
On the Average-Case Complexity of MCSP and
Its Variants∗

Shuichi Hirahara1 and Rahul Santhanam2

1 Department of Computer Science, The University of Tokyo, Tokyo, Japan
hirahara@is.s.u-tokyo.ac.jp

2 Department of Computer Science, University of Oxford, Oxford, UK
rahul.santhanam@cs.ox.ac.uk

Abstract
We prove various results on the complexity of MCSP (Minimum Circuit Size Problem) and the
related MKTP (Minimum Kolmogorov Time-Bounded Complexity Problem):

We observe that under standard cryptographic assumptions, MCSP has a pseudorandom self-
reduction. This is a new notion we define by relaxing the notion of a random self-reduction to
allow queries to be pseudorandom rather than uniformly random. As a consequence we derive
a weak form of a worst-case to average-case reduction for (a promise version of) MCSP. Our
result also distinguishes MCSP from natural NP-complete problems, which are not known to
have worst-case to average-case reductions. Indeed, it is known that strong forms of worst-
case to average-case reductions for NP-complete problems collapse the Polynomial Hierarchy.
We prove the first non-trivial formula size lower bounds for MCSP by showing that MCSP
requires nearly quadratic-size De Morgan formulas.
We show average-case superpolynomial size lower bounds for MKTP against AC0[p] for any
prime p.
We show the hardness of MKTP on average under assumptions that have been used in much
recent work, such as Feige’s assumptions, Alekhnovich’s assumption and the Planted Clique
conjecture. In addition, MCSP is hard under Alekhnovich’s assumption. Using a version of
Feige’s assumption against co-nondeterministic algorithms that has been conjectured recently,
we provide evidence for the first time that MKTP is not in coNP. Our results suggest
that it might worthwhile to focus on the average-case hardness of MKTP and MCSP when
approaching the question of whether these problems are NP-hard.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes

Keywords and phrases minimum circuit size problem, average-case complexity, circuit lower
bounds, time-bounded Kolmogorov complexity, hardness

Digital Object Identifier 10.4230/LIPIcs.CCC.2017.7

1 Introduction

Progress in complexity theory is often correlated with an improved understanding of meta-
computational problems, i.e., problems that themselves encode questions about circuits or
algorithms. Consider the canonical meta-computational problem Circuit-SAT, which asks
whether a given circuit has a satisfying assignment. Results on the complexity of the

∗ The second author was supported by the European Research Council under the European Union’s
Seventh Framework Programme (FP7/2007-2013)/ERC Grant No. 615075. Part of this work was done
during a visit of the first author to Oxford supported by the second author’s ERC grant.

© Shuichi Hirahara and Rahul Santhanam;
licensed under Creative Commons License CC-BY

32nd Computational Complexity Conference (CCC 2017).
Editor: Ryan O’Donnell; Article No. 7; pp. 7:1–7:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CCC.2017.7
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

7:2 On the Average-Case Complexity of MCSP and Its Variants

Circuit-SAT problem and its instantiations for restricted classes of circuits such as CNFs
have had a major impact on complexity theory. These include the Cook-Levin theorem
showing that CNF-SAT is NP-complete, the PCP theorem showing that CNF-SAT is hard to
approximate, and more recently the connection established by Ryan Williams [35] between
“non-trivial” algorithms for Circuit-SAT and circuit lower bounds, which has led to a new
algorithmic paradigm for proving new circuit lower bounds.

A meta-computational problem that is in a sense dual to Circuit-SAT is MCSP: given
the truth table of a Boolean function f and a parameter s, determine if f has circuits of
size at most s. While Circuit-SAT asks about a property of the Boolean function encoded
by a given circuit, MCSP asks about whether an explicitly given Boolean function can be
encoded by a small circuit. It is easy to see that MCSP, like Circuit-SAT, is in NP; however,
its precise complexity is much less well understood. This is despite the fact that MCSP was
recognized as fundamental by theoretical computer scientists in the Soviet Union as early
as the 1950s, as discussed in a fascinating survey by Trakhtenbrot [34]. In the more recent
past, interest in MCSP was reawakened by a paper of Kabanets and Cai [24], building on
the “Natural Proofs” work of Razborov and Rudich [30], and there have been several papers
[5, 7, 10, 6, 9, 3, 27, 19, 18, 8] since on the complexity of the problem.

We do not have clear answers even to some basic questions about the complexity of
MCSP. These questions include: Is MCSP NP-complete? Does the MCSP problem have
similar structural properties to Circuit-SAT and other standard NP-complete problems, such
as paddability and downward self-reducibility, or does it have properties such as random
self-reducibility which are characteristic of problems such as Factoring and DiscreteLogarithm
which are used in cryptography? What is the strongest evidence we can provide that MCSP
is not in polynomial time? Are there formal connections between variants of MCSP which
arise from using different circuit classes or fixing the parameter s in advance? Can we show
unconditional complexity lower bounds for MCSP, for restricted classes of circuits such as
sub-quadratic size formulas and sub-exponential size constant depth circuits with prime
modular gates?

Our main argument in this paper is that it is valuable to look at MCSP through the lens
of average-case complexity. By adopting this perspective, we are able to make progress on all
of the questions above. We must first explain, however, what we mean by the average-case
complexity of MCSP. Rather than studying MCSP itself, we study its parameterized version
MCSP[s], where the size function s is given in advance. We consider the complexity of this
problem under the uniform distribution on inputs to the problem. Note that an input to the
problem is simply the truth table of a Boolean function, so the distribution on inputs we
consider corresponds to the uniform distribution on n-bit Boolean functions, which is fairly
natural in this context. When the size function s(n) = o(2n/n), most Boolean functions do
not have circuits of size s, and hence most inputs to the problem MCSP[s] are NO inputs.
Thus the problem is highly biased, and the algorithm just outputting NO on all instances
has a very high probability of success. This means that it is uninteresting to consider a
version of average-case complexity where the algorithm is allowed to make errors. Instead,
we consider the standard zero-error notion, where the algorithm never outputs an incorrect
answer, but is allowed to output ’?’ when it doesn’t know the answer for an input.

Why do we believe studying the average-case complexity is more fruitful than studying
the worst-case complexity? For one thing, it makes the theory cleaner. Let C1 and C2 be
classes of circuits such that C1 ⊆ C2, and for a size function s = o(2n/n), let MCSP-C1[s] and
MCSP-C2[s] be the variants of MCSP corresponding to the classes C1 and C2 respectively.
Intuitively, it seems that MCSP-C2[s] must be at least as hard a problem as MCSP-C1[s]

S. Hirahara and R. Santhanam 7:3

given that it concerns a more general class of circuits; however, in the setting of worst-case
complexity, no formal connection between the two problems is known. In the setting of
average-case complexity, in contrast, it is quite easy to show that the identity function is a
reduction from the latter to the former. Similarly, given size functions s1 and s2 such that
s1 ≤ s2, it seems that MCSP[s2] should be at least as hard as MCSP[s1]. Again, no formal
reduction is known in the worst-case setting, but the identity function works as a reduction
in the average-case setting. Thus the average-case setting seems to correspond more closely
to our intuitions about the complexity of the problem.

A second point is that current techniques for proving results about the complexity of
MCSP almost invariably yield results also on the average-case complexity. Most techniques
we know go through some notion of pseudorandomness, and pseudorandomness is intrinsically
an average-case notion. Thus, if we aim to prove results on the hardness of MCSP using
current techniques, we should first aim for average-case hardness rather than worst-case
hardness.

We now proceed to give a more detailed description of our results. In some cases, our
results are not about MCSP but about a surrogate of it called MKTP. Rather than asking if
the input has small circuits when interpreted as the truth table of a Boolean function, the
MKTP problem asks if the input is compressible by a program from which individual bits of
the input can be efficiently computed. Thus, while MCSP is a question about compression
by circuits, MKTP is a question about compression by programs. For a formal definition,
we refer to Section 2. Using known strong relationships between uniform and non-uniform
complexity, MCSP and MKTP are closely related, and until recently all known results about
one problem also applied to the other. A recent exception is [3], and our paper is another
exception - it seems that hardness results are occasionally easier to show for MKTP because
it corresponds to a more fine-grained notion of compressibility than MCSP.

1.1 Our Results
We first investigate the possibility of worst-case to average-case connections for MCSP. It is
known that nonadaptive worst-case to average-case connections for NP-complete problems
collapse the Polynomial Hierarchy [12]. Hence, if we could show a worst-case to average-case
connection for MCSP, it would give strong evidence against the NP-hardness of MCSP. We
are not able to do this; however, under standard cryptographic assumptions, we give a
pseudorandom self-reduction for a promise version of MCSP. Recall that a random self-
reduction is a reduction from a computational problem to itself where the queries are
uniformly distributed and of the same length as the input. A random self-reduction gives a
strong worst-case to average-case connection for a problem. Our notion of pseudorandom self-
reduction relaxes the original notion by allowing the queries to be pseudorandomly distributed
rather than randomly distributed. While our result does not give evidence that MCSP is not
NP-complete, it does distinguish the MCSP problem from natural NP-complete problems,
for which pseudorandom self-reductions are unknown even under standard cryptographic
assumptions, to the best of our knowledge.

