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Abstract
We consider the problem of commutative rank computation of a given matrix space, B ⊆ Fn×n.
The problem is fundamental, as it generalizes several computational problems from algebra and
combinatorics. For instance, checking if the commutative rank of the space is n, subsumes
problems such as testing perfect matching in graphs and identity testing of algebraic branch-
ing programs. An efficient deterministic computation of the commutative rank is a major open
problem, although there is a simple and efficient randomized algorithm for it. Recently, there
has been a series of results on computing the non-commutative rank of matrix spaces in de-
terministic polynomial time. Since the non-commutative rank of any matrix space is at most
twice the commutative rank, one immediately gets a deterministic 1

2 -approximation algorithm
for the computation of the commutative rank. This leads to a natural question of whether this
approximation ratio can be improved. In this paper, we answer this question affirmatively.

We present a deterministic Polynomial-time approximation scheme (PTAS) for computing
the commutative rank of a given matrix space. More specifically, given a matrix space B ⊆ Fn×n

and a rational number ε > 0, we give an algorithm, that runs in time O(n4+ 3
ε ) and computes a

matrix A ∈ B such that the rank of A is at least (1− ε) times the commutative rank of B. The
algorithm is the natural greedy algorithm. It always takes the first set of k matrices that will
increase the rank of the matrix constructed so far until it does not find any improvement, where
the size of the set k depends on ε.
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1 Introduction

In this paper, we consider the problem of computing the maximum rank of any matrix
which lies in the linear span of m given input n × n matrices B1, B2, . . . , Bm over some
underlying field F. This maximum rank is also called the commutative rank of the matrix
space B = 〈B1, B2, . . . , Bm〉. This problem was introduced by Edmonds in [3]. Any matrix
spanned by B1, B2, . . . , Bm can be written as the homomorphic image of B =

∑m
i=1 xiBi

under the substitution homomorphism, where we think of the xi as indeterminates. It is not
hard to see that the commutative rank of the B is same as the rank of B over the field of
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33:2 Deterministic PTAS for Commutative Rank

rational functions F(x1, x2, . . . , xm), provided that F is large enough. For this reason, this
problem is also called the symbolic matrix rank sometimes. Since the rank of B is the size of
the largest nonzero minor in B and any minor of B is a polynomial of degree at most n in
the variables x1, x2, . . . , xm, by using the Schwartz-Zippel lemma [22, 18], one immediately
gets a randomized algorithm for computing the commutative rank of B if the size of the field
F is large enough. The maximum matching problem in bipartite and general graphs is a
special case of the commutative rank problem, as shown in [13]. Even the linear matroid
parity problem is special case of the commutative rank problem [17].

Valiant [20] showed that a formula of size s can be written as a projection of the
determinant of an (s+ 2)× (s+ 2) matrix having linear polynomials as entries. This shows
that checking if a given matrix space is full rank is as hard as polynomial identity testing of
formulas. In fact, it is even known that algebraic branching programs are computationally
equivalent to the polynomials computed by determinants of a polynomial sized matrix, see
[21, 19, 16]. So the problem of deciding whether a given matrix space is full rank is as hard
as the polynomial identity testing of arithmetic branching programs. Algebraic branching
programs are conjectured to be a stronger model for computing polynomials than formulas.

We remark that if the underlying field F is not large enough, then this problem is hard.
Buss et al. proved that the problem is NP-complete in [1], when the field F is of constant size.

1.1 Previous work
Since the general case of computing the commutative rank is as hard as identity testing for
polynomials given as algebraic branching programs, several special cases of matrix spaces
have been considered. There has been a lot of study in the case when all the matrices Bi
are of rank 1 [14, 9, 10]. Deterministic polynomial time algorithms were shown for this case
in [9, 10]. The case when the matrices Bi are skew-symmetric of rank 2 is also of special
interest as it was shown in [13] that the linear matroid parity problem is a special case of
computing the commutative rank when Bi are skew-symmetric of rank 2. Many deterministic
polynomial time algorithms have been demonstrated for this case, see [12, 6, 15].

Analogous to the notion of commutative rank of a matrix space, there is also a notion
of non-commutative rank (see the next section for a precise definition). The matrix spaces
for which commutative rank and non-commutative rank are equal are called compression
spaces [4]. A deterministic polynomial time algorithm for checking if a compression space
is of full rank (over the field Q) was discovered by Gurvits in [8]. The algorithm of [8] was
analysed more carefully in [7] to demonstrate that the algorithm described in [8] actually
is a deterministic polynomial time algorithm to check if a given matrix space has full non-
commutative rank. This algorithm works over Q only. Ivanyos et al. [11] extended this
results to arbitrary fields, using a totally different algorithm. It was shown in [5] that non-
commutative of any matrix space is at most twice the commutative rank. So the algorithms
in [7, 11] are deterministic polynomial time algorithms which compute a 1

2 -approximation to
the commutative rank. Approximating the commutative rank of a matrix space can be seen
as a relaxation of the polynomial identity testing problem. Improving on the 1

2 -approximation
was formulated as an open problem in [7].

1.2 Our results
We here improve on this approximation performance. We give a deterministic polynomial
time approximation scheme (PTAS) for approximating the commutative rank. That is,
given a basis B1, . . . , Bm of our matrix space B of n× n-matrices and some rational number
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ε > 0, our algorithm outputs a matrix A ∈ B whose rank is at least (1 − ε) · r, where
r = max{rank(B) | B ∈ B} provided that the size of the underlying field is larger than n.
Our algorithm performs O(n4+ 3

ε ) many arithmetic operations, the size of each operand is
linear in the sizes of the entries of the matrices B1, . . . , Bm. So for fixed ε, the running time
is polynomial in the input size.

