 be an arbitrarily large
constant. Let n ∈ N, let d < n, and let p : Fn2 → F2 be a polynomial of degree d that vanishes
on at most b(n) = c ·

(
2−d

)
of its inputs. Then, for every δ > 0, any pseudorandom generator

with error δ/2 for polynomials of degree dlog(2c/δ)e is also a pseudorandom generator with
error δ for p, where pseudorandom generators for F2-polynomials are defined in Definition 9.

Proof. Let d′ = d − blog(2c/δ)c, let H =
{
h~r : ~r ∈ Fd′·n2

}
such that for every ~r ∈ Fd′·n2

the function h~r is defined as in Eq. (A.1), and let h be the uniform distribution over H.
Note that for every fixed x ∈ Fn2 it holds that Pr[h(x) = p(x)] > 1 − δ/2; this is the case
because for every non-empty S ⊆ [d′], the probability that p(x +

∑
i∈S ri) = 0 is at most

b(n), which implies that with probability at least 1− b(n) · (2d′ − 1) > 1− δ
2 we have that

h(x) = 1 + p(x) +
(

2d′ − 1
)

= p(x).
Now, let ξ : F2 → C be the character ξ(x) = (−1)x. Let w be a distribution that

(δ/2)-fools polynomials of degree dlog(2c/δ)e (which implies that for every such polynomial p′

it holds that
∣∣∣E[ξ(p′(w))]−E[ξ(p′(un))]

∣∣∣ ≤ δ). According to Lemma 18, using the parameter
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values δ = maxx∈F2{|ξ(x)|} = 1, and ε1 = (δ/2), and ε2 = 0, and ε3 = δ, it holds that∣∣∣Pr[p(w) = 1]− Pr[p(un) = 1]
∣∣∣ = 1

2 ·
∣∣∣E[ξ(p(w))]− E[ξ(p(un))]

∣∣∣ ≤ δ. J

B Proofs of claims from Section 5

We prove two claims from Section 5.2.2 (i.e., Lemma 27 and a generalization of the switching
lemma of [9]) and a technical claim from Section 5.2.1 (i.e., Claim 23). Lemma 27 is an
adaptation of the main lemma of Trevisan and Xue [23]. Let us now recall the statement of
Lemma 27, and prove the lemma.

I Lemma 43 (Lemma 27, Restated). Let F be a CNF over n inputs with m clauses, each
clause of width at most w. For a positive parameter p = 2−q, where q ∈ N, let ρ ∈ {0, 1, ?}n
be a restriction that is chosen according to a distribution over {0, 1}(q+1)·n that δ0-fools all
CNFs of width w′ = w · (q + 1). Then, the probability that F �ρ cannot be computed by a
decision tree of depth D is at most 2D+w+1 · (5pw)D + δ0 · 2(D+1)·(2·w+log(m)).

Proof Sketch. We rely on the proof of Lemma 7 in [23], and in particular use the same
definitions of canonical decision tree, path, and segment. The proof in [23] reduces the task
of finding a restriction ρ such that F �ρ can be computed by a shallow decision tree to the
task of “fooling” less than 2(D+1)·(2w+log(m)) tests: For each path of length D + 1 (i.e., a
sequence of D + 1 segments), there is a corresponding test TP : {0, 1}(q+1)·n → {0, 1} that
gets as input a restriction ρ ∈ {0, 1}(q+1)·n, and accepts ρ if and only if the canonical decision
tree for F �ρ contains the path P . Indeed, if all the tests reject ρ, it means that no path of
length D + 1 exists in the canonical decision tree for F �ρ, which implies that the canonical
decision tree for F �ρ is of depth D.

The key claim in the proof is Claim 8, which asserts that for each path P , the test TP
can be computed by a CNF. The goal in [23] is to show that the CNF for TP has few clauses;
we focus on showing that the CNF for TP has small width. To see that this holds, note
that TP is constructed as a conjunction of conditions, where each condition depends only
on the assignment that ρ gives to the variables of a single clause of F (either a clause that
belongs to a segment in the path, or a clause whose index is between the indices of clauses
that belong to segments in the path). Thus, each condition depends only on the assignment
that ρ gives to w variables, which means that each condition depends only on w′ = w · (q+ 1)
bits of ρ. Hence, each condition can be decided by a CNF of width w′, and TP (which is
their conjunction) can also be decided by a CNF of width w′. J

Let us now formally state the generalization of the switching lemma of Goldreich and
Wigderson [9] and prove it.