I Theorem 1 (Pseudorandom self-reductions: Informal Version). Suppose exponentially hard
one-way functions exist. Let s be a size function such that s(n) = nω(1) and s(n) = o(2n/n).
There is a constant c such that there is a pseudorandom self-reduction for the promise version
of MCSP, where the YES instances are truth tables of Boolean functions of circuit complexity
at most s(n) − nc and the NO instances are truth tables of Boolean functions of circuit
complexity at least s(n) + nc.

CCC 2017

7:4 On the Average-Case Complexity of MCSP and Its Variants

Though pseudorandom self-reductions do not give worst-case to average-case reductions
in full generality as random self-reductions, they do give a weak version of such reductions,
as described in more detail in Section 3. The proof idea we use to establish Theorem 1 is a
twist on the idea used by [30] to rule out natural proofs under cryptographic assumptions.

Next we attempt to prove unconditional lower bounds for MCSP, and MKTP. We show
such lower bounds in two settings where lower bounds were unknown. The first is a lower
bound for MCSP against subquadratic De Morgan formulae, and the second is an average-case
lower bound for MKTP against polynomial-size constant depth circuits with Mod p gates, for
prime p. Both proofs exploit connections with pseudorandom generators, in the first case the
pseudorandom generators of [20] against formulas, and in the second case the pseudorandom
generators of [14] against AC0[p] using resamplability. Note that in both settings traditional
lower bound techniques such as the method of random restrictions, the Neciporuk technique
and the polynomial method do not appear to be directly applicable.

I Theorem 2 (Unconditional lower bounds: Informal Version). There are size functions s and
s′ such that MCSP[s] does not have De Morgan formulae of size N2−Ω(1), and MKTP[s′]
cannot be decided with Ω(1) success on average by polynomial-size constant-depth circuits
with Mod p gates, where p is any prime.

Finally, and perhaps most strikingly, we show the hardness of MKTP on average under
various assumptions that have been intensively studied recently, such as Feige’s hypothesis
[15], Alekhnovich’s hypothesis [2] and the Planted Clique conjecture [23, 26]. These are
the first hardness results for MCSP or MKTP under assumptions for problems that are not
known to be in SZK. The fact that MKTP is hard on average under average-case hardness
assumptions about NP-complete problems such as SAT and Clique might be taken as providing
mild evidence in favour of the problem being NP-hard. Also, it has been conjectured by
Ryan O’Donnell (personal communication) that Feige’s hypothesis holds even with respect to
co-nondeterministic polynomial time algorithms, and under this conjecture MKTP is not in
coNP. We note that [5] observe that MKTP is not in coNP under a conjecture of Rudich [31],
but the conjecture of O’Donnell is in our opinion more natural and plausible, relating as it
does to Random Satisfiability, which is a problem that has been well studied algorithmically.

I Theorem 3 (Hardness on Average under Popular Conjectures, Informal Version). MKTP is
hard on average assuming Feige’s hypothesis, Alekhnovich’s hypothesis or the Planted Clique
conjecture. MCSP is hard on average assuming Alekhnovich’s hypothesis.

2 Preliminaries and Notation

2.1 Boolean Function Complexity
We use Fm to denote the set of all Boolean functions f : {0, 1}m → {0, 1}. If W is a
probability distribution, we use w ∼ W to denote an element sampled according to W .
Similarly, for a finite set A, we use a ∼ A to denote that a is selected uniformly at random
from A. Under this notation, f ∈ Fm represents a fixed function, while f ∼ Fm is a
uniformly random function. For convenience, we let Un

def= {0, 1}n. Following standard
notation, X ≡ Y denotes that random variables X and Y have the same distribution. We
use standard asymptotic notation such as o(·) and O(·), and it always refer to a parameter
n→∞, unless stated otherwise.

We say that f, g ∈ Fn are ε-close if Prx∼Un
[f(x) = g(x)] ≥ 1− ε. We say that h ∈ Fn

computes f with advantage δ if Prx∼Un [f(x) = h(x)] ≥ 1/2 + δ. It will sometimes be
convenient to view a Boolean function f ∈ Fm as a subset of {0, 1}m in the natural way.

S. Hirahara and R. Santhanam 7:5

We often represent Boolean functions as strings via the truth table mapping. Given a
Boolean function f ∈ Fn, tt(f) is the 2n-bit string which represents the truth table of f in
the standard way, and conversely, given a string y ∈ {0, 1}2n , fn(y) is the Boolean function
in Fn whose truth table is represented by y.

We identify each Boolean function f : {0, 1}∗ → {0, 1} with a language L ⊆ {0, 1}∗,
where for any x ∈ {0, 1}∗, x ∈ L iff f(x) = 1. A promise problem is a pair (ΠY ES ,ΠNO)
of languages over {0, 1}, such that ΠY ES ∩ ΠNO = ∅. We say a language L ⊆ {0, 1}∗ is
consistent with a promise problem (ΠY ES ,ΠNO) if ΠY ES ⊆ L and ΠNO ⊆ L̄.

Let C = {Cn}n∈N be a class of Boolean functions, where each Cn ⊆ Fn. Given a language
L ⊆ {0, 1}∗, we write L ∈ C if for every large enough n we have that Ln

def= {0, 1}n ∩ L is in
Cn. Often we will abuse notation and view C as a class of Boolean circuits. For convenience,
we use number of wires to measure circuit size. We denote by C[s(n)] the set of n-variable
C-circuits of size at most s(n). As usual, we say that a uniform complexity class Γ is contained
in C[poly(n)] if for every L ∈ Γ there exists k ≥ 1 such that L ∈ C[nk].

Given a sequence of Boolean functions {fn}n∈N with fn : {0, 1}n → {0, 1}, we let Cf

denote the extension of C that allows Cn-circuits to have oracle gates computing fn.
We will use a few other standard notions, and we refer to standard textbooks in compu-

tational complexity and circuit complexity for more details.

2.2 Natural Proofs and the Minimum Circuit Size Problem
We say that R = {Rn}n∈N is a combinatorial property (of Boolean functions) if Rn ⊆ Fn
for all n. We use LR to denote the language of truth-tables of functions in R. Formally,
LR = {y | y = tt(f) for some f ∈ Rn and n ∈ N}.

I Definition 4 (Natural Properties [30]). Let R = {Rn} be a combinatorial property, C
a circuit class, and D a (uniform or non-uniform) complexity class. We say that R is a
D-natural property useful against C[s(n)] if there is n0 ∈ N such that the following holds:
(i) Constructivity. LR ∈ D.
(ii) Density. For every n ≥ n0, Prf∼Fn

[f ∈ Rn] ≥ 1/2O(n).
(iii) Usefulness. For every n ≥ n0, we have Rn ∩ Cn[s(n)] = ∅.

I Definition 5 (Minimum Circuit Size Problem). Let C be a circuit class. The Minimum
Circuit Size Problem for C, abbreviated as MCSP-C, is defined as follows:

Input. A pair (y, s), where y ∈ {0, 1}2n for some n ∈ N, and 1 ≤ s ≤ 2n is an integer
(inputs not of this form are rejected).
Question. Does fn(y) have C-circuits of size at most s?

We also define variants of this problem, where the circuit size is not part of the input.

I Definition 6 (Parameterized Minimum Circuit Size Problem). Let C be a circuit class, and
s : N → N be a function. The Minimum Circuit Size Problem for C with parameter s,
abbreviated as MCSP-C[s], is defined as follows:

Input. A string y ∈ {0, 1}2n , where n ∈ N (inputs not of this form are rejected).
Question. Does fn(y) have C-circuits of size at most s(n)?

I Definition 7 (Parameterized Minimum Circuit Size Gap Problem). Let C be a circuit class,
and let c, s : N→ N be functions such that c(n) ≥ s(n) for all n ∈ N. The Minimum Circuit
Size Gap Problem for C with parameters c and s, abbreviated as MCSP-C[c, s] is a promise
problem defined as follows:

CCC 2017

7:6 On the Average-Case Complexity of MCSP and Its Variants

YES Instance. Any string y ∈ {0, 1}2n , where n ∈ N, such that fn(y) has C-circuits of
size at most s(n).
NO Instance. Any string y ∈ {0, 1}2n , where n ∈ N, such that fn(y) has no C-circuits of
size at most c(n).

When C is not explicitly specified, we take C to be the class of Boolean circuits.
Note that a dense property useful against C[s(n)] is a dense subset of the complement of

MCSP-C[s].