Our algorithm is the natural greedy algorithm: Assume we have constructed a matrix A
so far. Then the algorithm tries all subsets of B1, . . . , Bm of size k, where k depends on ε,
and tests whether we can increase the rank of A by adding an appropriate linear combination
of Bi1 , . . . , Bik . The main difficulty is to prove that when this algorithm stops, A is an
(1− ε)-approximation. The analysis uses so-called Wong sequences.

For polynomial identity testing, one has to test whether a matrix has full rank or rank
≤ n− 1. Therefore, our PTAS does not seem to help getting a polynomial time algorithm
for polynomial identity testing.

1.3 Organization of the paper
Section 2 describes the basic setup of the problem and relevant definitions and techniques.
It describes the basic notations, definitions and related lemmas and theorems known. In
Section 3, we first present a greedy algorithm which computes a 1

2 -approximation of the
commutative rank in deterministic polynomial time. It describes the basic ideas of our
algorithm but is much easier to analyse. This motivates our final algorithm which can
compute arbitrary approximations to the commutative rank in deterministic polynomial
time. To extend this 1

2 -approximation to arbitrary approximation, we introduce the notion
of Wong sequences and Wong index in Section 4. Section 5 studies the relation between
commutative rank and Wong index. In this section, we prove that the higher the Wong
index is of a given matrix, the closer its rank is to the commutative rank of the given matrix
space. This allows us to extend Algorithm 1 to arbitrary approximation by considering larger
subsets. The algorithm for arbitrary approximation of the commutative rank and its proof
of correctness and desired running time are given in Section 6. We conclude by giving some
tight examples in Section 7.

2 Preliminaries

Here, we introduce the basic definitions and notations which are needed to fully describe our
algorithm.
1. If V and W are vector spaces, then we use notation V ≤ W to denote that V is a

subspace of W .
2. We use Fn×n to denote the set of all n× n matrices over a field F.
3. Im(A) is used to denote the image of a matrix A ∈ Fn×n.
4. Ker(A) is used to denote the kernel of a linear map A ∈ Fn×n.
5. dim(V ) is used to denote the dimension of a vector space V .
6. For any subset S of a vector space U , 〈S〉 denotes the linear span of S.
7. For A ∈ Fn×n and a vector space U ≤ Fn, the image of U under A is A(U) = AU =
{A(u) | u ∈ U}.

8. The preimage of W ≤ Fn under A is defined as A−1(W ) = {v ∈ V | A(v) ∈W}.
9. The set {0, 1, 2, . . . , n} of non-negative integers between 0 and n is denoted by [n].
10. We use the notation Ir to denote the r × r identity matrix.
11. Throughout the paper, we would assume that the size of the underlying field is more

than n, the size of the input matrices, i.e., |F| > n.

CCC 2017



33:4 Deterministic PTAS for Commutative Rank

Below are some of the basic definitions which we shall need.

I Definition 1 (Matrix space). A vector space B ≤ Fn×n is called a matrix space.

We would usually deal with matrix spaces whose generating set is given as the input.
More precisely, we would be given a matrix space B = 〈B1, B2, . . . , Bm〉 ≤ Fn×n, where we
get the matrices B1, B2, . . . , Bm as the input. Note that without loss of generality, one can
assume that m ≤ n2.

I Definition 2 (Commutative rank). The maximum rank of any matrix in a matrix space B
is called the commutative rank of B. We use notation rank(B) to denote this quantity.

We shall use the same notation rank(A) for denoting the usual rank of any matrix. Note
that the rank of a matrix A is same as the commutative rank of the matrix space generated
by A, that is, rank(A) = rank(〈A〉).

I Definition 3 (Product of a matrix space and a vector space). The image of a vector space
U under a matrix space A is the span of the images of U under every A ∈ A, that is
A(U) := AU := 〈

⋃
A∈AA(U)〉. We also call this image AU to be the product of the matrix

space A and the vector space U .

I Definition 4 (c-shrunk subspace). A vector space V ≤ Fn is a c-shrunk subspace of a
matrix space B, if rank(BV ) ≤ dim(V )− c.

I Definition 5 (Non-commutative rank). Given a matrix space B ≤ Fn×n, let r be the
maximum non-negative integer such that there exists a r-shrunk subspace of the matrix space
B. Then n− r is called the non-commutative rank of B. We use the notation nc-rank(B) to
denote this quantity.

From the definition above, it is not clear why we call this quantity non-commutative
rank. It can be shown that the quantity above equals the rank of the corresponding symbolic
matrix when the variables x1, . . . , xm do not commute. For more natural and equivalent
definitions as well as more background on non-commutative rank, we refer the reader to
[7, 5].

I Lemma 6. For all matrix spaces B ≤ Fn×n, rank(B) ≤ nc-rank(B).

Above lemma states that the non-commutative rank is at least as large as the commutative
rank. But how large it can be compared to the commutative rank? Following theorem states
that it is always less than twice the commutative rank.

I Theorem 7 ([5], [2]). For all matrix spaces B ≤ Fn×n, we have nc-rank(B)
rank(B) < 2.

Derksen and Makam also gave a family of examples where the ratio of non-commutative
rank and commutative rank reaches arbitrarily closed to 2, hence showing that the bound
above is sharp (see [2], Theorem 1.15).

3 1
2-approximation algorithm for the commutative rank

Here we present a simple greedy algorithm which also achieves an 1
2 -approximation for the

commutative rank. This algorithm looks for the first matrix that increases the rank of the
current matrix and stops if it does not find such a matrix.
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Input : A matrix space B = 〈B1, B2, , . . . , Bm〉 ≤ Fn×n, input is a list of matrices
B1, B2, . . . , Bm.