I Proposition 44 (A Generalization of the Derandomized Switching Lemma of [9]). Let
m : N→ N, let w : N→ N, and let δ : N→ [0, 1). Let z be a distribution over {0, 1}O(log(w))·n

that is δ′-almost t′-wise independent, where log(1/δ′) = O(t′) = Õ(w) · 2w · log(1/δ).
Then, for any depth-2 formula F : {0, 1}n → {0, 1} of width w = w(n) with m = m(n)

clauses, with probability at least 1− 4δ (where δ = δ(n)) over choice of ρ ∼ z it holds that
the restricted formula F �ρ can be computed by a decision tree of depth D = O(log(1/δ)).

Proof. Let δ0 = δ · 2−D = poly(δ), and fix a depth-2 formula F : {0, 1}n → {0, 1}; without
loss of generality, assume that F is a CNF. 20 Consider a uniformly-chosen restriction ρ that

20This is without loss of generality since if F is a DNF, then F �ρ can be computed by a depth-D decision
tree if and only if (¬F )�ρ can be computed by such a tree.
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keeps each variable alive with probability p = 1/O(w); Hastad’s switching lemma asserts
that with probability at least 1− 2−O(D) ≥ 1− δ0, the canonical decision tree of F �ρ is of
depth D = O(log(1/δ)) (the canonical decision tree is the decision tree that is constructed
by the algorithm in Hastad’s original proof; for a definition see, e.g., [23, Def. 4]).

Given a restriction ρ, we consider the following way to decide whether the canonical
decision tree of F �ρ is of depth D. Associate each string P ∈ {0, 1}D with a potential
positional path of depth D in the canonical decision tree of F ; that is, the string P induces a
path from the root to a specific node of depth D in a full binary tree of depth D or more.
For each P ∈ {0, 1}D, we consider a corresponding test TP that gets ρ as input, and tests
whether or not one of the nodes in the path induced by P along the canonical decision tree of
F �ρ is a leaf node (i.e., whether or not the path ends at depth at most D); if there is indeed
a leaf then TP accepts ρ, and otherwise (i.e., if the path continues to depth D + 1) then TP
rejects ρ. We will describe TP in detail in a moment, but for now observe that the canonical
decision tree of F �ρ is of depth D if and only if for each P ∈ {0, 1}D it holds that TP (ρ) = 1.

To describe how each TP works, fix P ∈ {0, 1}D, and let TP be the following recursive
algorithm. The algorithm gets as input a CNF F ′, a restriction ρ′ and a string P ′ (in the
first recursive call F ′ = F , ρ′ = ρ, and P ′ = P ). If the CNF is empty (i.e., has no clauses),
then the algorithm accepts; otherwise, the algorithm examines the values that ρ′ assigns to
the variables in the first clause of F ′:

If the first clause is unsatisfied by ρ′ (i.e., all variables are fixed to unsatisfying values)
then the algorithm accepts and halts.
If the first clause is satisfied by ρ′ (i.e., one or more variables are assigned to satisfying
values), then the algorithm simplifies F ′ by omitting the first clause, and by simplifying
the other clauses according to the values that ρ′ assigned to the variables in the first
clause. Then, the algorithm recurses with with the simplified CNF and with the same
restriction ρ′ and string P ′.
Otherwise, the first clause is undetermined by ρ′. If the number of living variables in the
clause, denoted by k, is greater than the length of P ′, then the algorithm rejects. 21 If
k ≤ |P ′|, let ρ′′ be the restriction that fixes the k variables to values according to the
k-prefix of P ′. The algorithm simplifies F ′ according to the composition ρ′′ ◦ ρ′, and
recurses with the simplified CNF, with the restriction ρ′′ ◦ρ′, and with the string obtained
from P ′ by omitting its first k bits.

