
Easiness Amplification and Uniform Circuit Lower
Bounds∗

Cody D. Murray1 and R. Ryan Williams2

1 CSAIL and EECS, MIT, Cambridge, MA, USA
cdmurray@mit.edu

2 CSAIL and EECS, MIT, Cambridge, MA, USA
rrw@mit.edu

Abstract
We present new consequences of the assumption that time-bounded algorithms can be “com-
pressed” with non-uniform circuits. Our main contribution is an “easiness amplification” lemma
for circuits. One instantiation of the lemma says: if n1+ε-time, Õ(n)-space computations have
n1+o(1) size (non-uniform) circuits for some ε > 0, then every problem solvable in polynomial time
and Õ(n) space has n1+o(1) size (non-uniform) circuits as well. This amplification has several
consequences:

An easy problem without small LOGSPACE-uniform circuits. For all ε > 0, we give a natural
decision problem General Circuit nε-Composition that is solvable in n1+ε time, but we
prove that polynomial-time and logarithmic-space preprocessing cannot produce n1+o(1)-size
circuits for the problem. This shows that there are problems solvable in n1+ε time which are
not in LOGSPACE-uniform n1+o(1) size, the first result of its kind. We show that our lower
bound is non-relativizing, by exhibiting an oracle relative to which the result is false.
Problems without low-depth LOGSPACE-uniform circuits. For all ε > 0, 1 < d < 2, and
e < d we give another natural circuit composition problem computable in Õ(n1+ε) time, or
in O((logn)d) space (though not necessarily simultaneously) that we prove does not have
SPACE[(logn)e]-uniform circuits of Õ(n) size and O((logn)e) depth. We also show SAT does
not have circuits of Õ(n) size and log2−o(1) n depth that can be constructed in log2−o(1) n

space.
A strong circuit complexity amplification. For every ε > 0, we give a natural problem
Circuit nε-Composition and show that if it has Õ(n)-size circuits (uniform or not), then
every problem solvable in 2O(n) time and 2O(

√
n logn) space (simultaneously) has 2O(

√
n logn)-

size circuits (uniform or not). We also show the same consequence holds assuming SAT has
Õ(n)-size circuits.
As a corollary, if n1.1 time computations (or O(n) nondeterministic time computations) have
Õ(n)-size circuits, then all problems in exponential time and subexponential space (such as
quantified Boolean formulas) have significantly subexponential-size circuits. This is a new
connection between the relative circuit complexities of easy and hard problems.

1998 ACM Subject Classification F.1.3 Relations Among Complexity Classes

Keywords and phrases uniform circuit complexity, time complexity, space complexity, non-
relativizing, amplification

Digital Object Identifier 10.4230/LIPIcs.CCC.2017.8

∗ Supported by NSF CCF-1552651 (CAREER). Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the views of the National
Science Foundation.

© Cody D. Murray and R. Ryan Williams;
licensed under Creative Commons License CC-BY

32nd Computational Complexity Conference (CCC 2017).
Editor: Ryan O’Donnell; Article No. 8; pp. 8:1–8:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CCC.2017.8
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

8:2 Easiness Amplification and Uniform Circuit Lower Bounds

1 Introduction

Boolean circuit complexity and machine-based computation are nicely bridged by the notion
of uniform circuits. These are circuit families where any particular circuit in the family
can be efficiently generated on demand, by an algorithm consuming few resources. We use
C-uniform SIZE[s(n)] to (informally) denote the class of problems computable by a circuit
family {Cn} of s(n)-size such that the description of Cn is computable in C for all n. (The
choice of circuit description/encoding can vary, and the results of our paper do not depend on
these choices. See Section 2 for formal definitions.) Borrowing some terminology from data
structures, one can say that uniform circuits naturally capture preprocessing/query tradeoffs
in a static model: putting a problem in C-uniform SIZE[s(n)] means that we can preprocess
with C resources to build a size-s(n) circuit, so that every subsequent n-bit instance of the
problem can be computed (queried) with that circuit.

Most work on uniform circuit complexity over the last several decades has studied
either the case where the class C is extremely weak, or is extremely strong. The extremely
weak uniform models, such as LOGTIME-uniform circuits, are the closest to machine-based
computation: any particular wire or gate of a size-s circuit Cn in the family can be computed
in only O(log s) time, proportional to the sizes of pointers to the wires/gates. The measures
of “LOGTIME-uniform circuit size” and “time” are known to coincide up to polylogarithmic
factors [22], hence there are problems solvable in n1.002 that are not in LOGTIME-uniform
SIZE[n1.001], by the time hierarchy theorem [13, 33]. On the other end of the uniformity
spectrum, non-uniform circuits require no computable bounds on generating the circuits,
and far less is known: for example, no functions in huge classes like TIME[2O(n)]SAT are
known to require even 4n-size non-uniform circuits over the basis of all Boolean functions on
two inputs, although some progress has recently been made on this front [9].

A few years ago, Santhanam and Williams [25] studied so-called “medium-uniform”
circuits, where the complexity of generating a circuit is neither very weak nor very strong,
e.g., LOGSPACE, P, and PNP-uniformity. Among other results, Santhanam and Williams [25]
proved that for some k, there is a problem solvable in nk time that does not have P-uniform
linear-size circuits; that is, they proved P 6⊂ P-uniform SIZE[O(n)]. (In fact, they proved the
stronger result that for every c, there is a kc and a problem in TIME[nkc] that does not have
P-uniform nc-size circuits.) That is, they prove a super-polynomial time lower bound on
preprocessing linear-size circuits for solving a problem in P. (It is believed there are problems
in P without linear-size circuits period, no matter how much preprocessing is used, but this
is an infamously difficult and famous open problem.) Their techniques led to similar results
for LOGSPACE-uniform branching programs, and lower bounds for NP versus PNP

|| -uniform
linear size circuits.