2.3 Time-Bounded Kolmogorov Complexity and MKTP
KT-complexity was proposed in [5] in order to model circuit complexity in terms of time-
bounded Kolmogorov complexity: it is known that KT(tt(f)) and the minimum circuit
size of f are polynomially-related to each other. As usual, we fix a universal random-access
Turing machine U that simulates all Turing machines efficiently. The KT-complexity of a
string x is the minimum of |d|+ t, where d is a string for describing x implicitly and t is the
time it takes to output x. More formally, we have the definition below, where Ud denotes
the Turing machine U with random access to the string d:

I Definition 8 (KT-complexity [5]). Let x = x1 · · ·xn ∈ {0, 1}n. The KT-complexity of x is
defined as follows.

KT(x) := min{|d|+ t | Ud(i) = xi in t steps for any 1 ≤ i ≤ n+ 1 }.

Here, xn+1 is defined as ⊥ (a stop symbol).

For this complexity measure, a problem related to MCSP is defined as follows.

I Definition 9 (Minimum Kolmogorov Time-bounded Complexity Problem). The Minimum
Kolmogorov Time-bounded Complexity Problem, abbreviated as MKTP, is defined as follows:

Input. A pair (y, s), where y ∈ {0, 1}∗ and s ∈ N (inputs not of this form are rejected).
Question. KT(y) ≤ s ?

I Definition 10 (Parameterized Minimum Kolmogorov Time-bounded Complexity Problem).
Let s : N→ N be a function. The Minimum Kolmogorov Time-bounded Complexity Problem
with parameter s, abbreviated as MKTP[s], is defined as follows:

Input. A string y ∈ {0, 1}∗.
Question. KT(y) ≤ s(|y|) ?

2.4 Average-Case Complexity
We require various notions of easiness on average. Let D = {Dn}, n ∈ N, be a sequence
of distributions, where each Dn has support in {0, 1}n. A distributional problem is a pair
(L,D), where L ⊆ {0, 1}∗ and D is a sequence of distributions.

I Definition 11 (Easiness on Average). Let C be a (uniform or non-uniform) complexity
class, and let ε : N→ [0, 1] be a success parameter. We say a distributional problem (L,D)
is solvable in C on average with success ε if there is a C-algorithm A such that for each
x ∈ {0, 1}∗, A(x) = L(x) or A(x) =′?′, and for each n ∈ N, with probability at least ε(n)
over x ∼ Dn, A(x) = L(x). We say that a language L is in C on average with success ε if
(L,Un) is in C on average with success ε.

S. Hirahara and R. Santhanam 7:7

We observe that the easiness on average of certain variants of MCSP is equivalent to
natural proofs, and moreover that the easiness on average is robust with regard to the success
parameter.

I Proposition 12 (Natural Proofs and Easiness of MCSP on Average). Let s : N → N be a
size function such that s(n) = 2n/nω(1). The following are equivalent:
1. For all c > 0 there are P-natural (resp. SIZE(poly)-natural) properties useful against

SIZE(s(cn)).
2. For all c > 0 MCSP[s(cn)] is solvable in P (resp. SIZE(poly)) on average with success

1/ poly(N), where N = 2n is the input size for the MCSP problem.
3. For all c > 0 MCSP[s(cn)] is solvable in P (resp. SIZE(poly)) on average with success

probability 1− 1/poly(N).

Proof. We provide just a sketch. Let C be P or SIZE(poly). The proof is based on two
observations. The first is that a C-natural property of density ε useful against s(n)-size
Boolean circuits immediately yields that MCSP[s] is in C on average with success ε, simply
by using the constructivity of the property and answering ’?’ on any input truth table that
does not satisfy the property. Conversely, if MCSP[s] is in C on average with success ε, this
implies a C-natural property with density ε− 1/Nω(1), where a truth table is in the property
iff the average-case algorithm answers 0 on the truth table. Since s(n) = 2n/nω(1), the
algorithm can only answer 1 on a 1/Nω(1) fraction of inputs, and hence the density of inputs
on which the algorithm answers 0 is at least ε− 1/Nω(1).

The second observation is that the density for natural properties can be amplified, with
some cost to the usefulness. Given a natural property R, we define a property R′ by splitting
up the input truth table for R′ into independent blocks, and accepting iff at least one of the
blocks satisfies R. A simple calculation shows that by choosing the block size appropriately,
a property with density 1/ poly(N) can be transformed into one with density 1− 1/ poly(N),
with the new property being useful against circuits of size s(cn) for some c > 0 if the original
property is useful against circuits of size s(n). J

We also introduce and use a more refined definition of easiness on average, where we
separate the complexity of the algorithm solving the problem on average from the complexity
of the error set (or more precisely a not too large superset of the error set).

I Definition 13 (Easiness on Average with Bounded Complexity Error Set). Let B and C be
(uniform or non-uniform) complexity classes, and let ε : N→ [0, 1] be a success parameter.
We say a distributional problem (L,D) is solvable in C on average with B-bounded success ε
if there is a C-algorithm A and a B-algorithm A′ such that for each x ∈ {0, 1}∗, A(x) = L(x)
or A(x) =′?′, A(x) =′?′ implies A′(x) = 1, and for each n ∈ N, with probability at least
ε(n) over x ∼ Dn, A′(x) = 0. We say that a language L is in C on average with B-bounded
success ε if (L,Un) is in C on average with B-bounded success ε. We say that a language L
is feasibly in C on average with success ε if L is in C on average with SIZE(poly)-bounded
success ε.

We observe that the above notion is equivalent to the notion in Definition 11 when B = C

and C is a standard complexity class such as P or SIZE(poly).

I Proposition 14 (Specialization of the Refined Notion of Average-Case Easiness to the Standard
Notion). Let C = P or SIZE(poly), and ε : N→ [0, 1] be a success parameter. L is in C on
average with C-bounded success ε iff L is in C on average with success ε.

CCC 2017

7:8 On the Average-Case Complexity of MCSP and Its Variants

Proof. The forward direction is immediate. For the backward direction, let A be a C-
algorithm solving L on average with success ε. We define a C-algorithm A′ as follows:
A′(x) = 1 iff A(x) =′?′. It is easy to see that A and A′ satisfy the conditions in Definition 13,
showing that L is in C on average with C-bounded success ε. J

2.5 Randomness and Pseudorandomness
I Definition 15 (Indistinguishability). Let C be a (uniform or non-uniform) complexity class,
and {Dn}, {D′n}, n ∈ N be sequences of distributions such that for each n, Dn and D′n are
supported on {0, 1}n. Let ε : N→ [0, 1] be an error parameter. We say {Dn} and {D′n} are
ε-indistinguishable by C if for all L ∈ C and all large enough n,∣∣∣∣ Pr

w∼Dn

[L(w) = 1]− Pr
w∼D′n

[L(w) = 1]
∣∣∣∣ ≤ ε(n).

By default, the parameter ε(n) in the above definition is taken to be 1/n.

I Definition 16 (Pseudorandom Generators). Let ` : N → N, h : N → N and ε : N → [0, 1]
be functions, and let C be a circuit class. A sequence {Gn} of functions Gn : {0, 1}`(n) →
{0, 1}n is an (`, ε) pseudorandom generator (PRG) against C if {Gn(U`(n))} and {Un} are ε-
indistinguishable by C. The pseudorandom generator is called quick if its range is computable
in time 2O(`(n)).

We define random reducibility between languages, and random self-reducibility.

I Definition 17 (Random Self-Reducibility). Let L,L′ ⊆ {0, 1}∗ be languages. L is said to
be randomly reducible to L′ if there are constants k, ` and polynomial-time computable
functions g : {0, 1}∗ → {0, 1}∗ and h : {0, 1}∗ → {0, 1} satisfying the following conditions:
1. For large enough n, for every x ∈ {0, 1}n and for each i ∈ N such that 1 ≤ i ≤ nk,

g(i, x, r) ∼ Un when r ∼ Un` .
2. For large enough n and for every x ∈ {0, 1}n:

L(x) = h(x, r, L′(g(1, x, r)), L′(g(2, x, r)), . . . , L′(g(nk, x, r)))

with probability ≥ 1− 2−n when r ∼ Un` .

We say L is randomly self-reducible if L is randomly reducible to L. Also, given a promise
problem Q = (ΠY ES ,ΠNO) and a language L, we say Q is randomly reducible to L if the first
condition above holds for all large enough strings but the second condition is only required
to hold for strings x ∈ ΠY ES ∪ΠNO.

We also define a new notion of pseudorandom reducibility by relaxing the first condition
in the above definition.

I Definition 18 (Pseudorandom Self-Reducibility). Let C be a complexity class. Let Q =
(ΠY ES ,ΠNO) be a promise problem, where ΠY ES ,ΠNO ⊆ {0, 1}∗, and let L ⊆ {0, 1}∗ be
a language. Q is said to be pseudorandomly reducible to L with respect to C if there
are constants k, ` and polynomial-time computable functions g : {0, 1}∗ → {0, 1}∗ and
h : {0, 1}∗ → {0, 1} satisfying the following conditions:
1. For every sequence {(xn, in)}, n ∈ N where xn ∈ {0, 1}n and 1 ≤ in ≤ nk for all n ∈ N,
{g(in, xn, Un`)} and {Un} are indistinguishable by C.