The main point to note in the above description is that in each recursive call, the
test TP needs to read at most w blocks of dlog(1/p)e = O(log(w)) bits in the restriction,
corresponding to the (at most w) variables in the clause that it examines. The key observation
in [9, Lemma 3.3], which we now state in a more general form, is that for each P ∈ {0, 1}D,
with high probability it holds that TP makes at most D′ = O (2w · log (1/δ0))) recursive
calls; that is, with high probability TP examines the values that ρ assigns to variables of at
most D′ clauses. This is the case because for each recursive call, the probability that the
clause that is examined is unsatisfied is at least 2−w; thus, the probability that after D′
recursive calls the algorithm encountered an unsatisfied clause, and thus stopped, is more
than 1− (1− 2−w)D

′
≥ 1− δ0. It follows that for each P ∈ {0, 1}D, with probability at least

21This event means that the path induced by P in the canonical decision tree of F �ρ is of depth more
than |P | = D. Recall that by the definition of the canonical decision tree, whenever the algorithm that
constructs the canonical decision tree encounters an undetermined clause, it adds the full sub-tree that
corresponds to all living variables in the clause to the canonical decision tree.
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1− 2δ0 over a uniformly-chosen restriction ρ it holds that TP accepts ρ without making more
than D′ recursive calls.

Now, consider “truncated” versions of these tests: For each P ∈ {0, 1}D, consider
a modified version T ′P of TP that, in addition to the description above, rejects ρ if the
depth of the recursion exceeds D′. According to previous paragraph, the test T ′P accepts a
uniformly-chosen restriction with probability at least 1− 2δ0. Since each T ′P reads at most
D′′ = O (D′ · w · log(w)) = Õ (w) · (2w · log(1/δ)) bits in the restriction, if instead of the
uniform distribution we choose a restriction from the distribution z, which is δ′-almost t′-wise
independent, where δ′ <

(
δ0 · 2−D

′′
)
and t′ ≥ D′′, then the probability that T ′P will accept is

at least 1− 3δ0. 22 Thus, the probability that all the tests accept (i.e., ∧P∈{0,1}DTP (ρ) = 1)
is at least 1− 3δ. J

Let us now recall the statement of Claim 23 and prove it.

I Claim 45 (Claim 23, Restated). Let F : {0, 1}n → {0, 1} be a depth-2 formula of width w
and size m, and let F ′ : {0, 1}n → {0, 1} be a refinement of F . Then, for any restriction
ρ ∈ {0, 1, ?}n it holds that F �ρ can be computed by a depth-2 formula Φ of width w and size
m such that F ′�ρ is a refinement of Φ.

Proof. We prove the claim for the case where F is a DNF; the proof for the case where F is
a CNF follows by reduction to the DNF ¬F , relying on Fact 21. Let Φ be the DNF for F �ρ
that is obtained by fixing the variables in each clause of F according to ρ, without omitting
any clause from the formula (even if a clause becomes a constant function).

When F ′ was obtained by a sequence of removal steps and clean-up steps, then F ′ is
simply a sub-formula of F . In this case, we can apply the same sequence of removal steps
and clean-up steps to Φ, to obtain a corresponding sub-formula of Φ that computes F ′�ρ. 23
We thus focus on proving the claim when F ′ was obtained by a sequence of k ≤ m merging
steps and clean-up steps.

For every i ∈ [k], let F (i) be the formula in the beginning of the ith refinement step in the
transformation of F to F ′, and let F (k+1) = F ′. We will show a sequence of k merging steps
and clean-up steps that, when applied to Φ, induce a corresponding sequence of formulas
Φ = Φ(1), ...,Φ(k+1), such that the following holds: For every i ∈ [k] there exists a bijection
between the clauses of Φ(i) and the clauses of F (i)�ρ such that every clause ϕ of the former is
mapped to a clause f of the latter such that ϕ computes the function f�ρ. In particular, this
claim implies that for every i ∈ [k] it holds that Φ(i) ≡ F (i)�ρ, and therefore F ′�ρ ≡ Φ(k+1)

is a refinement of Φ = Φ(1).
The claim is proved by induction on i. The base case i = 1 follows immediately from

the definition of Φ(1) = Φ. For the induction step, assume that there is a bijection as above
between the clauses of Φ(i) and the clauses of F (i)�ρ, and let us define the ith refinement
step that is applied to Φ(i). If the ith refinement step of F (i) was a clean-up step, then we

22The reason that we use the error parameter δ0 · 2−D
′′
instead of the more natural parameter δ0 is that

the tests that we are trying to “fool” are adaptive; that is, for each P ∈ {0, 1}D, the test TP does not
examine a fixed set of D′′ bits in ρ, but rather adaptively chooses which bits to read according to the
values of the bits that it read so far. We rely on the fact that any distribution that is