There are two major drawbacks of the lower bound method of Santhanam and Williams.
The first is its extreme non-constructivity: their method is a (very) indirect diagonalization
argument. No particular problem in nk time is known to exhibit the circuit size lower bound,
and in fact the proof provides no explicit bound on k. That is, we cannot point to any
problem in P satisfying the lower bound; we cannot even point to an upper bound on the time
complexity of such a problem. This non-constructive phenomenon holds for all lower bounds
in their work, creating a frustrating state of affairs. The second more serious drawback of
their method is that it relativizes, which implies that there are hard barriers to what it can
possibly prove. In particular, we cannot expect to prove results like P 6⊂ SIZE[O(n)] via such
techniques.

C.D. Murray and R. R. Williams 8:3

1.1 Our Results
We introduce a non-relativizing method for exploiting the weakness of small-space computa-
tions, and for “amplifying” assumptions on the circuit complexity of easy problems. Using
this method, we identify natural circuit composition problems which can easily be solved in
low-polynomial time, yet we can prove non-trivial LOGSPACE-uniform circuit lower bounds
for computing them. That is, no small-space algorithm can generate small circuits for solving
the problems, despite their tractability. Our techniques give new insight into how to prove
limitations on small-space computation. It is possible that similar ideas could potentially
apply to non-uniform models of small-space computation, such as branching programs.

I Definition 1. In the k(n)-IO Circuit t-Composition problem, we are given a Boolean
circuit C over AND/OR/NOT of size n with k(n) inputs and k(n) outputs, an input
x ∈ {0, 1}k(n), and integer t ≥ 1. The task is to output

Ct(x) := (C ◦ · · · ◦ C)︸ ︷︷ ︸
t

(x),

i.e., C composed for t times on the input x.
The k(n)-IO Circuit t-Composition problem can also be expressed as a decision

problem, by including an index i = 1, . . . , k(n) as input, and outputting the ith bit of Ct(x).
When k(n) = no(1), we simply call the problem Circuit t-Composition.

Observe that k(n)-IO Circuit t-Composition can be easily solved in Õ(n · t) time
and Õ(n) space, by straightforward simulation of the given size-n circuit for t times. (As is
standard, we let Õ(t(n)) denote t(n) · (log t(n))c for an unspecified constant c > 0.)

The circuit composition problem defined above is a sequential “chain” of circuit evaluations.
A more general version of the composition problem, which we call General Circuit t-
Composition (defined in the Preliminaries), permits connections between multiple inputs
and outputs of a given circuit; Circuit t-Composition is a special case of it. General
Circuit t-Composition is also solvable in Õ(n · t) time (see Section 2); it also requires
Ω̃(n · t) time to be solved (see Theorem 14). (We let Ω̃(s(n)) denote s(n)/(log s(n))c for a
constant c > 0.)

LOGSPACE-Uniform Circuit Lower Bounds

First, we prove circuit lower bounds for generically composing nε copies of a circuit, which is
an Õ(n1+ε)-time task:

I Theorem 2. For all ε ∈ (0, 1), General Circuit nε-Composition does not have
n1+o(1)-size circuits constructible in logarithmic space.

We stress that Theorem 2 does not relativize. In Appendix A, we exhibit (for every
constant k ≥ 1) an oracle A such that every language in TIME(nk)A has O(n)-size A-oracle
circuits constructible in LOGSPACEA.

It is well known that every problem solvable in t time does have LOGTIME-uniform
circuits of O(t log t) size [22], and that there are problems solvable in t time that do not
have LOGTIME-uniform O(t/ log3 t)-size circuits, by the time hierarchy theorem [13, 14].
Theorem 2 is a significantly stronger lower bound than what is provided by the time hierarchy:
it shows that arbitrary logarithmic space preprocessing (running in, say, n101010

time) is not
enough to reduce the resources needed to solve Circuit nε-Composition even slightly less

CCC 2017

8:4 Easiness Amplification and Uniform Circuit Lower Bounds

than Õ(n1+ε). That is, LOGSPACE-uniform circuits cannot be made noticeably smaller than
the time-bounded computations they may simulate, in general.

Theorem 2 is interesting not only because it does not relativize, but because there are
few non-trivial lower bounds known against LOGSPACE, even as a uniformity condition. For
random-access models, it is known that SAT is not solvable in (simultaneous) n1.8 time
and no(1) space, but there are concrete limitations on known proof methods [11, 30, 6].
Slightly non-linear time lower bounds (for n1−Ω(1) space) are known for some functions in
P [1, 5]. Fortnow [10] proved (along with follow-up work by [3, 28]) that SAT does not
have LOGSPACE-uniform n1+o(1)-size O(logn)-depth circuits. Santhanam and Williams [25]
proved there is a language in LOGSPACE which does not have LOGSPACE-uniform branching
programs of O(nk) size for every k, but (as mentioned earlier) the argument yields no explicit
language and no explicit resource bounds on the language. (On the other hand, small
branching programs seem to be a weaker model than small O(logn)-depth circuits.)

Super-Logarithmic Space Lower Bounds

Turning to the more restricted model of polylog-depth circuits, we can obtain stronger
lower bounds than prior work. Informally, we define the problem d(n)-Depth Circuit
t-Composition analogously to Circuit t-Composition, except the inputs are restricted to
circuits of d(n) depth and d(n) input/output bits. The d(n)-Depth Circuit t-Composition
problem can be solved in about n · t time (like Circuit t-Composition) or in about d(n) · t
space. We note that it is open whether d(n)-Depth Circuit t-Composition can be solved
in polynomial time and d(n)c space simultaneously for d(n) > ω(logn); this is the heart of
the NC versus SC question [7, 21].