S. Hirahara and R. Santhanam 7:9

2. For large enough n and for every x ∈ (ΠY ES ∪ΠNO) ∩ {0, 1}n:

L(x) = h(x, r, L(g(1, x, r)), L(g(2, x, r)), . . . , L(g(nk, x, r)))

with probability ≥ 1− 2−n when r ∼ Un` .

Q is said to be pseudorandomly self-reducible with respect to C if there is a language L
consistent with Q such that Q is pseudorandomly reducible to L with respect to C.

I Definition 19 (Pseudorandom Functions). Let s : N→ N be a size function, and let C be a
complexity class. A pseudo-random function generator (PRFG) with seed length ` against
C is a sequence of functions {Fn}, Fn : {0, 1}`(n) → {0, 1}2n such that the function Gn(z, i)
giving the i’th bit of Fn(z) is computable in time poly(n), and the distributions Fn(U`(n))
and U2n are 1/2n -indistinguishable by C.

We note that the definition of pseudorandom functions given here is somewhat different
from the standard notion [16], where the distinguisher circuit only gets oracle access to the
function it is trying to distinguish from random. Our notion is stronger, and more relevant to
the current setting. As shown by [30], the construction of [16] gives pseudorandom functions
according to Definition 19, under the assumption that exponentially hard one-way functions
exist. We now define this concept.

I Definition 20 (Exponentially Hard One-way Functions). A sequence {fn}, n ∈ N of functions,
where fn : {0, 1}n → {0, 1}n is said to be a exponentially hard one-way function if {fn}
is polynomial-time computable, and there is a constant ε > 0 such that for any sequence
{Cn} of circuits, where Cn has size at most 2nε for large enough n, Pry∼Un

(fn(Cn(fn(y))) =
fn(y)) < 1/2nε .

I Theorem 21 (PRFG from One-Way Functions; Goldwasser-Goldreich-Micali [16]). If expo-
nentially hard one-way functions exist, then there is a PRFG with seed length poly(n) against
SIZE(poly).

In a seminal result with significant implications for the provability of circuit lower
bounds, Razborov and Rudich [30] showed that the existence of pseudorandom functions is
incompatible with the existence of natural properties.

I Theorem 22 (Ruling out Natural Properties using Pseudorandom Function [30]). If exponen-
tially hard one-way functions exist, then there are no SIZE(poly)-natural properties useful
against SIZE(poly).

3 Pseudorandom Self-Reducibility for MCSP

I Theorem 23. Suppose exponentially hard one-way functions exist. Let s : N→ N be a size
bound such that s(n) = nω(1). Then there is a constant c > 0 such that MCSP[s+ nc, s− nc]
is pseudorandomly self-reducible with respect to SIZE(poly).

Proof. Suppose that exponentially hard one-way functions exist. By Theorem 21, there
is a PRFG {Fn} with seed length poly(n) against SIZE(poly). Let c be a constant such
that the function Gn corresponding to Fn in Definition 19 is computable in time nd for
some constant d < c, and hence by Boolean circuits of size < nc, using the standard
simulation of deterministic time by circuit size. We show that there is a pseudorandom
reduction from MCSP[s + nc, s − nc] to MCSP[s]. As the language MCSP[s] is consistent

CCC 2017

7:10 On the Average-Case Complexity of MCSP and Its Variants

with the promise problem MCSP[s+ nc, s− nc], this yields a pseudorandom self-reduction
for MCSP[s+ nc, s− nc].

The idea is that the pseudorandom self-reduction is a 1-query reduction which uses its
randomness to generate a function pseudorandomly and then XORs the pseudorandom
function with the input truth table. It is not hard to see that the output of this process is
still pseudorandom; however, the circuit size of the Boolean function corresponding to the
output differs from the circuit size of the function corresponding to the input by at most nc.

We define functions g and h which define a pseudorandom reduction by Definition 18. We
choose the constant k to be 0, i.e., this is a pseudorandom reduction which makes just 1 query.
Hence we can assume that g has just 2 parameters y and r. Let y ∈ {0, 1}N be an input,
where N = 2n. This is the only case we need to argue about – when N is not a power of 2,
we can define g(y, r) to be a uniformly random string of length N , and h(y, r, b) = b for any y
of length N , random string r and bit b; then, the conditions of Definition 18 are satisfied, as
no strings of length N are YES instances of either the promise problem MCSP[s+ nc, s− nc]
or the language MCSP[s]. In what follows, we assume N = 2n.

The pseudorandom reduction uses a random string r of length `(n), where ` is the seed
length for the PRFG given by Theorem 21 against SIZE(poly). We define g(y, r) = y⊕Fn(r).
As in the previous paragraph, we define h(y, r, b) = b for any y of length N , random string r
of length `(n) and bit b.

We argue that this is indeed a valid pseudorandom reduction from MCSP[s+nc, s−nc] to
MCSP[s] for any size function s(n) = nω(1). First we need to show that for any sequence {yN}
of inputs, where |yN | = N , g(yN , U`(n)) and UN are 1/N -indistinguishable by SIZE(poly).
Suppose, to the contrary, that there is a sequence of circuits {CN} 1/N -distinguishing the
two distributions, where the size of CN is poly(n). Consider the sequence of circuits {C ′N},
where C ′N (z) = CN (z ⊕ yN) for any input z of length N . The circuits {C ′N} are also of size
poly(N), and it is easy to see that they 1/2n-distinguish the distributions Fn(U`(n)) and UN ,
using the fact that N = 2n. But this is a contradiction to the assumption that {Fn} is a
PRFG against SIZE(poly).

Next, we need to show that for any y of length N , if y is a YES instance of MCSP[s+nc, s−
nc], then h(y, r,MCSP[s](g(y, r))) = 1 with probability at least 1− 2−n over the choice of r,
and similarly, if y is a NO instance of MCSP[s+nc, s−nc], then h(y, r,MCSP[s](g(y, r))) = 0
with probability at least 1−2−n over the choice of r. In the former case, we have that fn(y) has
circuit complexity at most s−nc, as y is a YES instance. Hence for any r, f ′ = fn(y⊕Fn(r))
has circuit complexity at most s, since the function Gn corresponding to Fn is computable
by circuits of size less than nc by assumption, for any r. Therefore MCSP[s](g(y, r) =
MCSP[s](tt(f ′)) = 1 with probability 1 over r, and hence h(y, r,MCSP[s](g(y, r))) = 1 with
probability 1 over r, as h just outputs its last parameter. A completely analogous argument
establishes the claim for an arbitrary NO instance. J

I Theorem 24. Let B and C be complexity classes such that C contains BPP and is closed
under probabilistic polynomial-time disjunctive truth-table reductions, and let s : N→ N be a
size function. Let ε : N→ [0, 1] be a success parameter such that ε ≥ 2/N . Suppose there is a
pseudorandom function generator against B. There is a constant c > 0 such that if MCSP[s]
is in C on average with B-bounded success ε, then MCSP[s+ nc, s− nc] is in C.

Proof. By assumption, there is a pseudorandom function generator {Fn} against B; without
loss of generality, the sequence of functions {Gn} corresponding to this generator is computable
in size < nc for some constant c. Let A be the C-algorithm solving MCSP[s] on average, and
let A′ be the B-algorithm bounding the error set of A. As in the proof of Theorem 23, there is

S. Hirahara and R. Santhanam 7:11

a pseudorandom reduction from MCSP[s+nc, s−nc] to MCSP[s] given by g(y, r) = y⊕Fn(r)
and h(y, r, b) = b, where |y| = 2n. The key idea is that because {Fn} is pseudorandom against
B, A′ cannot distinguish the output of the pseudorandom reduction from a purely random
string of the same length, and this means that with noticeable probability, the output of the
reduction must fall outside the error set. More precisely, let SN be the set of N -bit inputs
on which A′ outputs 0, i.e., SN does not intersect the error set. The density of SN is at least
ε, and this means that the probability that the output of the pseudorandom reduction is
in SN is at least ε − 1/N ≥ 1/N by assumption on ε, for if not, D(z) = A′(y ⊕ z) would
1/N -distinguish UN from the distribution given by the pseudorandom function generator.
By running the reduction O(N) times independently, and each time simulating A on the
output and outputting the answer if it is not ’?’, we get a C-algorithm for MCSP, using the
assumed closure properties of C. J

I Corollary 25. Suppose exponentially hard one-way functions exist. Let s : N→ N be a size
function such that s(n) = nω(1). There is a constant c such that if MCSP[s] is feasibly on
average in SZK, then MCSP[s+ nc, s− nc] is in SZK.

Corollary 25 follows from Theorem 24 by using Theorem 21 and the fact that SZK is
known to be closed under disjunctive truth-table reductions.

4 De Morgan Formula Lower Bounds for MCSP

In this section, we will prove an unconditional formula lower bound for computing MCSP.

I Theorem 26. MCSP[s] requires a de Morgan formula of size n2−O(1/
√

logn) for s(n) =
n1/2
√

logn.