Output : A matrix A ∈ B such that rank(A) ≥ 1
2 · rank(B)

Initialize A = 0 ∈ Fn×n to the zero matrix.
while Rank is increasing do

for each 1 ≤ i ≤ m do
Check if there exists a λ ∈ F such that rank(A+λBi) > rank(A). if rank(A+λBi) >
rank(A) then

Update A = A+ λBi.

return A.

Algorithm 1 Greedy algorithm for 1
2 -approximating commutative rank.

We shall proof the following lemma in appendix.

I Lemma 8. Algorithm 1 runs in polynomial time and returns a matrix A ∈ B such that
rank(A) ≥ 1

2 · rank(B).

4 Wong sequences and Wong index

In this section, we introduce the notion of Wong sequences which is crucially used in our
proofs. For a more comprehensive exposition, we refer reader to [9].

I Definition 9 (Second Wong Sequence). Let B ≤ Fn×n be a matrix space and A ∈ B. The
sequence of sub-spaces (Wi)i∈[n] of W is called the second Wong sequence of (A,B), where
W0 = {0}, and Wi+1 = BA−1(Wi).

In [9], first Wong sequences are also introduced. But for our purpose, just the notion of
second Wong sequence is enough. It is easy to see that W0 ≤W1 ≤W2 ≤ . . . ≤Wn, see [9].

Next, we introduce the notion of pseudo-inverses. They are helpful in computing the
Wong sequences. We remark that we would need the notion of Wong sequence only for the
analysis, our algorithm is completely oblivious to Wong sequences.

I Definition 10 (Pseudo-Inverse). A non-singular matrix A′ ∈ Fn×n is called a pseudo-inverse
of a linear map A ∈ Fn×n if the restriction of A′ to Im(A) is the inverse of the restriction of
A to a direct complement of Ker(A).

Unlike the usual inverse of a non-singular matrix, a pseudo-inverse of a matrix is not
necessarily unique. But it always exists and if A is non-singular, then it is unique and
coincides with the usual inverse.

The following lemma demonstrates the role of pseudo-inverses in computing Wong
sequences. This lemma and its proof are implicit in the proof of Lemma 10 in [9]. We prove
it in the appendix for completeness. The lemma essentially states that we can replace the
preimage computation in the Wong sequence by multiplication with a pseudo-inverse.

I Lemma 11. Let B ≤ Fn×n be a matrix space, A ∈ B, A′ be a pseudo-inverse of A
and (Wi)i∈[n] be the second Wong sequence of (A,B). Then for all 1 ≤ i ≤ n, we have
Wi = (BA′)i(Ker(AA′)) as long as Wi−1 ⊆ ImA.

Given a matrix space B and a matrix A ∈ B, how can one check that A is of maximum
rank in B, i.e, rank(A) = rank(B)? The following lemma in [9] gives a sufficient condition
for A to be of maximum rank in B.

CCC 2017
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I Lemma 12 (Lemma 10 in [9]). Assume that |F| > n. Let A ∈ B ≤ Fn×n, and let A′ be a
pseudo-inverse of A. If we have that for all i ∈ [n],

Wi = (BA′)i(Ker(AA′)) ⊆ Im(A), (4.1)

then A is of maximum rank in B.

Thus, the above lemma shows that if A is not of maximum rank in B, then we have
Wi * Im(A) for some i ∈ [n]. For our purposes, we need to quantify when exactly this
happens. Therefore we define:

I Definition 13 (Wong Index). Let B ≤ Fn×n be a matrix space, A ∈ B and (Wi)i∈[n] be the
second Wong sequence of (A,B). Let k ∈ [n] be the maximum integer such that Wk ⊆ Im(A).
Then k is called the Wong index of (A,B). We shall denote it by w(A,B).

Using the above definition, another way to state Lemma 12 is that if the Wong index
w(A,B) of (A,B) is n, then A is of maximum rank in B. But can one say more in this case?
In next section, we explore this connection. We shall prove that the closer w(A, 〈A,B〉) is to
n, the closer the rank of A is to the commutative rank of 〈A,B〉.

The converse of Lemma 12 is not true in general. But the converse is true in the special
case when B is spanned by just two matrices. Fortunately, for our algorithm we only require
the converse to be true in this special case. The following fact from [9] formally states this
idea.

I Fact 14 (Restatement of Fact 11 in [9]). Assume that |F| > n and let A,B ∈ Fn×n. If A
is of maximum rank in 〈A,B〉 then the Wong index w(A, 〈A,B〉) of (A, 〈A,B〉) is n.

We shall also need the following easy fact from linear algebra.

I Fact 15. Let M be a matrix of the following form.

L B
A 0

( )
r rows

n− r rows

r columns

n− r columns

M =

(4.2)

Also, let rank(A) = a and rank(B) = b. Then rank(M) ≤ r + min{a, b}.

In order to extend the simple greedy algorithm for rank increment described in Section 3
for arbitrary approximation of the commutative rank, we use the Wong index defined above.
To achieve that, we need the relation between the commutative rank and Wong index, which
we establish in the next section.

5 Relation between rank and Wong index

We prove that the natural greedy strategy works, essentially by showing that either of the
following happens:
1. The Wong index of the matrix obtained by the greedy algorithm at a given step is high

enough, in which case, we show that the matrix already has the desired rank. Lemma 19
formalizes this.