I Theorem 3. For every ε ∈ (0, 1), c ≥ 1, d ∈ (1, 2), and d′ < d, the problem (logn)d-Depth
Circuit nε-Composition does not have SPACE[(logn)d′]-uniform circuits of n · (logn)c
size and O((logn)d′) depth.1

In other words, we have a problem in TIME[n1+ε] ∩ SPACE[log2−ε/2] that does not have
Õ(n)-size O(log2−ε n)-depth circuits constructible in nO(log1−ε n) time and O(log2−ε n) space,
for every ε ∈ (0, 1). Theorem 3 is a significant advance over prior results in the area, which
could only prove lower bounds of this form against NP-hard and coNP-hard problems such
as SAT and SAT [10, 3], or against non-explicitly given problems in NC [25]. We stress that
O(n)-size O(logn)-depth lower bounds are in general far more difficult to reason about than
one might think: it is open whether every language in NTIME[2n] has non-uniform O(n)-size
O(logn)-depth circuits.

“Easiness Amplification” for Small Circuits

While the problem of proving P does not have O(n)-size circuits is notoriously hard, one
may try assuming that P ⊂ SIZE(O(n)), and record absurd conclusions that follow from it.
Might we be able to reach something so absurd that it is provably contradictory? A string of
work [17, 12, 25, 8] has established consequences of this form.

1 One might initially believe that Theorem 3 follows quickly from the space hierarchy [26]. It does not:
recall the problem (log n)2−o(1)-Depth Circuit nε-Composition being lower-bounded is solvable in
n1+ε time, yet we are proving nearly-quadratic space lower bounds for constructing nearly-quadratic
depth circuits for it.

C.D. Murray and R. R. Williams 8:5

The key to the above lower bounds is a lemma which demonstrates how small circuits
for these composition problems can be applied to construct small circuits for many more
(presumably harder) problems. Let TISP[t(n), s(n)] denote the class of languages decidable
in t(n) time and s(n) space (simultaneously).

I Lemma 4 (Easiness Amplification). Let ε > 0 and let s(n) ≤ Õ(n).
If s(n)-IO Circuit nε-Composition has Õ(n) size circuits, then every problem in
TISP[nk(n), s(n)] has n ·(logn)O(k(n)/ε) size circuits, for all constructible functions k(n) ≤
O(logn/ log logn).2
If s(n)-IO Circuit nε-Composition has n1+o(1) size circuits, then for every constant
k ≥ 1, every problem in TISP[nk, s(n)] has n1+o(1)-size circuits.

That is, assuming a single problem (solvable in Õ(n1+ε) time) has nearly-linear-size
circuits, we prove that a much larger class of problems also has very small circuits (note
that s(n)-IO Circuit nε-Composition is in TISP[n1+ε, s(n)]). We call this phenomenon
easiness amplification, in contrast with the study of hardness amplification. Let us carefully
explain our choice of this term.

In hardness amplification, one shows that if a problem from a class C is “hard” in one
sense, one can find another problem from C that is even “harder.” That is, in a hardness
amplification theorem, the class of problems being solved remains about the same, but the
computational lower bound is strengthened in the conclusion (we are amplifying the hardness).
However, in what we call easiness amplification, the computational model remains about
the same, but the class of problems being solved is strictly increased in the conclusion: one
strictly increases the set of problems which are shown to be easy. To give a specific example
and a non-example of easiness amplification, we would say that NP ⊂ P/poly⇒ PH ⊂ P/poly
is an easiness amplification, because the notion of “easy” in the conclusion is unchanged
from that of the hypothesis. but the set of problems being solved has (probably) strictly
increased in the conclusion. On the other hand, NP = P⇒ NEXP = EXP is not an easiness
amplification: the computational model P “blows up” to the larger class EXP.

Lemma 4 says that if the above circuit composition problem (which is in n1+ε time and
Õ(n) space) had Õ(n)-size circuits, then every problem in no(logn/ log logn) time and Õ(n)
space has n1+o(1) size circuits. That is, from a modest speed-up of the circuit composition
problem with non-uniform circuits, one obtains an incredible non-uniform simulation of a
much larger complexity class. The following is immediate from Lemma 4.

I Corollary 5. If n-IO Circuit nε-Composition has Õ(n) size circuits, then

TISP
[
n(logn)/ log logn, Õ(n)

]
⊆ SIZE[O(n2)].

By a standard padding argument, we also have TISP
[
2n, 2
√
n logn

]
⊆ SIZE

[
2O(
√
n logn)

]
.

That is, nearly-linear size circuits for circuit composition imply polynomial-size circuits
for some problems that are only known to be solvable in super-polynomial time, such as
detecting a clique of O(logn/ log logn) nodes. The second part of Corollary 5 shows that
a small improvement on the circuit complexity of a problem solvable in n1+ε time implies
truly subexponential circuit upper bounds on all problems solvable in 2n time and 2

√
n

2 As usual in machine-based complexity, one must worry if the functions under consideration are con-
structible within the resource bounds of the corresponding complexity classes. Throughout the paper,
we say a function is “constructible” when it satisfies precisely that condition.

CCC 2017

8:6 Easiness Amplification and Uniform Circuit Lower Bounds

space. For example, the quantified Boolean formula problem on formulas of k variables
and 2

√
k log k · poly(k) size would have a circuit family of 2O(

√
k log k) size. This consequence

is in stark contrast to general beliefs regarding exponential time computation, e.g., the
Exponential Time Hypothesis of Impagliazzo, Paturi, and Zane [16] which posits that 3-SAT
does not have 2o(n)-time algorithms. Previously, it was only known that P ⊂ SIZE[O(n)]
implies TIME[2O(n)] ⊂ SIZE[2o(n)] (by a simple padding argument).

It is interesting to contrast the circuit upper bound consequences of Corollary 5 with
the fact that P ⊂ SIZE[O(n)] also implies the negative consequence P 6= NP [17]. It would
be interesting if NP ⊂ SIZE[O(n)] implied even smaller circuit constructions for PSPACE
problems.