Throughout this section, Γ denotes the shrinkage exponent (i.e. Γ = 2 [17]). For a Boolean
function f , L(f) denotes the minimum size of a de Morgan formula that computes f . We say
that a random restriction ρ : [n]→ {0, 1, ∗} is p-regular if Pr[ρ(xi) = ∗] = p for any i ∈ [n].

4.1 A Review of Impagliazzo, Meka and Zuckerman [20]
The proof is based on the results by Impagliazzo, Meka and Zuckerman [20], which show
that a pseudorandom restriction is enough to shrink de Morgan formulas:

I Lemma 27 (Impagliazzo, Meka and Zuckerman [20]). Let f : {0, 1}n → {0, 1} and pΓL(f) ≥
1. Let Rp,l be a distribution of p-regular l-wise random restrictions. Then, Eρ∼Rp,l

[L(f)] ≤
O(pΓL(f)) for l := p−Γ.

Proof Sketch (based on [25]). The idea is to decompose the formula of size L(f) into the
small subformulas of size at most l := p−Γ, which enables us to argue that each subformula
shrinks under l-wise random restriction. Specifically, by using the fact that a tree of leaf size
s can be decomposed into two trees each of which is of size between s/3 and 2s/3 (as in the
proof of Spira’s theorem [33]), we can decompose a de Morgan formula computing f into
subformulas g1, . . . gm such that l/6 ≤ L(gi) ≤ l for each i ∈ [m]. Note that m ≤ 6L(f)/l.
The variables of these subformulas consist of, in addition to the original variables of f , special
variables1 which refer to the other subtrees. Thus, we have L(f |ρ) ≤

∑m
i=1 L(gi|ρ′) for any

1 In this proof, we do not count the number of special variables in the size L(gi) of subformulas.

CCC 2017

7:12 On the Average-Case Complexity of MCSP and Its Variants

restriction ρ, where ρ′ denotes the restriction such that ρ′(xi) = ∗ if xi is a special variable
and ρ′(xi) = ρ(xi) otherwise. Furthermore, by some appropriate conversion, we may assume
that each gi has at most two special variables.

From now on the goal is, instead of upper bounding Eρ∼Rp,l
[L(f |ρ)], to bound

Eρ∼Rp,l
[L(gi|ρ′)]. By using a formula for computing the addressing function, we have

L(gi|ρ′) ≤
∑
σ∈{0,1}S (L(gi|σρ′) + |S|), where S denotes the set of special variables in gi and

σ denotes an arbitrary assignment to special variables. Once the special variables are removed
from gi by applying a restriction σ, it holds that

E
ρ∼Rp,l

[L(gi|σρ′)] = E
ρ∼Rp,∞

[L(gi|σρ′)] ≤ pΓL(gi),

where the first equality holds because gi|σ depends on at most l variables and the second
equality holds because of the definition of the shrinkage exponent. To summarize,

E
ρ∼Rp,l

[L(f |ρ)] ≤
m∑
i=1

E
ρ∼Rp,l

[L(gi|ρ′)]

≤
m∑
i=1

∑
σ∈{0,1}S

(
E
ρ
[L(gi|σρ′)] + |S|

)

≤
m∑
i=1

4
(
pΓL(gi) + 2

)
≤ m · 4(pΓl + 2)
≤ m · 4(pΓl + 2pΓl) (since l ≥ p−Γ)
= 12pΓml

≤ 72pΓL(f) (since m ≤ 6L(f)/l) . J

In the standard situation, we set p = n−Ω(1), and hence we require as large independence
as nΩ(1)-wise in the previous lemma. However, we can significantly reduce the number of
random bits needed to generate pseudorandom restrictions by composing l = 2O(

√
logn)-wise

independent random restriction r = O(
√

logn) times:

I Theorem 28 (Impagliazzo, Meka and Zuckerman [20]). Let f : {0, 1}n → {0, 1} and
pΓL(f) ≥ 1. Let q = p1/r for some nonnegative integer r ≥ 1. Let Rrp,l be a distribu-
tion of the composition of r independent q-regular l-wise random restrictions. (Hence, the
composed random restriction is p-regular.) Then, Eρ∼Rr

p,l
[L(f)] ≤ crpΓL(f) for l := q−Γ and

for some constant c.

Proof. By induction on r ≥ 1. Let c = 72 be the universal constant in Lemma 27. The
base case is exactly the same with Lemma 27. Now let us assume r > 1. Fix a composition
ρ0 ∈ supp(Rr−1

p,l) of r − 1 restrictions. We pick a l-wise independent random restriction
ρ1 ∼ Rp,l. By applying Lemma 27 for f |ρ0 , we obtain

E
ρ1∼Rp,l

[L(f |ρ0ρ1)] ≤ cqΓL(f |ρ0).

By averaging this inequality under distribution ρ0 ∼ Rr−1
p,l , it holds that

E
ρ∼Rr

p,l

[L(f)] ≤ cqΓ E
ρ0∼Rr−1

p,l

[L(f |ρ0)]

≤ cqΓ · cr−1qΓ(r−1)L(f) (by the induction hypothesis)
= crpΓL(f). J

S. Hirahara and R. Santhanam 7:13

4.2 Proof of Theorem 26
Now we are ready to prove the unconditional formula lower bound for MCSP. First, note
that a q-regular l-wise independent random restriction can be sampled by using random
O(l logn log 1

q) bits, and that each coordinate of a random restriction can be computed in
time a polynomial in the number of random bits (see [11]). Hence, the output of a composition
of r q-regular l-wise independent random restrictions has circuit complexity at most s :=
poly(r, l, logn, log 1

q) when regarded as a truth table. The circuit complexity s is significantly
smaller than the expected number pn of the unrestricted inputs under p-regular random
restrictions, for some appropriate parameters. Specifically, let p := 2

√
logn/n, q := p1/r,

l := q−Γ and r := C
√

logn for some large constant C so that s = poly(r, p−Γ/r, logn, log 1
p) ≤

2 1
2

√
logn � pn.
By Theorem 28, we have Eρ∼Rr

p,l
[L(f |ρ)] ≤ crpΓL(f). Hence, the goal is to obtain a lower

bound on Eρ∼Rr
p,l

[L(f |ρ)]. We claim that a pseudorandom restriction does not shrink the
formula for computing MCSP:

I Lemma 29. Let ρ : [n]→ {0, 1, ∗} be a restriction such that ρ can be computed by a circuit
of size s, and let V := ρ−1(∗). Then, for f = MCSP[s], we have L(f |ρ) ≥ |V | −O(s log s).

Proof. Let V0 ⊂ V be the set of variables on which f |ρ does not depend. It suffices to claim
that |V0| = O(s log s) because L(f |ρ) ≥ |V | − |V0|.

Indeed, let σ : V → {0, 1} denote an assignment for variables in V . For σ ≡ 0, the circuit
size of the truth table ρ◦σ ∈ {0, 1}n is at most s. Hence, ρ◦σ is an YES instance of MCSP[s].
Since f |ρ does not depend on V0, any assignment σ such that V \ V0 ⊂ σ−1(0) is also an
YES instance of MCSP[s]. The number of such assignments is 2|V0|, whereas the number of
circuits of size at most s is sO(s). Therefore, we have 2|V0| ≤ 2O(s log s). J

We can easily show that |ρ−1(∗)| ≥ pn/2 with probability at least 1
2 by using pairwise

independence of ρ and Chebyshev’s inequality. Therefore,

E
ρ∼Rr

p,l

[L(f |ρ)] ≥ Pr
ρ

[
|ρ−1(∗)| ≥ pn

2

]
· E
ρ∼Rr

p,l

[
L(f |ρ)

∣∣∣ |ρ−1(∗)| ≥ pn

2

]
≥ 1

2 · (
pn

2 −O(s log s)) ≥ pn

8 ,

where the last inequality holds since O(s log s) � pn. Thus, pn8 ≤ Eρ [L(f |ρ)] ≤ crpΓL(f)
and hence L(f) ≥ np−Γ+1/8c−r = n2 · 2−O(

√
logn).

5 Average-case AC0[p] Lower Bound of MKTP

In this section, we show an unconditional average-case AC0[p] circuit lower bound of MKTP.
Our result improves a previous result [8] showing a worst-case AC0[p] circuit lower bound of
MKTP. The whole section is devoted to proving the following result:

I Theorem 30. There exists some function s(n) such that MKTP[s] is not in AC0[p] on
average with error ε, for any prime p and any constant ε ∈ (0, 1).

Our proof is based on the techniques of Fefferman, Shaltiel, Umans and Viola [14] They
gave a pseudorandom generator against AC0[p] that is implicitly computable (i.e. each output
bit of the pseudorandom generator is easy to compute, or in other words, the KT-complexity
is small). We first focus on the case when p 6= 2. In this case, we use the following
pseudorandom generator G based on PARITY.