2. We can increase the rank by a greedy step. Lemma 20 formalizes this.

In the above spirit, we quantify the connection between the commutative rank and Wong
index in this section, using a series of lemmas. First we need a lemma which demonstrates
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that the second Wong sequence remains “almost” the same under invertible linear maps,
which we prove in the appendix.

I Lemma 16. Let A ∈ B ≤ Fn×n and (Wi)i∈[n] be the second Wong sequence of (A,B).
If P ∈ Fn×n and Q ∈ Fn×n are invertible matrices, then the second Wong sequence of
(PAQ,PBQ) is (PWi)i∈[n]. In particular, w(A,B) = w(PAQ,PBQ).

The following technical lemma relates Wong index with a sequence of vanishing matrix
products.

I Lemma 17. Let A,B ∈ Fn×n. Assume A =
[
Ir 0
0 0

]
and express the matrix B as

B11 B12
B21 B22

( )
r rows

n− r rows

r columns

n− r columns

B =

(5.1)

Let ` ≤ n be the maximum integer such that first ` elements of the sequence of matrices

B22, B21B12, B21B11B12, . . . , B21B
i
11B12. . . . (5.2)

are equal to the zero matrix. Then ` = w(A, 〈A,B〉).

Proof. Notice that In is a pseudo-inverse of A. Consider the second Wong sequence of
(A, 〈A,B〉). By Lemma 11, it equals (〈A,B〉A′)i(Ker(AA′)). Since A′ = In, this sequence is
(〈A,B〉)i(Ker(A)). Ker(A) ≤ Fn contains exactly the vectors which have first r entries to be
zero and Im(A) contains exactly the vectors which have last n− r entries to be zero. Let
k = w(A, 〈A,B〉), we want to show that k = `.

First we show that ` ≥ k. For this, we need to show that B22 = B21B12 = B21B11B12 =
. . . = B21B

k−2
11 B12 = 0. If k = 0 then we do not need to show anything. Otherwise k > 0.

Consider the first entry W1 of second Wong sequence of (A, 〈A,B〉). By Lemma 11, we know
that W1 = 〈A,B〉Ker(A). As Ker(A) ≤ Fn contains exactly the vectors which have first r
entries to be zero, if B22 was not zero then BKer(A) would contain a vector with a non-zero
entry in last n−r coordinates. This would violate the assumptionW1 ⊆ Im(A). Thus B22 = 0.
Now we use induction on length of the sequence B22, B21B12, B21B11B12, . . . , B21B

i
11B12.

Our induction hypothesis assumes that for i ≥ 1

Bi11 +
∑i−2
j=0 B

j
11B12B21B

i−2−j
11 Bi−1

11 B12

B21B
i−1
11 0

 r rows

n− r rows

r columns

n− r columns

Bi =

(5.3)

and B22 = B21B12 = B21B11B12 = . . . = B21B
i−2
11 B12 = 0. We just proved the base case of

i = 1. Consider the following evaluation of Bi+1 = B ·Bi

Bi+1
11 +

∑i−2
j=0 B

j+1
11 B12B21B

i−2−j
11 +B12B21B

i−1
11 Bi11B12

B21B
i
11 +

∑i−2
j=0 B21B

j
11B12B21B

i−2−j
11 B21B

i−1
11 B12

 r rows

n− r rows

r columns

n− r columns

Bi+1 =

CCC 2017
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(5.4)

Since i + 1 ≤ k, we must have B21B
i−1
11 B12 = 0, otherwise we would have Wi+1 6⊆ Im(A).

Also we know by the induction hypothesis that B22 = B21B12 = B21B11B12 = . . . =
B21B

i−2
11 B12 = 0, this implies that

Bi+1
11 +

∑i−1
j=0 B

j
11B12B21B

i−1−j
11 Bi11B12

B21B
i
11 0

 r rows

n− r rows

r columns

n− r columns

Bi+1 = B ·Bi =

(5.5)

Now we show that k ≥ `. Since k = w(A, 〈A,B〉), for all 1 ≤ i ≤ k, Bi can be written as

Bi11 +
∑i−2
j=0 B

j
11B12B21B

i−2−j
11 Bi−1

11 B12

B21B
i−1
11 0

 r rows

n− r rows

r columns

n− r columns

Bi =

(5.6)

Note that 〈A,B〉i is spanned by all matrices of the formM1M2 · · ·Mi withMj = A orMj = B,
1 ≤ j ≤ i. Since we have that Wk ⊆ Im(A), we know that M1M2 · · ·Mk Ker(A) ⊆ Im(A)
for any product M1M2 · · ·Mk as above. Now let us see what condition one needs such that
Wk+1 6⊆ Im(A) is true. Since A is the identity on Im(A), only Bk+1 can take Ker(A) out
of Im(A) for Wk+1 6⊆ Im(A) to be true. By a similar argument as above, this happens only
when B21B

k−1
11 B12 6= 0, thus ` ≤ k. J

Now, having established the connection between Wong index and the sequence of vanishing
matrix products, we prove another technical lemma establishing the relation between the
length of this sequence and the commutative rank.

I Lemma 18. Let B ∈ Fn×n and

B11 B12
B21 B22

( )
r rows

n− r rows

r columns

n− r columns

B =

(5.7)

Consider the sequence of matrices B22, B21B12, B21B11B12, . . . , B21B
j
11B12. . . .. If the first

k ≥ 1 elements in this sequence are equal to the zero matrix and B11 is non-singular, then
rank(B) ≤ r

(
1 + 1

k

)
.