Circuit Lower Bounds for SAT

Some of our results extend to the (much harder) SAT problem; in that setting, we can use
old proof techniques that are similar to those in prior work on SAT time-space tradeoffs.
First we show (Section 4.1) that SAT requires superlogarithmic-space uniform circuits of
Õ(n) size and nearly log2 n depth:

I Theorem 6. For all d < 2, and all c ≥ 1, SAT 6∈ SPACE[logd n]-uniform SIZE-DEPTH[n ·
(logn)c, (logn)d].

With respect to the depth measure, Theorem 6 is an improvement over previous uniform
circuit lower bounds for SAT, which established O(logn)-depth limitations (for bounded
fan-in and “semi-unbounded” fan-in models). The proof uses the machinery of “alternation-
trading proofs” for SAT lower bounds [10, 11, 30], where one assumes a very good SAT
algorithm exists, and uses it along with known alternating “speed-up” theorems to derive
a contradiction to a known result (generally, some time hierarchy theorem). We show how
to use the assumed SAT circuits to obtain a contradiction to the space hierarchy theorem,
rather than a time hierarchy. This alternate approach leads to stronger results.

Finally, we observe (via old ideas) that the easiness amplification results of Lemma 4 also
hold for SAT:

I Theorem 7. If SAT has Õ(n)-size circuits, then QBF has 2Õ(
√
n)-size circuits.

This is evidently a new connection between the relative circuit complexity of NP and
PSPACE problems. The proof of this theorem can be found in Appendix B.

1.2 Intuition and Comparison
While our lower bounds do apply some ideas from prior work, the proofs of Theorem 2 and 3
have a particular inductive structure that is new to circuit lower bound proofs.3 The key
idea in our lower bounds is encapsulated by the following special case of Lemma 4:

I Lemma 8 (Amplification From Circuit Composition: Special Case). For every ε > 0, if Cir-
cuit nε-Composition has n1+o(1) size circuits, then every problem solvable in LOGSPACE
has n1+o(1) size circuits.

Note there are no uniformity assumptions on the circuits in the lemma: the circuits may
be arbitrary. This is a strong lower bound amplification result for a particular problem

3 Readers who doubt this claim are invited to read the “Comparison With Prior Work” below.

C.D. Murray and R. R. Williams 8:7

in n1+ε time: small circuits for Circuit nε-Composition imply small circuits for all of
LOGSPACE.

Let us sketch how the lemma is proved. Let M be a machine running in logarithmic
space, and assume that small n1+o(1)-size circuits exist for Circuit nε-Composition. Such
circuits take two inputs: the description of a smaller circuit C, and an input y to C. We first
set the input circuit C to be a Õ(n)-size circuit C0(x, ·) which simulates one step of M on
an arbitrary input x of length n: treating the input y as an O(logn)-bit configuration of M
on x, C0(x, y) outputs the configuration y′ corresponding to the next step of M on x. Then,
n1+o(1)-size circuits for Circuit nε-Composition can be used to construct n1+o(1)-size
circuits {C ′n} which can simulate M on x for about nε steps, by composing C on the input
y for nε times (using O(logn) copies, one for each bit of the output configuration).

Now suppose we feed the C ′n circuits as input to Circuit nε-Composition instead of
the C0 circuits, and repeat the above argument. Note that the C ′n’s are only slightly larger
than the C0’s. The circuits C ′n (which simulate nε steps) are being composed for nε times on
the input y. Thus we obtain n1+o(1)-size circuits {C ′′n} which can simulate arbitrary logspace
computations for about n2ε steps. (Please note that this is not obviously true, and our
wording here should be taken only as intuition. For example, we have not specified here how
to handle arbitrary inputs x of length n.) Once we have the right setup, we can “repeat” the
argument for O(k/ε) times, each time with the new circuit family obtained from the previous
iteration plugged in. From this it will follow that nk-time log-space computations have
n1+o(1)-size circuits. In particular, given that small-space computations always have small
configurations, and assuming we have nearly-linear size circuits that can simulate LOGSPACE
for a moderate number of steps, we can concoct new circuits which can simulate LOGSPACE
for an arbitrary polynomial number of steps, while keeping the circuit size around n1+o(1).

To prove the main circuit lower bound of Theorem 2, we start by assuming that General
Circuit nε-Composition has logspace-uniform n1+o(1)-size circuits, and wish to derive a
contradiction. First we note that General Circuit nε-Composition is “complete” for
n1+ε time in a certain precise sense, and thus cannot be solved faster than this bound. Using
the argument of the above paragraph, we derive that every language in LOGSPACE also has
almost-linear-size circuits. But if every language in LOGSPACE has small circuits, it can be
shown that every logspace-uniform circuit family can be produced by very small circuits, by
a “de-padding”’ trick of Santhanam and Williams [25] which gives the uniform algorithm
much smaller inputs. Indeed, assuming LOGSPACE has almost-linear-size circuits, it can
be shown that every problem with small logspace-uniform circuits can also be decided very
efficiently, with only o(n) bits of advice. We can use this consequence to prove that General
Circuit nε-Composition is solvable so efficiently that it contradicts our earlier time lower
bound for the problem.

Note that if the original circuits for Circuit nε-Composition are assumed to be uniform
(or of low depth, respectively) then the composition circuits in the above iterated constructed
are also uniform (or of low depth, respectively). The main goal in the proof of the depth lower
bound (Theorem 3) is to extend the above amplification lemma to simulate all problems in
SPACE[(logn)d] with uniform circuits of depth only o(logn)d. But such circuits can always
be evaluated in SPACE[o((logn)d)], so this consequence contradicts the space hierarchy.

We observe that (in contrast to the techniques of Santhanam and Williams) the proof
technique in the amplification lemma looks to be inherently non-relativizing. The first circuit
in our composition only simulates a logspace machine for one step, and our composition
problem only simulates a given circuit for some nε steps, crucially using the fact that the
output of the circuit (the configuration size) is only no(1) bits at every stage of the induction.