CCC 2017

7:14 On the Average-Case Complexity of MCSP and Its Variants

I Definition 31 ([14]). Define G : ({0, 1}n)k → {0, 1}nk+k as

G(x1, . . . , xk) := x1 · · ·xk · PARITY(x1) · · ·PARITY(xk)

for (x1, . . . , xk) ∈ ({0, 1}n)k.

I Lemma 32 (implicit in [14]). If there is an oracle A that distinguishes G from the uniform
distribution with advantage a constant ε > 0, then there is an AC0 circuit C with A-oracle
gates such that CA(x) = PARITY(x) for any x ∈ {0, 1}n.

Proof Sketch. For completeness, we include a brief proof sketch. They showed that, by
using resamplability of PARITY, there is an NC0 circuit C0 with one A-oracle gate such that
Prx∼Un

[CA0 (x) = PARITY(x)] ≥ 1+ε
2 ([14, Lemma 4.5]). By using resamplability again for

t independent choices of randomness (for some appropriately chosen t), we obtain circuits
CA1 , . . . , C

A
t each of which approximates PARITY. Now taking the majority vote of these

circuits, we can compute PARITY on all inputs. Here, the majority can be implemented by
using Approximate Majority [1] in AC0, because the advantage of approximating PARITY is
at least a constant ε. As a result, we obtain an AC0 circuit with A-oracle gates that computes
PARITY on all inputs ([14, Proposition 4.21]). J

Therefore, it is sufficient to claim that an average-case easiness of MKTP[s] implies that
the pseudorandom generator G can be broken. We first claim that the KT-complexity of any
output of the pseudorandom generator G in Lemma 32 is small.

I Claim 33. KT(G(x1, . . . , xk)) ≤ nk + n · polylog(n) for any seed (x1, . . . , xk) ∈ ({0, 1}n)k.

Proof. We use a description d := (x1, . . . , xk). Given an index i ∈ {1, . . . nk + k} of
G(x1, . . . , xk), if i ≤ nk then output the ith bit of the description d; if i > nk then compute
and output PARITY(xi−nk), which takes O(n) steps. A universal machine simulates this
computation in time n · polylog(n). J

Therefore, for k := n3, it holds that KT(G(x1, . . . , xk)) ≤ nk + o(k) (and thus an MKTP
oracle distinguishes G from the uniform distribution).

Now let us assume, towards a contradiction, that there is an AC0[p] circuit A0 that
computes MKTP[s] all but an ε fraction of inputs with zero-sided error. We define another
circuit A as A(x) := 1 if A0(x) = 1 or ?; otherwise A(x) := 0. Note that A does not err on
yes instances of MKTP[s]. We claim that that A breaks G.

I Claim 34. Let s(n) := n−
√
n. The following holds.

1. Pr[A(G(Un, . . . ,Un)) = 1] = 1.
2. Pr[A(Unk+k) = 1] ≤ ε+ o(1).

Proof.
1. By Claim 33, for any y = G(x1, . . . , xk) ∈ {0, 1}nk+k, we have KT(y) = nk + Õ(n) �

n4 + n3 −
√
n4 + n3 = s(nk + k); hence, y is an yes instance of MKTP[s] and A(y) = 1.

2. The point is that, under the uniform distribution, there are few yes instances in MKTP[s].
Hence, the algorithm A that solves MKTP[s] on a 1− ε fraction of instances must have a
substantial fractions of no instances on which A succeeds. Formally,

Pr
x∼Unk+k

[A(x) = 0] = Pr
x

[A0(x) = 0]

= Pr
x

[A0(x) 6=? ∧ x 6∈ MKTP[s]]

≥ Pr
x

[A0(x) 6=?]− Pr
x

[x ∈ MKTP[s]]

≥ 1− ε− 2−
√
nk+k. J

S. Hirahara and R. Santhanam 7:15

In particular, A distinguishes the output ofG from the uniform distribution with advantage
1− ε−o(1) ≥ 1−ε

2 . Now we apply Lemma 32 to obtain an AC0 circuit CA with A-oracle gates
that solves PARITY. Since A ∈ AC0[p], it shows that PARITY ∈ AC0[p], which contradicts
the lower bounds of Razborov-Smolensky [29, 32] for odd prime p.

When p = 2, we use a pseudorandom generator GCMD based on a problem called CMD
(connectivity matrix determinant), which was introduced by Ishai and Kushilevitz [21, 22].
For the exact definition of GCMD, the reader is referred to [14]. Here we only need the
following property, which easily follows from the fact that CMD is computable in polynomial
time.

I Fact 35 (Revised Claim 33). KT(GCMD(x1, . . . , xk)) ≤ nk+nO(1) for any seed (x1, . . . , xk) ∈
({0, 1}n)k.

I Lemma 36 ([14]). If there is an oracle A that distinguishes GCMD from the uniform
distribution with advantage a constant ε > 0, then there is an AC0[2] circuit C with A-oracle
gates such that CA(x) = MAJORITY(x) for any x ∈ {0, 1}n.

Proof Sketch. The problem CMD is resamplable in AC0[2] ([14]), and hence as in Lemma 32,
CMD can be solved by an AC0[2] circuit with A-oracle gates. Since CMD is ⊕L-complete
under NC0 reductions ([22]), MAJORITY can be also solved by an AC0[2] circuit with A-oracle
gates. J

Combining Fact 35 and Lemma 36, we obtain an AC0[2] circuit that solves MAJORITY,
which contradicts the lower bound of [29, 32] for the majority function. This completes the
proof of Theorem 30.

6 MKTP and Average-case Hardness Conjectures

In this section, we show hardness of MKTP and MCSP under popular hypotheses on average-
case hardness of various problems.

6.1 Random 3SAT Hardness of MKTP
Let us consider the distribution of a random 3CNF formula on n variables such that the
formula is the conjunction of m = ∆n clauses sampled from all the possible 23(n

3
)
3-literal

clauses independently and uniformly at random. Given such a formula, Feige’s hypothesis
states that there is no polynomial-time algorithm that (1) accepts every formula for which
all but εm clauses are satisfiable (henceforth, call such a formula ε-almost satisfiable), and
(2) rejects most formulas (i.e. with probability 1

2 over the choice of a random 3CNF formula).

I Hypothesis 37 (Feige [15]). For every fixed ε > 0 and sufficiently large constant ∆ (which
are independent of n), there is no polynomial time algorithm that accepts every ε-almost
satisfiable formula, and rejects most formulas.

Note that there is a variant of the hypothesis stating that there is no polynomial time
algorithm that accepts every satisfiable formula and rejects most formulas. This variant is
stronger than Hypothesis 37 and may be sensitive to minor model changes (see [15] for more
details). Here we refute the weaker hypothesis under MKTP oracle, and hence our result is
stronger.

I Theorem 38. MKTP is random 3SAT-hard in the sense of [15]. That is, there is a
polynomial-time algorithm with oracle access to MKTP that refutes Hypothesis 37.

CCC 2017

7:16 On the Average-Case Complexity of MCSP and Its Variants

Proof. We construct a many-one reduction from random 3SAT to MKTP. The reduction is
simple: given a formula ϕ, map it to (ϕ, θ) for some threshold θ chosen later. The idea is
that any ε-almost satisfiable formula is atypical, and hence it can be described efficiently
given an almost satisfying assignment (i.e. the KT-complexity of any ε-almost satisfiable
formula is small). More specifically, given an assignment x that satisfies all but εm clauses of
the formula ϕ, each clause of ϕ that is satisfied by x has (23− 1)

(
n
3
)
possibilities; hence, each

clause of ϕ (except for εm clauses) is of description length at most log 7
(
n
3
)
. On the other

hand, random 3SAT instance are chosen from the space of cardinality [23(n
3
)
]m, and thus

it has KT-complexity roughly m log 8
(
n
3
)
with high probability. Hence, the MKTP oracle

enables us to distinguish ε-almost satisfiable formulas from random formulas, by exploiting
the difference m log 8

(
n
3
)
−m log 7

(
n
3
)
in KT-complexity. Details follow.

Define θ := m log 8
(
n
3
)
−m/20. We first claim that a random 3SAT formula has KT-

complexity at least θ with high probability. Indeed, the number of strings with KT-complexity
less than θ is at most 2θ by simple counting. Thus, since a random 3SAT formula ϕ is chosen
uniformly at random out of the space of cardinarity [23(n

3
)
]m = 2θ+m/20, the probability that

KT(ϕ) < θ is at most 2−m/20.
The rest of the proof is devoted to proving ε-almost satisfiable formula is of low KT-

complexity:

I Claim 39. For sufficiently small ε > 0 and any ε-almost satisfiable formula ϕ, KT(ϕ) < θ.

In order to claim that the KT-complexity of ϕ is small, we need to implement an efficient
procedure that, given an index, outputs the clause of ϕ specified by the index, with random
access to a description of ϕ. We will describe ϕ by using an ε-almost satisfying assignment
x ∈ {0, 1}n, a subset S ∈

([m]
≤εm

)
of clauses not satisfied by x, (1−ε)m log 7

(
n
3
)
bits to describe

clauses satisfied by x, and εm log
(
n
3
)
bits to describe clauses not satisfied by x.