(
δ0 · 2−D

′′)
-almost

D′′-wise independent also δ0-fools adaptive tests that only read D′′ bits (see, e.g., [8, Exer. 7.4]).
23That is, let F = ∨mi=1fi, and assume that F ′ = ∨mi=k+1fi was obtained from F by removing the clauses
f1, ..., fk. Then it holds that Φ = ∨mi=1(fi�ρ) and F ′�ρ = ∨mi=k+1(fi�ρ), which implies that we can apply
k removal steps to Φ in order to obtain F ′�ρ.
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can apply an analogous clean-up step to Φ(i). 24 Otherwise, if the ith refinement step of F (i)

was a merging step, let f (i)
1 , ..., f

(i)
u be the set of clauses that were removed in this step, and

let h(i) be the new clause that was added in their stead. For every j ∈ [u], let ϕ(i)
j be the

clause in Φ(i) that computes f (i)
j �ρ and exists by the induction hypothesis. We show how

apply a single refinement step to Φ(i) that replaces the clauses ϕ(i)
1 , ..., ϕ

(i)
u with a new clause

ϕ(i) that computes the function h(i)�ρ. This is proved by a case analysis:
1. If h(i)�ρ is not a constant function, then it follows that

⋂
j∈[u](f

(i)
j �ρ) =

⋂
j∈[u] ϕ

(i)
j 6= ∅.

In this case, we apply a merging step to the clauses ϕ(i)
1 , ..., ϕ

(i)
u in Φ(i), and they are

replaced with the non-constant clause ϕ(i) =
⋂
j∈[u] ϕ

(i)
j =

⋂
j∈[u](f

(i)
j �ρ) = h(i)�ρ.

2. If h(i)�ρ ≡ 0, then for every j ∈ [u] it holds that f (i)
j �ρ ≡ ϕ

(i)
j ≡ 0. This is the case because⋂

j∈[u] f
(i)
j 6= ∅ (otherwise h(i) ≡ 1 and also h(i)�ρ ≡ 1), whereas

(⋂
j∈[u] f

(i)
j

)
�ρ ≡ 0,

which implies that for every j ∈ [u] there exists a literal in f (i)
j that is fixed by ρ to an

unsatisfying value. Therefore, in this case we can apply a clean-up step to Φ(i) to remove
all but a single constant zero clause among the f (i)

j ’s.
3. If h(i)�ρ ≡ 1, then it holds that

⋂
j∈[u] ϕ

(i)
j = ∅. To see that this is the case, note

that if
⋂
j∈[u] f

(i)
j = ∅ then the latter assertion holds immediately; and otherwise (i.e.,⋂

j∈[u] f
(i)
j 6= ∅), it follows by the assumption that h(i)�ρ ≡ 1 that ρ fixes all the literals

that are shared by all the u clauses f (i)
1 , ..., f

(i)
u to satisfying values, which indeed implies

that
⋂
j∈[u] ϕ

(i)
j = ∅. Thus, we can apply a merging step to ϕ(i)

1 , ..., ϕ
(i)
u to obtain the

constant one function. J

C Proofs of technical claims from Section 7

In this appendix we prove several technical claims that were made in the proofs of Proposi-
tion 39, Proposition 40, and Theorem 41.

Let us first prove a claim that generalizes Claims 39.2 and 40.1, which were made in
the proofs of Proposition 39 and Proposition 40, respectively. Recall that for any tuple
of t elements ~u = (u(0), ..., u(t−1)) ∈ Ft·n, we denote by W~u ⊆ Fn the affine subspace
W~u = {u(0) + α1 · u(1) + ...+ αt−1 · u(t−1) : α1, ..., αt−1 ∈ F}. Then, the following holds:

I Claim 46 (Claims 39.2 and 40.1, Generalized). Let t ≥ 2 be an even integer, and let
ε ∈ (0, 1). Let n ∈ N, let F be a field of size |F| = q, and let p : Fn → F be a polynomial of
degree d ≤ (1− ε) · q. Uniformly choose ~u = (u(0), ..., u(t−1)) ∈ Ft·n, and let W = W~u. Then,
the probability that p�W ≡ 0 is at most O

(
dt/2 · q−t2/2 · ε−t

)
, where the O-notation hides a

constant that depends on t; in particular, when t = 2, the hidden constant is just 4.