CCC 2017

8:8 Easiness Amplification and Uniform Circuit Lower Bounds

Informally, there is no “room” in our circuit simulation of LOGSPACE to write down long
oracle queries. To confirm this intuition, we construct an oracle relative to which our main
lower bound is false, in Appendix A.

The analogous lower bound results for SAT follow from the fact that the circuit composition
problem can also be solved using alternations rather than computing it serially: one can
simply (existentially) guess the intermediate values output in the circuit composition, and
(universally) verify the outputs in parallel. If SAT has nearly-linear-size circuits, then ΣkSAT
also has nearly-linear-size circuits, which also allows for a very efficient circuit simulation of
small-space computation.

Comparison With Prior Arguments

We argue that the above proof technique (behind Lemma 4, Theorem 2, and Theorem 3) is
a fundamentally different way to derive an efficient simulation of small-space computation,
compared to earlier arguments.

1. SAT Time-Space Lower Bounds. In the SAT time-space lower bounds based on extending
Savitch’s theorem (such as Fortnow-Lipton-Van Melkebeek-Viglas [10, 11]), the use of
alternating computation is critical: generalizing Savitch’s Theorem, one constructs a
simulation which “guesses” a few configurations of a small-space machine that will be
visited later in the computation, then “universally verifies” the guesses independently.
In this way, the simulation problem for a small-space computation is partitioned into
small parts which can then be solved independently (in parallel). The proof of the
Easiness Amplification Lemma (Lemma 4) uses no alternation or parallelism. Indeed,
Lemma 4 shows how the serial process of simulating a small-space computation for t
steps can be self-improved by assuming that n1+ε steps can be simulated with n1+o(1)

-size circuits, and repeatedly feeding “small circuit copies” into circuits which perform
this efficient step simulation. Note that in our later lower bounds for SAT, we do
use alternations, showing that this methodology can derive similar results but under a
seemingly stronger assumption (namely, the assumption “SAT has small circuits” instead
of “circuit composition has small circuits”).

2. Hardness Amplification From Self-Reducibility. The proof technique here is also different
from earlier arguments based on the self-reducibility of a problem (such as those found in
Lipton-Viglas, Allender-Koucky, and Lipton-Williams [18, 2, 19]). In those arguments,
one decomposes a given computation into disjoint “parts”, applies an assumed “good”
simulation to each part separately, then proves that the new overall simulation is now
similarly “good.” The results proven in these papers are hardness amplifications: given a
“pretty good” simulation of some particular kind of resource-bounded computation, we can
obtain an extremely efficient simulation of the same bounded computation. (For example,
if the NC1-complete formula evaluation problem has TC0 circuits of polynomial size, then
it also has TC0 circuits of n1.0001 size [2]. Thus a weak TC0 size lower bound against this
NC1 problem would separate NC1 from TC0.) Our results have a different character: we
show that if one can simulate ultra-efficient computations with small circuits, then one can
simulate all “pretty good” computations with small circuits. We are improving the class
of computations being simulated, instead of improving the simulation itself. Again, this is
the difference between hardness amplification and what we call “easiness amplification.”

3. Top-Down Versus Bottom-Up. In Lemma 4, we begin with a small circuit that simulates
one step of the computation correctly, and apply the hypothesis in a way that lets us
build a (slightly larger) circuit simulating nε steps correctly. From that circuit, and our

C.D. Murray and R. R. Williams 8:9

hypothesis, we build another (slightly larger) circuit simulating n2ε steps correctly, and
so on, until we have obtained a small circuit which can simulate nk steps correctly for
any desired k. Methodologically, this is a “bottom-up” way of simulating small-space
computations faster: building up small circuits for simulating long running times, starting
with a trivial circuit for simulating one step.
This should be contrasted with the “top-down” approach of extensions of Savitch’s
Theorem in item 1 above, where one guesses a way to partition the computation into
pieces, then verifies the pieces recursively. The arguments based on self-reducibility
in item 2 above also have a “top-down” form: they start by decomposing the entire
computation into small parts, then substitute small copies of an improved circuit in place
of each of the parts. Because we view the machine simulation problem in a bottom-up way,
this allows us to prove a lower bound on a much simpler problem (a circuit composition
problem solvable in n1+ε time) compared to earlier unconditional lower bounds of this
type (for SAT and for QBF).

The most canonical results in the same spirit of our work are classical theorems such as
NP ⊂ P/poly⇒ PH ⊂ P/poly, where one replaces the quantifiers in a Σk computation by
larger circuits. Of course there are other obvious differences there: in our setting, we want to
keep the circuit size basically fixed (around n1+o(1)) and we want to increase the running
times of the problems we can solve with such circuits, in each inductive step. As far as we
can tell, we need to be simulating small-space computations to pull off this kind of easiness
amplification. It would be highly desirable to remove the small-space restriction in these
lower bounds.

2 Preliminaries

We assume basic familiarity with concepts in complexity theory [4]. Below are some definitions
and notions specific to this paper.

I Definition 9. A language L is in the class TISP[t(n), s(n)] if it can be decided in O(t(n))
time and O(s(n)) space simultaneously on a multitape Turing machine.

In our results on the SAT problem, we also use standard notions of alternating Turing
machines:

I Definition 10. A language L is in the class Σa(n)TISP[t(n), s(n)] if it can be decided in
O(t(n)) time and O(s(n)) space simultaneously on a multitape Turing machine using at most
a(n) alternations.

Sometimes we say “algorithm” instead of “multitape Turing machine.” These should be
thought of as synonymous. We need the multitape model to ensure that our algorithmic
computational model has an efficient translation to small-size circuits.

In the following, let C be any time or space complexity class (such as TIME[n2], P,
SPACE[log2 n], etc.). For a circuit C, let |C| be the length of its description in binary.