Proof. If rank(B12) ≤ r
k , then we are done by using the Fact 15. So we can assume without

loss of generality that rank(B12) > r
k . Now suppose that

dim〈Im(B12) ∪ Im(B11B12) ∪ . . . ∪ Im(Bk−2
11 B12)〉 ≥ (k − 1) rank(B12).

We note that Im(B12), Im(B11B12), . . . , Im(Bk−2
11 B12), are sub-spaces of Ker(B21). Further

using the rank nullity theorem, we get rank(B21) < r − r·(k−1)
k = r

k . By using Fact 15, we
again get that rank(B) ≤ r

(
1 + 1

k

)
.

In the above discussion, we assumed that

dim〈Im(B12) ∪ Im(B11B12) ∪ . . . ∪ Im(Bk−2
11 B12)〉 ≥ (k − 1) rank(B12).
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What if this is not the case? We still want to use the same idea as above but we want to
ensure this assumption. For this purpose, we use a series of elementary column operations on
B to transform it to a new matrix B∗, which would satisfy above assumption. Since the rank
of a matrix is invariant under elementary column operations, we would obtain the desired
rank bound. Now we show how to obtain this matrix B∗ using a series of elementary column
operations on B. Whenever we apply these elementary column operations on B, we shall
also maintain the invariant that B22 = B21B12 = B21B11B12 = . . . = B21B

k−2
11 B12 = 0.

Suppose

dim〈Im(B12) ∪ Im(B11B12) ∪ . . . ∪ Im(Bk−2
11 B12)〉 < (k − 1) rank(B12). (5.8)

Let ρ := rank(B12). First, we can assume that B12 has exactly ρ non-zero columns. This
can be achieved by performing elementary column operations on the last n − r columns.
This does not change the matrix B22 = 0. Furthermore, these column operations correspond
to replacing B12 by B12 · S for some invertible (n − r) × (n − r)-matrix S. Since B22 =
B21B12 = B21B11B12 = . . . = B21B

k−2
11 B12 = 0 implies B21B12S = B21B11B12S = . . . =

B21B
k−2
11 B12S = 0, we keep our invariant. We will call the new matrix again B12.

Note that the image of a matrix is its column span. Since every matrix Bi11B12 has
at most ρ non-zero columns (since B12 has ρ non-zero columns and B11 is non-singular),
assumption 5.8 means that there is a linear dependence between these columns. That means
there vectors y0, y1, . . . , yk−2 ∈ Fn−r, not all equal to zero, such that

∑k−2
i=0 B

i
11B12 · yi = 0.

Moreover, these vectors only have non-zero entries in the places that corresponds to nonzero
columns of B12. First we show that we can assume y0 6= 0. Suppose 0 ≤ j ≤ k− 2 is the least
integer such that yj 6= 0. So we left multiply the equation

∑k−2
i=0 B

i
11B12 · yi = 0 by (Bj11)−1,

giving us (Bj11)−1∑k−2
i=0 B

i
11B12 · yi =

∑k−2
i=j B

i−j
11 B12 · yi = 0. By renumbering the indices,

this can be re-written as
∑k−2−j
i=0 Bi11B12 · yi = 0. Thus we can assume that y0 6= 0. (The

new sum runs only up to k − 2− j, for the missing summands, we choose the corresponding
yi to be zero.)

By writing
∑k−2
i=0 B

i
11B12 ·yi = 0 as B12 ·y0 +B11 ·

∑k−2
i=1 B

i−1
11 B12yi = 0, we see that there

is a linear dependence between the columns of B12 and B11. Let k ∈ [n− r] be such that
kth entry of y0 is non-zero. Therefore, we can make the kth column of B12 zero by adding a
multiple of

∑k−2
i=1 B

i
11B12 · yi and maybe adding some multiple of some other columns of B12

to it. This will decrease the rank of B12 by 1.
We claim that our invariant is still fulfilled. First, we add B11 ·

∑k−2
i=1 B

i−1
11 B12 · yi to

the kth column of B12 and this will also add B21 ·
∑k−2
i=1 B

i−1
11 B12 · yi to the kth column

of B22. Since the invariant was fulfilled before the operation, B22 will stay zero. As seen
before, column operations within the last n− r columns do not change B22. Thus, one of
the n − r columns on the right-hand side (side composed of B12 and B22) of B became
zero. We can remove this column from our consideration. Let B′ and B′12 the matrices
obtained from B and B12 by removing this zero column. Since the columns of B′12 are a
subset of the columns of B12, B21B12 = B21B11B12 = . . . = B21B

k−2
11 B12 = 0 implies that

B21B
′
12 = B21B11B

′
12 = . . . = B21B

k−2
11 B′12 = 0. Therefore, our invariant is still valid.

We repeat this process until (5.8) is not true anymore. Note that this happens for sure
when rank(B12) = 0. At the end of this process we get a matrix B∗ such that

dim〈Im(B∗12) ∪ Im(B11B
∗
12) ∪ . . . ∪ Im(Bk−2

11 B∗12)〉 ≥ (k − 1) rank(B∗12).

Now the rank bound follows from the argument given above. J

Finally, combining the above three lemmas, the following lemma gives the desired
quantitative relation between the commutative rank and Wong index, essential to the
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analysis of our algorithm. It shows that higher the Wong index of the given matrix, the
better it approximates the rank of the space.

I Lemma 19. If A ∈ B = 〈B1, B2, , . . . , Bm〉 ≤ Fn×n and B =
∑m
i=1 xiBi, then

rank(B) = rank(〈A,B〉) ≤ rank(A)
(

1 + 1
w(A, 〈A,B〉)

)
. (5.9)

Proof. Let rank(A) = r. We use C to denote the matrix space 〈A,B〉, note that this space
is being considered over the rational function field F(x1, x2, . . . , xm).