Proof. For i = 1, ..., qt−1, let µ(i)
W be the indicator variable of whether p vanishes on the

ith point in W (according to some canonical ordering of points in Fn), and let µW =
Ei∈[qt−1]

[
µ

(i)
W

]
= Pr~x∈W [p(~x) = 0]. Denote by b = Prx∈Fn [p(x) = 0], and note that

24 Specifically, denote by f (i)
1 , ..., f

(i)
u the constant zero clauses that were removed from F (i) in the ith step.

For every j ∈ [u], let ϕ(i)
j be the clause in Φ(i) that computes f (i)

j �ρ ≡ 0 and exists by the induction
hypothesis. Then, the ith refinement step of Φ(i) is a clean-up step that removes the constant zero
clauses ϕ(i)

1 , ..., ϕ
(i)
u .
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b ≤ d/q ≤ 1− ε, where the first inequality is by the Schwartz-Zippel lemma, and the second
inequality is by the hypothesis that d ≤ (1− ε) · q.

We handle the case of t = 2 and the case of t ≥ 4 separately. Starting with the former, note
that for every i 6= j ∈ [q] it holds that µ(i)

W and µ(j)
W are independent, and that V ar

(
µ

(i)
W

)
≤ b.

Relying on Chebyshev’s inequality, we have that

Pr
W

[|µW − b| > ε/2] ≤ b

(ε/2)2 · q
≤ 4 ·

(
d

ε2 · q2

)
.

For the case of t ≥ 4, we rely on Fact 12. In our case, the t-wise independent variables
are µ(1)

W , ..., µ
(qt−1)
W , their average is 1

qt−1 ·
∑
i∈[qt−1] µ

(i)
W = µW , and their expected average is

b ≤ 1− ε. Using Fact 12 with ζ = ε/2, we have that

Pr
W

[|µW − b| ≥ ε/2] ≤ 8 ·
(
t · b · qt−1 + t2

(ε/2)2 · (qt−1)2

)t/2
≤ 8 ·

(
2 · t2 ·max

{
b, q−(t−1)}

(ε/2)2 · qt−1

)t/2

≤
(

8 · 2t/2 · (2t)t
)
·
(

d/q

ε2 · qt−1

)t/2
,

which is O
(
dt/2 · q−t2/2 · ε−t

)
. J

We now prove Fact 41.1, which was stated in the proof of of Theorem 41:

I Fact 47 (Fact 41.1, Restated). Let t be a constant integer. Let n and d be two integers such
that the sum n+ d is sufficiently large. Then, we have that log

((
n/t+d
d

))
= Ω

(
log
((
n+d
d

)))
,

where the constant hidden inside the Ω-notation depends on t.

Proof. Let c = 1
t·e , where e = 2.71... . If d ≤ c · (n/t+ d), then the assertion follows from the

standard bound
(
n
k

)k ≤ (nk) ≤ (n·ek )k. 25 Similarly, if (n/t) ≤ c′ · (n/t+ d), where c′ = 1/e,
then the assertion follows by showing that log

((
n/t+d
n/t

))
= Ω

(
log
((
n+d
n

)))
, relying on the

same standard bound. 26
Otherwise, we have that d > c · (n/t + d) and n/t > c′ · (n/t + d). In this case we use

Stirling’s approximation: Let H2(·) be the binary entropy function, and denote α = d
d+n

and α′ = d
d+(n/t) . Note that c

t < α < 1 − c′, and that c < α′ < 1 − c′, which implies that

H2(α) = Ω(1) and H2(α′) = Ω(1). Hence, we deduce that log
((
n+d
d

))
≤ H2(α) · (n + d),

whereas log
((
n/t+d
d

))
≥ (H2(α′)− o(1)) · (n/t+ d) = Ω (H2(α) · (n+ d)). J

25Specifically, log
((
n+d
d

))
≤ d ·

(
log
(
n+d
d

)
+ log(e)

)
< d ·

(
log
( (n/t)+d

d

)
+ log(t · e)

)
≤ 2 · d ·

log
( (n/t)+d

d

)
≤ 2 · log

((
n/t+d
d

))
, where the penultimate inequality relies on the fact that (n/t)+d

d ≥ t ·e.
26 Specifically, log

((
n+d
n

))
≤ n·

(
log
(
n+d
n

)
+ log(e)

)
< n·

(
log
( (n/t)+d

(n/t)

)
+ log(e)

)
≤ 2·n·log

( (n/t)+d
(n/t)

)
≤

(2 · t) · log
((

n/t+d
n/t

))
, where the penultimate inequality relies on the fact that (n/t)+d

n/t ≥ e.
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