I Definition 11. A C-uniform circuit family {Cn} has the property that there is a multitape
Turing machine A implementable in C, such that for every n, A(1n) prints the |Cn|-length
description of Cn in binary. (Strictly speaking, as the class C consists of decision problems,
A should output only one bit. This is easily accommodated by requiring for all n and
i = 1, . . . , |Cn| that A(1n, i) outputs the ith bit of the description of Cn.)

CCC 2017

8:10 Easiness Amplification and Uniform Circuit Lower Bounds

For example, a P-uniform circuit family comes with a polynomial-time multitape Turing
machine A which on 1n prints the nth circuit in the family.

For a language L ⊆ {0, 1}?, define Ln = L ∩ {0, 1}n to be the strings in L of length n. A
language L is in SIZE[s(n)] if for every n ≥ 0, there is a circuit of at most s(n) gates that
computes Ln. L is in DEPTH[d(n)] if for every n ≥ 0 there is a circuit that computes Ln
such that the longest path from source to sink in this circuit has length at most d(n). L
is in SIZE-DEPTH[s(n), d(n)] if for every n ≥ 0 there is a circuit with at most s(n) gates
computing Ln such that the longest path in the circuit has length at most d(n). For example,
the class NC1 can be rewritten as SIZE-DEPTH[nO(1), O(logn)]. The following observation
is useful in our depth lower bounds:

I Proposition 12. SPACE[s(n)]-uniform DEPTH[s(n)] ⊆ SPACE[s(n)].

Proof. For a circuit family {Cn} that is s(n)-space uniform, on an n-bit input we can
always use O(s(n)) space to generate any gate information of the circuit Cn necessary for a
simulation. Because Cn also has s(n) depth, we only require O(s(n)) additional space to
simulate it (for a reference, see Vollmer [29]). J

Generalized Circuit Composition

In the following, let Z : {0, 1}k → {0, 1}k be a function that always returns 0k.

I Definition 13. In the General Circuit t-Composition problem, we are given:
A k-bit input x.
A circuit Cin of size n over the basis {AND,OR,NOT} implementing a function from
3k bits to k bits (where k can range up to n).
A circuit Cout of size t over the basis {Cin, Z}, implementing a function from k bits to k
bits. In particular, Cout is presented as a DAG, where every node has indegree 0, 1, or 3;
every edge of Cout carries a k-bit string.
An integer j in 1, . . . , k.

The input is accepted iff the jth bit printed by Cout(x) is 1.

That is, every node in Cout of indegree 3 implements Cin, taking in 3k bits and outputting
k bits.) We need indegree 3 in order to carry out a multitape TM simulation effectively.)

In our lower bound proofs, we only require two key properties of General Circuit
t-Composition.
1. The first is that n-IO Circuit t-Composition for a circuit C is a special case of the

General Circuit-t-Composition Problem. This is true because n-IO Circuit
t-Composition corresponds to the case where Cout is simply a straight line of t copies
of Cin, where Cin(x, 0k, 0k) = C(x) for all x.

2. The second property is that General Circuit t-Composition is essentially complete
for Õ(nt) time, as the below theorem demonstrates.

I Theorem 14. Let L ∈ TIME[n1+ε]. L can be reduced in Õ(n) time to General Circuit
nε-Composition.

Proof (Sketch). Let M be multitape Turing machine for L. We follow the proof of the
Size Reduction Lemma (Lemma 3.2) in Lipton and Williams [19], which shows how to
“decompose” an arbitrary time n1+ε computation into circuits of size nε in which every gate
takes a constant number of O(n)-bit “blocks” of input, simulates an O(n)-time machine M ′
on the blocks, and outputs an O(n)-bit block.

C.D. Murray and R. R. Williams 8:11

In particular, they convert M into an equivalent two-tape oblivious M ′ (where, for every
n and input x of length n, the tape head movements of M ′(x) depend only on n). M ′

runs in t = Õ(n1+ε) time, via the Hennie-Stearns simulation [14]. This oblivious two-tape
simulation is polylog-time uniform, in that we can determine the head positions in any given
step i = 1, . . . , t in poly(log t) time.

Next, M ′ is made block-respecting in the sense of Hopcroft-Paul-Valiant [15]. This is a
machine M ′′ running in t′(n) = O(t(n)) time, whose computation can be neatly partitioned
into t′(n)

b(n) time blocks of O(b(n)) steps each, and each tape is partitioned into O(t
′(n)
b(n)) tape

blocks of O(b(n)) cells each, for any constructible b(n) ≤ t(n). We set b(n) = O(n). For each
time block, and each tape head, the head stays within exactly one tape block. Therefore each
time block can be viewed as running on an input of O(b(n)) bits, and each block outputs
O(b(n)) bits (the new content of those tape blocks). The Hopcroft-Paul-Valiant simulation
maintains the obliviousness of M ′.

For our generalized circuit composition instance, the circuit Cin simply simulates a time
block of length b(n), assuming the initial input is of length n. It takes O(n) bits and outputs
O(n) bits, having Õ(n) size. The circuit Cout connects these nε time blocks together: each
gate of Cout implements a time block. Cout is built by determining the head movements of
the oblivious M ′′ spaced nε steps apart, and wiring together time blocks that share common
tape blocks (or adjacent time blocks that share adjacent tape blocks, depending on the head
position). By design, the resulting circuit Cout is equivalent to the original Turing machine
M on n-bit inputs. J

As a corollary, there is a constant c > 0 such that General Circuit nε-Composition
needs at least n1+ε/(logn)c time, by the time hierarchy theorem.

2.1 Simulating Bounded Space
Many results we obtain stem from composing circuits that simulate space-bounded computa-
tions. The following notion is useful:

I Definition 15. Fix a machine M , and an input length n. The simulation machine
Simt(n)(x, c, i) takes a string x of length n, configuration c of M on x, and an index bit i,
simulates M(x) from configuration c for t(n) steps, then outputs the ith bit of the resulting
configuration c′.