In order to describe each clause of ϕ efficiently (i.e. in time polylog(m)), there are two issues
for which we need ideas from succinct data structures. One is an efficient representation of S.
Information theoretically, S can be described in log

(
m
εm

)
≤ εm log(em/εm) = mε log(e/ε) <

m/100 bits for sufficiently small ε > 0. However, a naive representation of S may not enable
us to answer a query i

?
∈ S efficiently; thus, we need the following result.

I Lemma 40 (Brodnik and Munro [13]). There exists a string dS of length log
(
m
εm

)
+o(log

(
m
εm

)
)

and an algorithm that, given random access to dS and index i, answers a query i
?
∈ S in time

polylog(m).

The other issue is the use of the ceiling function (c.f. [28, 3]). For each clause satisfied by
x, we need dlog 7

(
n
3
)
e bits (if we represent each clause separately), which is not necessarily

smaller than log 8
(
n
3
)
bits. We thus group consecutive b := 11 clauses of ϕ into one block so

that each block encodes b clauses by using at most db log 7
(
n
3
)
e bits. Since (7

8)b ≤ 1
4 , we have

db log 7
(
n
3
)
e ≤ b log 8

(
n
3
)
− 1; thus, we can dispense with 1 bit for each block.

Hence, the KT-complexity of ϕ is

KT(ϕ) ≤ n+ log
(
m

εm

)
+ o

(
log
(
m

εm

))
+
⌈m
b

⌉
·
⌈
b log 7

(
n

3

)⌉
+ polylog(m)

≤ m

∆ + m

100 +m log 8
(
n

3

)
− m

b
+ o(m)

≤ m log 8
(
n

3

)
− m

20 = θ

for sufficiently large ∆ and m. J

S. Hirahara and R. Santhanam 7:17

Recently Ryan O’Donnell (personal communication) conjectured a co-nondeterministic
version of Feige’s hypothesis, i.e., that Hypothesis 37 holds even with respect to co-
nondeterministic polynomial-time algorithms. It follows from the proof of Theorem 38
that MKTP is not in coNP under O’Donnell’s conjecture. This is the first evidence of any
kind that MCSP or MKTP is not in coNP. There has been some speculation about whether
MCSP ∈ SZK, for example this is posed as an open problem in Allender’s recent survey [4].
Under a standard derandomization hypothesis, SZK ⊆ NP ∩ coNP, hence if MKTP ∈ SZK,
either this hypothesis fails or O’Donnell’s conjecture fails.

It should be noted that our proof does not seem to carry over to the case of MCSP.
The gap between the KT-complexity of almost satisfiable formulas and random formulas is
smaller than m = o(|ϕ|), and it is not clear how to construct a small circuit which simulates
the random access machine with additive overhead smaller than m. We leave as an open
question to extend Theorem 38 to the case of MCSP.

6.2 Hardness of MCSP under Alekhnovich’s hypothesis
While we were not able to prove that MCSP is random 3SAT-hard, we can refute a strong
hypothesis about average-case complexity proposed by Alekhnovich [2] under MCSP oracle.
He considered a problem of solving linear equations under a certain noise e. Let A be an
m× n matrix over GF(2). Let Dk(A) be the distribution of a random vector Av + e, where
v is a uniform sample from GF(2)n and e ∈ GF(2)n is a uniform sample from the vectors of
Hamming weight k (i.e. the number of ones in e is k). Alekhnovich conjectured that there is
a matrix such that it is infeasible to distinguish Dk(A) from Dk+1(A) efficiently.

I Hypothesis 41 (Alekhnovich [2, Conjecture 4.5]). For every m(n) = Θ(n), there exists
a family of m(n) × n matrices {An}n∈N such that, for every function k(n) which satisfies
nε < k(n) < n1−ε for some constant ε > 0, for every efficient algorithm M , the success
probability

|Pr [M(Dk(An)) = 1]− Pr [M(Dk+1(An)) = 1] |

is negligible.

I Theorem 42. There is a polynomial-time algorithm with oracle access to MCSP that
refutes Hypothesis 41.

Proof Sketch. Alekhnovich showed that Hypothesis 41 implies the existence of a crypto-
graphic pseudorandom generator ([2, Lemma 4.14]). Now we can construct a pseudorandom
function generator as in [16], based on Hypothesis 41. On the other hand, an MCSP oracle can
distinguish the output distribution of the pseudorandom function generator from the uniform
distribution (see, e.g., [5]). Hence, there is an efficient algorithm that refutes Hypothesis 41
with oracle access to MCSP. J

6.3 Planted Clique Hardness of MKTP
Now we move on to planted clique conjectures [23, 26].

Let G(n, 1
2) denote the distribution of an n-vertex graph whose edges are placed with

probability 1
2 independently (i.e. an Erdős-Rényi random graph). Let G(n, 1

2 , k) be the
distribution of a random graph such that a graph is chosen from G(n, 1

2) and then a clique
of size k is randomly placed in the graph. The decision version of planted clique conjectures
states that there is no polynomial time algorithm that distinguishes G(n, 1

2 , k) from G(n, 1
2).

CCC 2017

7:18 On the Average-Case Complexity of MCSP and Its Variants

On average, there is a clique of size 2 logn on G(n, 1
2), and thus there is a quasipolynomial-

time algorithm for solving the planted clique problem by a brute force search. We show that
there is a polynomial-time algorithm with oracle access to MKTP that solves the planted
clique problem.

I Theorem 43. For any k ≥ polylog(n), there is a polynomial-time algorithm with oracle
access to MKTP that accepts every graph chosen from G(n, 1

2 , k), and rejects most random
graphs chosen from G(n, 1

2).

Proof. The idea is the same with the proof of random 3SAT-hardness. As a many-one
reduction from the planted clique problem to MKTP, given a random graph G, we map G to
(G, θ) for a certain parameter θ.

We first claim that the KT-complexity of most random graphs G chosen from G(n, 1
2) is

large. Indeed, the graph is chosen uniformly at random from the space of cardinarity 2(n
2);

thus, the probability that KT(G) is less than
(
n
2
)
− k is at most 2−k = 1/nω(1), which is

negligible. Define θ :=
(
n
2
)
− k.

Next, we claim that the KT-complexity of any graph G with k-clique is less than θ. For
this purpose, we present an efficient algorithm that, on input a pair (v, w) of vertices and
random access to a description, outputs whether G has an edge between v and w. Let S be a
k-clique of G. The description for G consists of the clique S (which is encoded in k logn bits
as the sorted list of vertices in S), and the adjacency matrix of G except for edges connecting
vertices in S (which can be encoded in

(
n
2
)
−
(
k
2
)
bits). The algorithm for describing G is as

follows: Given the description and a pair (v, w), we first check whether v ∈ S and w ∈ S by
a binary search. If v and w are in S, then we claim that there is an edge (since S is a clique).
Otherwise, we compute an index of the description of an adjacency matrix to which (v, w)
corresponds (which can be done in polylog(n) time), and then output the corresponding bit
of the description.

The length of the description is roughly k logn+
(
n
2
)
−
(
k
2
)
� θ, and the time it takes to

describe each bit of G is at most polylog(n). Hence, KT(G) < θ for any G with a k-clique. J

References
1 Miklós Ajtai and Michael Ben-Or. A theorem on probabilistic constant depth computations.

In Proceedings of the 16th Annual ACM Symposium on Theory of Computing (STOC),
pages 471–474, 1984. doi:10.1145/800057.808715.

2 Michael Alekhnovich. More on average case vs approximation complexity. Computational
Complexity, 20(4):755–786, 2011. doi:10.1007/s00037-011-0029-x.

3 E. Allender, Joshua Grochow, and Cristopher Moore. Graph isomorphism and circuit size.
Technical Report TR15-162, Electronic Colloquium on Computational Complexity, 2015.

4 Eric Allender. The complexity of complexity. In Computability and Complexity – Essays
Dedicated to Rodney G. Downey on the Occasion of His 60th Birthday, pages 79–94, 2017.
doi:10.1007/978-3-319-50062-1_6.

5 Eric Allender, Harry Buhrman, Michal Koucký, Dieter van Melkebeek, and Detlef Ron-
neburger. Power from random strings. SIAM J. Comput., 35(6):1467–1493, 2006. doi:
10.1137/050628994.

6 Eric Allender and Bireswar Das. Zero knowledge and circuit minimization. In Symposium
on Mathematical Foundations of Computer Science (MFCS), pages 25–32, 2014. doi:10.
1007/978-3-662-44465-8_3.