We know that there exist matrices P,Q ∈ Fn×n such that

PAQ =
[
Ir 0
0 0

]
. (5.10)

Notice that Im(PAQ) = P Im(A). Thus by Lemma 16, w(A, C) = w(PAQ,PCQ). Also, it
is easy to see that rank(A) = rank(PAQ) and rank(C) = rank(PCQ). Hence it is enough to
show that

rank(PCQ) ≤ rank(PAQ)
(

1 + 1
w(PAQ,PCQ)

)
. (5.11)

For sake of simplicity, we just write PCQ as C and PAQ as A. Thus we have

A =
[
Ir 0
0 0

]
. (5.12)

We write B as

B11 B12
B21 B22

( )
r rows

n− r rows

r columns

n− r columns

B =

(5.13)

We get that B11 is non-singular over the field F(x1, x2, . . . , xm) since A ∈ B. Also,
we get by Lemma 17 that first w(A, C) entries of the sequence of matrices B22, B21B12,
B21B11B12, . . . , B21B

i
11B12. . . . are zero matrices. Now we apply lemma 18 to obtain that

rank(B) = rank(B) = rank(C) ≤ rank(A)
(

1 + 1
w(A, C)

)
. (5.14)

J

I Lemma 20. If A ∈ B = 〈B1, B2, . . . , Bm〉 ≤ Fn×n, B =
∑m
i=1 xiBi and w(A, 〈A,B〉) < k

for some k ∈ [n], then there exist 1 ≤ i1, i2, . . . ik ≤ m and λ1, λ2, . . . , λk ∈ F such that
w(A, 〈A,C〉) < k, where C = λ1Bi1 + λ2Bi2 + . . .+ λkBik .

Proof. Let rank(A) = r. We know that there exist matrices P,Q ∈ Fn×n such that

PAQ =
[
Ir 0
0 0

]
. (5.15)

Let A′ = PAQ , B′ = PBQ and B′ =
∑m
i=1 xiPBiQ. We write B′ as

B′11 B′12

B′21 B′22

( )
r rows

n− r rows

r columns

n− r columns

B′ =

(5.16)
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By using Lemma 16, we know that w(A, 〈A,B〉) = w(A′, 〈A′, B′〉) < k. By using Lemma 17,
we get that there exists t ≤ k such that B′21(B′11)t−2B′12 6= 0 and

B′′11 B′′12

B′′21 B′21(B′11)t−2B′12

( )
r rows

n− r rows

r columns

n− r columns

(B′)t =

(5.17)

for some matrices B′′11, B
′′
12, B

′′
21. Since the entries of the matrix B′21(B′11)t−2B′12 are poly-

nomials in the variables x1, x2, . . . , xm of degree at most k, there exists an assignment to
these variables by field constants, assigning at most k variables non-zero values such that
B′21(B′11)t−2B′12 evaluates to a non-zero matrix. By using Lemma 17 again, this assign-
ment gives us a matrix C ′ ∈ B′ such that w(A′, 〈A′, C ′〉) < k. By using Lemma 16, same
assignment of the variables gives us a matrix C ∈ B such that w(A, 〈A,C〉) < k. J

6 Final Algorithm

Suppose we have a matrix space B = 〈B1, B2, , . . . , Bm〉 ≤ Fn×n, B =
∑m
i=1 xiBi and a

matrix A ∈ B. Our goal is find a matrix D in B such that its rank is “close” to the
commutative rank of B. If the Wong index w(A, 〈A,B〉) of A in 〈A,B〉 is “large”, then we
know by Lemma 19 that rank of of A is “close” to the commutative rank of B, which is
equal to the commutative rank of 〈A,B〉. What if this Wong index w(A, 〈A,B〉) is “small”?
Then we know that by Lemma 20 that by trying out small number (that means, mw(A,B)+1)
of possibilities of combinations of Bi, we can find a matrix C ∈ B such that Wong index
w(A, 〈A,B〉) of A in 〈A,C〉 is also “small”. Using Fact 14, we obtain that rank of A is not
maximum in 〈A,C〉. Thus there exists λ ∈ F such that rank(A+ λC) > rank(A). And we
can find this λ quite efficiently. Also, A+ λC ∈ B. Thus we can efficiently find a matrix of
bigger rank if we are given a matrix of “small” Wong index. This idea is formalized in the
following Algorithm.

Input : A matrix space B = 〈B1, B2, . . . , Bm〉 ≤ Fn×n, given as a list of basis matrices
B1, B2, . . . , Bm. An approximation parameter 0 < ε < 1.

Output : A matrix A ∈ B such that rank(A) ≥ (1− ε) · rank(B)
Initialize A = 0 ∈ Fn×n to the zero matrix.
Assign ` = d 1

ε − 1e.
while Rank is increasing do

for each {i1, i2, . . . , i`} ∈
([m]\{0}

`

)
do

/* This means we try all combinations of matrices Bi1 , Bi2 , . . . , Bi` */
Check if there exist λ1, λ2, . . . , λ` ∈ F such that rank(A+λ1Bi1 +λ2Bi2 +. . .+λkBi`) >
rank(A). if rank(A+ λ1Bi1 + λ2Bi2 + . . .+ λkBi`) > rank(A) then

Update A = A+ λ1Bi1 + λ2Bi2 + . . .+ λkBi` .

return A.

Algorithm 2 Greedy algorithm for (1 − ε)-approximating commutative rank.