For machines M running in space s(n), Simt(n) has circuits of size Õ(t(n) · (n+ s(n))).
In our amplification lemma (Lemma 4), we construct much more efficient circuits, assuming
circuit composition has small circuits.

3 LOGSPACE-Uniform Circuit Lower Bounds

We begin this section with our amplification lemma, which is used to prove most of the
following results.
I Reminder of Lemma 4. Let ε > 0 and let s(n) ≤ Õ(n).

If s(n)-IO Circuit nε-Composition has Õ(n) size circuits, then every problem in
TISP[nk(n), s(n)] has n ·(logn)O(k(n)/ε) size circuits, for all constructible functions k(n) ≤
O(logn/ log logn).
If s(n)-IO Circuit nε-Composition has n1+o(1) size circuits, then for every constant
k ≥ 1, every problem in TISP[nk, s(n)] has n1+o(1)-size circuits.

CCC 2017

8:12 Easiness Amplification and Uniform Circuit Lower Bounds

Proof. We start by proving the first bullet. Assume s(n)-IO Circuit nε-Composition has
Õ(n) size circuits. Recall that s(n)-IO Circuit nε-Composition takes as input a circuit C
with s(n) inputs and s(n) outputs, a string y ∈ {0, 1}k, and an index i, then prints the ith
bit of the nε-fold composition of C on y.

By assumption, s(n)-IO Circuit nε-Composition has a circuit family {En} of O(n ·
(logn)d) size.

Now take an arbitrary L ∈ TISP[nk(n), s(n)] for some function k(n) ≤ O(logn/ log logn),
and let M be a machine recognizing L in nk(n) time and s(n) space. We will show that L
has circuits of size n · (logn)O(k(n)/ε), by constructing the circuit inductively.

For the base case, let M0(x, c, i) = Sim1 (from Definition 15) be a machine which
simulates M on x from the configuration c for one step, then outputs the ith bit of the next
configuration. This simulation can easily be done in linear time, by first looking up the input
bit read by the input head, simulating one step of the computation, then outputting the ith
bit of the resulting configuration. By the usual conversion of algorithms into circuits, there
is a circuit family that is equivalent to Sim1 with n · (logn)a size for some constant a. Let
C0(x, c, i) denote a generic circuit from this family. We choose a convention for expressing
the description of C0 such that, given a bit string D which is the description of C0, and
given an n-bit input x, a description Dx of the circuit C0(x, ·) (i.e., the first n inputs of C0
are filled in with the bits of x) is obtained by substituting the n bits of x into n particular
bit positions i1, . . . , in of the description D. Such a description only takes O(z log z) bits to
describe, where z the circuit size.

Now fix b ≥ 0. Suppose we have constructed a circuit Cb(x, c, i) = Simnε·b of size
n · (logn)a+b·(d+1) that simulates nε·b steps of the machine M on x of length n. Consider
the circuit

Cb+1(x, c, i) := En·(logn)a+b·(d+1)+1(Cb(x, ·), c, i) .

(Note that by our convention for encoding circuits, Cb(x, ·) should be construed as a bit string
but with n bit positions that are unassigned free variables.) Since the language s(n)-IO
Circuit nε-Composition simulates nε·b steps of M with each evaluation of the circuit Cb,
and the circuit Cb is being composed for nε times, Cb+1(x, c, i) simulates nε·b · nε = nε·(b+1)

steps of M on x.
Furthermore, since the circuit Cb is of size O(n·(logn)a+b·(d+1)), the binary representation

of Cb has length ` = O(n · (logn)a+b·(d+1)+1). Therefore the input to the circuit Cb+1 has
length O(`), and the size of the circuit Cb+1 would then be of size

O(` · (log `)d) ≤ O(n · (logn)a+b·(d+1)+1 · (log(n(logn)a+b·(d+1)+1)d)).

For b < logn/ log logn, we have n loga+b·d n ≤ n1+d loga n; in that case, the size bound can
be simplified to

O(n · (loga+b·(d+1)+1 n) · (logn)d) = O(n loga+b·(d+1)+(d+1) n) = O(n loga+(b+1)·(d+1) n).

We have shown that given a circuit Cb of size O(n · (logn)a+b·(d+1)) that simulates nε·b
steps of M on x, we can construct a circuit Cb+1 of size O(n loga+(b+1)·(d+1)) that simulates
nε·(b+1) steps of M on x. Therefore for every b ≤ o(logn/ log logn), there is a circuit Cb of
size n · (logn)O(b) that simulates nε·b steps of the space-s(n) machine M . Setting b = k(n)/ε
and c to be the initial configuration of M on inputs of length n, we obtain a circuit Ck(n)/ε
of size n · (logn)O(k(n)/ε) that can simulate the entire computation of M and output the
final configuration of M(x), which can then be used to decide L. Since L was arbitrary, we

C.D. Murray and R. R. Williams 8:13

conclude that

TISP[nk(n), s(n)] ⊆ SIZE[n · (logn)O(k(n)/ε)],

which completes the proof of the first bullet.
To prove the second bullet, let ε ∈ (0, 1) and k ≥ 1 be constant. We run the same

argument on an arbitrary machine M using nk-time and s(n)-space, but instead we assume
there are n1+1/f(n)-size circuits for the nε-composition problem, where f(n) is an unbounded
function. For every constant b ≥ 0, tracking the growth of Cb in the above argument, we
obtain a circuit Cb(x, c, i) of size at most n(1+1/f(n))db (for some universal constant d > 0)
for simulating nεb steps of M on an input of length n. By setting b := k/ε as in the previous
case, the resulting circuit Cb can then simulate M entirely on all inputs of length n. We can
define an unbounded function g : N→ N such that

(1 + 1/f(n))log f(n) ≤ 1 + 1/g(n)

for all n. Then for all constants b and for all sufficiently large n, the size of Cb is n(1+1/f(n))db ≤
n(1+1/f(n))log f(n) ≤ n1+1/g(n) ≤ n1+o(1). J

One property of note in the above proof is that uniformity can be applied to the circuits,
without changing the argument. For example, if the small circuits for nε-circuit composition
are LOGSPACE-uniform, then the small circuits for TISP[nk, s(n)] are also LOGSPACE-
uniform, assuming that k is constant (the argument becomes more complicated when adding
an unbounded number of iterations).
I Reminder of Theorem 2. For 0 < ε < 1, the decision problem General Circuit
nε-Composition does not have LOGSPACE-uniform n1+o(1) size circuits.