7 Eric Allender, Lisa Hellerstein, Paul McCabe, Toniann Pitassi, and Michael E. Saks. Min-
imizing disjunctive normal form formulas and AC0 circuits given a truth table. SIAM J.
Comput., 38(1):63–84, 2008. doi:10.1137/060664537.

http://dx.doi.org/10.1145/800057.808715
http://dx.doi.org/10.1007/s00037-011-0029-x
http://dx.doi.org/10.1007/978-3-319-50062-1_6
http://dx.doi.org/10.1137/050628994
http://dx.doi.org/10.1137/050628994
http://dx.doi.org/10.1007/978-3-662-44465-8_3
http://dx.doi.org/10.1007/978-3-662-44465-8_3
http://dx.doi.org/10.1137/060664537

S. Hirahara and R. Santhanam 7:19

8 Eric Allender and Shuichi Hirahara. New insights on the (non)-hardness of circuit minimiz-
ation and related problems. Electronic Colloquium on Computational Complexity (ECCC),
24:73, 2017. URL: https://eccc.weizmann.ac.il/report/2017/073.

9 Eric Allender, Dhiraj Holden, and Valentine Kabanets. The minimum oracle circuit size
problem. In Symposium on Theoretical Aspects of Computer Science (STACS), volume 30
of LIPIcs, pages 21–33, 2015. doi:10.4230/LIPIcs.STACS.2015.21.

10 Eric Allender, Michael Koucky, Detlef Ronneburger, and Sambuddha Roy. The pervas-
ive reach of resource-bounded kolmogorov complexity in computational complexity theory.
Journal of Computer and System Sciences, 77:14–40, 2010.

11 Noga Alon, László Babai, and Alon Itai. A fast and simple randomized parallel algorithm
for the maximal independent set problem. J. Algorithms, 7(4):567–583, 1986. doi:10.
1016/0196-6774(86)90019-2.

12 Andrej Bogdanov and Luca Trevisan. On worst-case to average-case reductions for NP
problems. SIAM Journal on Computing, 36(4):1119–1159, 2006.

13 Andrej Brodnik and J. Ian Munro. Membership in constant time and almost-minimum
space. SIAM J. Comput., 28(5):1627–1640, 1999. doi:10.1137/S0097539795294165.

14 Bill Fefferman, Ronen Shaltiel, Christopher Umans, and Emanuele Viola. On beating
the hybrid argument. Theory of Computing, 9:809–843, 2013. doi:10.4086/toc.2013.
v009a026.

15 Uriel Feige. Relations between average case complexity and approximation complexity. In
Proceedings on 34th Annual ACM Symposium on Theory of Computing (STOC), pages
534–543, 2002. doi:10.1145/509907.509985.

16 Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions.
J. ACM, 33(4):792–807, 1986. doi:10.1145/6490.6503.

17 Johan Håstad. The shrinkage exponent of de morgan formulas is 2. SIAM J. Comput.,
27(1):48–64, 1998. doi:10.1137/S0097539794261556.

18 Shuichi Hirahara and Osamu Watanabe. Limits of minimum circuit size problem as oracle.
In Conference on Computational Complexity (CCC), volume 50 of LIPIcs, pages 18:1–18:20,
2016. doi:10.4230/LIPIcs.CCC.2016.18.

19 John M. Hitchcock and Aduri Pavan. On the NP-completeness of the minimum circuit size
problem. In Conference on Foundation of Software Technology and Theoretical Computer
Science (FSTTCS), volume 45 of LIPIcs, pages 236–245, 2015. doi:10.4230/LIPIcs.
FSTTCS.2015.236.

20 Russell Impagliazzo, Raghu Meka, and David Zuckerman. Pseudorandomness from shrink-
age. In Proceedings of the 53rd Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 111–119, 2012. doi:10.1109/FOCS.2012.78.

21 Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new representation
with applications to round-efficient secure computation. In Proceedings of the 41st An-
nual Symposium on Foundations of Computer Science (FOCS), pages 294–304, 2000.
doi:10.1109/SFCS.2000.892118.

22 Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computation via perfect
randomizing polynomials. In Proceedings of Automata, Languages and Programming, 29th
International Colloquium (ICALP), pages 244–256, 2002. doi:10.1007/3-540-45465-9_
22.

23 Mark Jerrum. Large cliques elude the metropolis process. Random Structures and Al-
gorithms, 3:347–359, 1992.

24 Valentine Kabanets and Jin-Yi Cai. Circuit minimization problem. In Symposium on
Theory of Computing (STOC), pages 73–79, 2000. doi:10.1145/335305.335314.

CCC 2017

https://eccc.weizmann.ac.il/report/2017/073
http://dx.doi.org/10.4230/LIPIcs.STACS.2015.21
http://dx.doi.org/10.1016/0196-6774(86)90019-2
http://dx.doi.org/10.1016/0196-6774(86)90019-2
http://dx.doi.org/10.1137/S0097539795294165
http://dx.doi.org/10.4086/toc.2013.v009a026
http://dx.doi.org/10.4086/toc.2013.v009a026
http://dx.doi.org/10.1145/509907.509985
http://dx.doi.org/10.1145/6490.6503
http://dx.doi.org/10.1137/S0097539794261556
http://dx.doi.org/10.4230/LIPIcs.CCC.2016.18
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.236
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.236
http://dx.doi.org/10.1109/FOCS.2012.78
http://dx.doi.org/10.1109/SFCS.2000.892118
http://dx.doi.org/10.1007/3-540-45465-9_22
http://dx.doi.org/10.1007/3-540-45465-9_22
http://dx.doi.org/10.1145/335305.335314

7:20 On the Average-Case Complexity of MCSP and Its Variants

25 Ilan Komargodski, Ran Raz, and Avishay Tal. Improved average-case lower bounds for De-
Morgan formula size. In Proceedings of the 54th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pages 588–597, 2013. doi:10.1109/FOCS.2013.69.

26 Ludek Kucera. Expected complexity of graph partitioning problems. Discrete Applied
Mathematics, 57(2-3):193–212, 1995.

27 Cody D. Murray and Richard Ryan Williams. On the (non) NP-hardness of computing
circuit complexity. In Conference on Computational Complexity (CCC), volume 33 of
LIPIcs, pages 365–380, 2015. doi:10.4230/LIPIcs.CCC.2015.365.

28 Mihai Patrascu. Succincter. In In Proceedings of the 49th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 305–313, 2008. doi:10.1109/FOCS.2008.
83.

29 Alexander Razborov. Lower bounds on the size of bounded depth circuits over a complete
basis with logical addition. Mathematical notes of the Academy of Sciences of the USSR,
41(4):333–338, 1987. doi:10.1007/BF01137685.

30 Alexander A. Razborov and Steven Rudich. Natural proofs. J. Comput. Syst. Sci., 55(1):24–
35, 1997. doi:10.1006/jcss.1997.1494.

31 Steven Rudich. Super-bits, demi-bits, and NP/qpoly-natural proofs. In Proceedings of
Randomization and Approximation Techniques in Computer Science (RANDOM), pages
85–93, 1997. doi:10.1007/3-540-63248-4_8.

32 Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit
complexity. In Alfred V. Aho, editor, STOC, pages 77–82. ACM, 1987. URL: http://dblp.
uni-trier.de/db/conf/stoc/stoc87.html#Smolensky87.

33 Philip M Spira. On time-hardware complexity tradeoffs for boolean functions. In Proceed-
ings of the 4th Hawaii Symposium on System Sciences, pages 525–527, 1971.

34 Boris Trakhtenbrot. A survey of russian approaches to perebor (brute-force search) al-
gorithms. IEEE Annals of the History of Computing, 6(4):384–400, 1984.

35 Ryan Williams. Improving exhaustive search implies superpolynomial lower bounds. SIAM
J. Comput., 42(3):1218–1244, 2013. doi:10.1137/10080703X.

http://dx.doi.org/10.1109/FOCS.2013.69
http://dx.doi.org/10.4230/LIPIcs.CCC.2015.365
http://dx.doi.org/10.1109/FOCS.2008.83
http://dx.doi.org/10.1109/FOCS.2008.83
http://dx.doi.org/10.1007/BF01137685
http://dx.doi.org/10.1006/jcss.1997.1494
http://dx.doi.org/10.1007/3-540-63248-4_8
http://dblp.uni-trier.de/db/conf/stoc/stoc87.html#Smolensky87
http://dblp.uni-trier.de/db/conf/stoc/stoc87.html#Smolensky87
http://dx.doi.org/10.1137/10080703X

	Introduction
	Our Results

	Preliminaries and Notation
	Boolean Function Complexity
	Natural Proofs and the Minimum Circuit Size Problem
	Time-Bounded Kolmogorov Complexity and MKTP
	Average-Case Complexity
	Randomness and Pseudorandomness

	Pseudorandom Self-Reducibility for MCSP
	De Morgan Formula Lower Bounds for MCSP
	A Review of Impagliazzo, Meka and Zuckerman
	Proof of Theorem 26

	Average-case AC0[p] Lower Bound of MKTP
	MKTP and Average-case Hardness Conjectures
	Random 3SAT Hardness of MKTP
	Hardness of MCSP under Alekhnovich's hypothesis
	Planted Clique Hardness of MKTP