The following theorem proves the correctness of Algorithm 2. Let s be an upper bound on
the bit size of the entries of B1, . . . , Bm.
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I Theorem 21. Assume that |F| > n. Algorithm 2 runs in time O((mn) 1
ε ·M(n, s+logn) ·n)

and returns a matrix A ∈ B such that rank(A) ≥ (1− ε) · rank(B), where M(n, t) is the time
required to compute the rank of an n× n matrix with entries of bit size at most t.

Proof. Suppose B =
∑m
i=1 xiBi and A be the rank r matrix returned by Algorithm 2. Let

k be the Wong index w(A, 〈A,B〉) of (A, 〈A,B〉). By Lemma 19, we know that rank(B) ≤
r
(
1 + 1

k

)
. Thus r ≥ (1 − 1

k+1 ) rank(B). If ε ≥ 1
k+1 , then we are done. Otherwise we have

that ε < 1
k+1 , i.e, k <

1
ε − 1. Since ` = d 1

ε − 1e, we also have w(A, 〈A,B〉) < `. By using
Lemma 20, we get that there exist 1 ≤ i1, i2, . . . i` ≤ m and λ1, λ2, . . . , λ` ∈ F such that that
w(A, 〈A,C〉) < `, where C = λ1Bi1 + λ2Bi2 + . . .+ λ`Bi` . By using Fact 14, we get that A
is not of maximum rank in 〈A,C〉. Thus there exists λ ∈ F such that rank(A + λC) > A,
and we shall detect this in Algorithm 2 since we try all possible choices of i1, i2, . . . , i`.

The desired running time can be proved easily. The outer while loop runs at most n
times, thus the total running time is at most n times the running time of one iteration. One
iteration of the outer loop has

([m]\{0}
`

)
= O(m 1

ε ) iterations of the inner for loop. By using
the Schwartz–Zippel Lemma [22, 18], one iteration of inner for loop needs to try at most
(n+ 1)` = O(n 1

ε ) possible values of λ1, λ2, . . . , λ` ∈ F. And then we perform two instances
of rank computation. The stated running time follows. J

I Remark. Algorithm 2 runs in time O((mn) 1
ε ·n ·M(n)) in the algebraic RAM model. Here

M(n) is the time required to compute the rank of an n× n matrix in the algebraic RAM
model. It is known that M(n) = O(nω) with ω being the exponent of matrix multiplication.
Since one can assume that m ≤ n2, Algorithm 2 runs in time O(n 3

ε+ω+1) in algebraic ram
model.

The statement of the above remark and the trivial fact that ω ≤ 3, gives us the running
time stated in the abstract.
I Remark. With a more refined analysis, it can be seen that Algorithm 2 uses O((mn) 1

ε · n ·
M(n, s+ logn)) bit operations if the entries of the input matrices B1, B2, . . . , Bm have bit
size at most s. Here M(n, t) is the bit complexity of computing the rank of a matrix whose
entries have bit size at most t. The additional logn in the bit size comes from the fact that
the entries of the final matrix A are by a polynomial factor (in n) larger than the entries of
the Bi due to the update steps.

7 Tight examples

We conclude by giving some tight examples, which show that the analysis of the approximation
performance of the greedy approximation scheme cannot be improved. Consider the following
matrix space of n× n-matrices:

∗ 0 . . . 0 ∗ 0 . . . 0
0 ∗ . . . 0 0 ∗ . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . ∗ 0 0 . . . ∗
0 0 . . . 0 ∗ 0 . . . 0
0 0 . . . 0 0 ∗ . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 0 0 0 . . . ∗


(7.1)

Each block has size n
2 ×

n
2 . This space consists of all matrices where we can substitute

arbitrary values for the ∗ and the basis consists of all matrices where exactly one ∗ is replaced
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by 1 and all others are set to 0. Assume that ε = 1
2 , that means, that the greedy algorithm

only looks at sets of size ` = 1. Furthermore, assume that the matrix A constructed so far is

A =
(

0 In
2

0 0

)
. (7.2)

Any single basis matrix cannot improve the rank of A, since either its nonzero column is
contained in the column span of A or its nonzero row is contained in the row span of A.
On the other hand, the matrix space contains a matrix of full rank n, namely, the identity
matrix.

The next space for the case ` = 2 looks like this:

∗ 0 . . . 0 ∗ 0 . . . 0 0 0 . . . 0
0 ∗ . . . 0 0 ∗ . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
0 0 . . . ∗ 0 0 . . . ∗ 0 0 . . . 0
0 0 . . . 0 ∗ 0 . . . 0 ∗ 0 . . . 0
0 0 . . . 0 0 ∗ . . . 0 0 ∗ . . . 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
0 0 . . . 0 0 0 . . . ∗ 0 0 . . . ∗
0 0 . . . 0 0 0 . . . 0 ∗ 0 . . . 0
0 0 . . . 0 0 0 . . . 0 0 ∗ . . . 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
0 0 . . . 0 0 0 . . . 0 0 0 . . . ∗



(7.3)

and the corresponding matrix A is

A =
(

0 I 2n
3

0 0

)
. (7.4)

By an argument similar to above, it is easy to see that we need at least three matrices to
improve the rank of A, so the algorithm gets stuck with a 2

3 -approximation.
The above scheme generalizes to arbitrary values of ` in the obvious way.
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A Appendix

Here we present some proofs which were omitted in the main manuscript.

I Lemma 22. For all matrix spaces B ≤ Fn×n, rank(B) ≤ nc-rank(B).

Proof. Let r = nc-rank(B). This means that there exists V ≤ Fn such that rank(BV ) =
dim(V )− (n− r). Therefore, for all B ∈ B, rank(BV ) ≤ dim(V )− (n− r). Thus rank(B) ≤
n− (n− r) = r = nc-rank(B). J

I Lemma 23. Algorithm 1 runs in polynomial time and returns a matrix A ∈ B such that
rank(A) ≥ 1

2 · rank(B).

Proof. Let A be the matrix returned by Algorithm 1. Assume that A has rank r. We know
that there exist non-singular matrices P and Q such that

PAQ =


Ir 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 , (A.1)

where Ir is the r × r identity matrix. Now consider the matrix space
PBQ := 〈PB1Q,PB2Q, . . . , PBmQ〉. This does not change anything with respect to the
rank. So for the analysis, we can replace B by PBQ. Consider any general matrix A+x1B1 +
x2B2 + . . .+ xmBm in B. We decompose it as

A+ x1B1 + x2B2 + . . .+ xmBm =
(
M1 M2

M3 M4

)
. (A.2)

Here M1 is an r× r matrix, M2 is an r× (n− r) matrix, M3 is a (n− r)× r matrix and M4
is a (n− r)× (n− r) matrix. M1, M2, M3, and M4 have (affine) linear forms in variables
x = (x1, x2, . . . , xm) as their entries.

Now we claim that the bottom right part M4 is the zero matrix. Assume otherwise.
Assume that the (s, t)-entry of the above matrix is nonzero with s, t > r. Consider the
(r + 1)× (r + 1) minor of A+ x1B1 + x2B2 + . . .+ xmBm, obtained by adding the sth row
(from M3) and the tth column (from M2) to M1. We shall denote this minor by C. The
minor C looks like

C =


1 + `11(x) `12(x) . . . `1r(x) a1(x)
`21(x) 1 + `22(x) . . . `2r(x) a2(x)

...
...

. . .
...

...
`r1(x) `r2(x) . . . 1 + `rr(x) ar(x)
b1(x) b2(x) . . . br(x) c(x)

 . (A.3)

The `i,j , ai, bj , and c are homogeneous linear forms in x. By our choice, c(x) 6= 0. It is not
hard to see that

det(C) = c(x) + terms of degree at least 2. (A.4)

Thus there are λ ∈ F and i ∈ [m] such that det(C(α)) 6= 0, where α is the assignment
to the variables x = (x1, x2, . . . , xm) obtained by setting xk = 0 when k 6= i and xi = λ.
These choices of i ∈ [m] and λ ∈ F would allow Algorithm 1 to find a matrix A of larger
rank. Thus Algorithm 1 would keep finding a matrix A of larger rank when the matrix
M4 is non-zero. Hence it can only stop when M4 is the zero matrix. If M4 is the zero
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matrix then rank(B) ≤ 2r. Thus when Algorithm 1 stops, it outputs a matrix A such that
rank(A) ≥ 1

2 · rank(B).
The running time is obviously polynomial since the while loop is executed at most n

times and we have to check at most n+ 1 values for λ. The size of the numbers that occur
in the rank check is polynomial in the size of the entries of B1, . . . , Bm. J

I Lemma 24. Let B ≤ Fn×n be a matrix space, A ∈ B, A′ be a pseudo-inverse of A
and (Wi)i∈[n] be the second Wong sequence of (A,B). Then for all 1 ≤ i ≤ n, we have
Wi = (BA′)i(Ker(AA′)) as long as Wi−1 ⊆ ImA.

Proof. We prove the statement by induction on i. Since Ker(AA′) = A′−1(Ker(A)), we get
that (BA′)(Ker(AA′)) = BA′A′−1(Ker(A)) = BKer(A) = W1. This proves the base case of
i = 1. To prove that Wi = (BA′)i(Ker(AA′)), we shall prove that (BA′)i(Ker(AA′)) ⊆ Wi

and Wi ⊆ (BA′)i(Ker(AA′)). By the induction hypothesis, we just need to prove that
(BA′)(Wi−1) ⊆Wi and Wi ⊆ (BA′)(Wi−1).

First we prove the easy direction, that is (BA′)(Wi−1) ⊆ Wi. Since Wi−1 ⊆ Im(A), we
have that A′(Wi−1) ⊆ A−1(Wi−1). Thus (BA′)(Wi−1) ⊆ (BA−1)(Wi−1) = Wi.

Now we prove that Wi ⊆ (BA′)(Wi−1). Since Wi−1 ⊆ Im(A), we get that A−1(Wi−1) =
A′Wi−1 + Ker(A). Thus Wi = BA−1(Wi−1) ⊆ BA′Wi−1 + BKer(A). We have BKer(A) =
W1 ⊆ Wi−1, this implies that Wi ⊆ BA′Wi−1 +Wi−1. Since A ∈ B and Wi−1 = AA′Wi−1,
we get that Wi−1 ⊆ BA′Wi−1. This in turn implies that Wi ⊆ BA′Wi−1 + BA′Wi−1 =
(BA′)(Wi−1). J

I Lemma 25. Let A ∈ B ≤ Fn×n and (Wi)i∈[n] be the second Wong sequence of (A,B).
If P ∈ Fn×n and Q ∈ Fn×n are invertible matrices, then the second Wong sequence of
(PAQ,PBQ) is (PWi)i∈[n]. In particular, w(A,B) = w(PAQ,PBQ).

Proof. Consider the ith entry W ′i in the second Wong sequence of (PAQ,PBQ). We
prove that W ′i = PWi for all i ∈ [n]. We use induction on i. The statement is trivially
true for i = 0. By the induction hypothesis, we have, W ′i = PBQ(PAQ)−1PWi−1 =
PBQQ−1A−1P−1PWi−1 = PBA−1(Wi−1) = PWi. J
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