Proof. Assume there is an ε > 0 such that General Circuit nε-Composition has
LOGSPACE-uniform circuits of n1+o(1) size. Since Circuit nε-Composition is a special
case of the general problem, it must also have such circuits. Therefore by Lemma 4, our
assumption implies that for every constant c ≥ 1, every problem in TISP[nc, O(logn)] has
n1+o(1)-size circuits as well. That is, we have

LOGSPACE ⊂ SIZE[n1+o(1)]. (1)

Since the circuits for General Circuit nε-Composition are LOGSPACE-uniform,
there is an O(logn)-space algorithm A that on input 1n prints a n1+o(1)-size circuit Cn
computing General Circuit nε-Composition on n-bit instances. We are going to prove
that General Circuit nε-Composition can be simulated in n1+ε/2 time with about nε/2
bits of advice, implying a contradiction.

Similar to Santhanam and Williams [25], our next move is to define, for every rational α ∈
(0, 1), a padded language Lα = {(1nα , n, i) | the ith bit of the circuit printed by A(1n) is 1}.

When α ∈ (0, 1) is a fixed constant, we note the following properties of Lα:
(a) Lα is in LOGSPACE: on an m-bit instance (1nα , n, i), a machine deciding Lα only has to

simulate A on 1n in O((logm)/α) space, and maintain a (1 + o(1)) logn-bit counter for
i, until the ith output bit of A(1n) is printed. (Note that (1 + o(1)) logn ≤ O(logm).)
Hence by (1), Lα has an n1+o(1)-size circuit family {Dm}, for every α > 0.

(b) For an integer n > 0, if we want to know bits of the circuit printed by A(1n), the length
of a relevant instance of Lα is only |(1nα , n, i)| ≤ O(nα). Let m(n) be the length of such
an instance. On m(n)-bit instances, Lα outputs bits describing an n1+o(1)-size circuit
Cn which in turn solves n-bit instances of General Circuit nε-Composition.

CCC 2017

8:14 Easiness Amplification and Uniform Circuit Lower Bounds

Let α = ε/2. We can decide General Circuit nε-Composition in Õ(n1+ε/2) time
with only nε/2+o(1) bits of advice, as follows. On n-bit instances of the problem, our advice
string is a description of the circuit Dm(n) of size m(n)1+o(1) for Lε/2 from item (a) above.
From item (b), the length of the advice string is m(n)1+o(1) ≤ nε/2+o(1). Given Dm(n), our
machine for circuit composition will evaluate Dm(n) on (1nα , n, i) for all i = 1, . . . , n1+o(1).
This evaluation will, by definition, generate a description of an n1+o(1)-size circuit Cn that
solves n-bit instances of our problem. Sending the n-bit input to Cn, we can decide General
Circuit nε-Composition in time n1+o(1) ·m(n)1+o(1) ≤ n1+ε/2+o(1), with nε/2+o(1) bits of
advice.

However, since General Circuit nε-Composition is hard for TIME[n1+ε] under Õ(n)-
time reductions (Lemma 14), it follows from our simulation that every language in TIME[n1+ε]
is contained in TIME[n1+ε/2+o(1)]/nε/2+o(1). This contradicts the time hierarchy theorem
with sub-linear advice (which is folklore; see [25] for a proof). J

I Reminder of Corollary 5. If n-IO Circuit nε-Composition has Õ(n) size circuits, then

TISP
[
n(logn)/ log logn, Õ(n)

]
⊆ SIZE[O(n2)].

By a standard padding argument, we also have TISP
[
2n, 2
√
n logn

]
⊆ SIZE

[
2O(
√
n logn)

]
.

Proof. We wish to maximize the time bound nk(n) in the consequence of Lemma 4 such that
the hypothesis impliesO(n2)-size circuits for that time bound. This can be done by setting n =
(logn)c1·k(n)/ε for a constant c1 > 0. Solving for k(n), we find k(n) = c2 · ε(logn)/(log logn)
for a constant c2 > 0. By Lemma 4, when s(n)-IO Circuit nε-Composition has Õ(n)
size circuits we have TISP[2cε(logn)2/ log logn, O(n)] ⊆ SIZE[n2]. By padding the input by
n 7→ 2O(

√
n logn), we also conclude that TISP[2n, 2O(

√
n logn)] ⊆ SIZE[2O(

√
n logn)]. J

4 Log-Depth Circuit Lower Bounds

We now turn to proving uniform lower bounds for composing circuits of low depth. We can
also prove an amplification lemma in this regime:

I Lemma 16. Let ε > 0, c, d ≥ 1, and e ∈ [1, d). Let k(n) = o(logn/ log logn) be
constructible. If (logn)d-Depth Circuit nε-Composition has SPACE[(logn)e]-uniform
circuits of n · (logn)c size and O((logn)e) depth, then every problem in TISP[nk(n), (logn)d]
has SPACE[(logn)e]-uniform circuits of n · (logn)(c+1)·k(n)/ε size and O((logn)e) depth.

Proof. The proof is similar to Lemma 4. If we assume that (logn)d-Depth Circuit nε-
Composition has SPACE[(logn)e]-uniform circuits of n · (logn)c size and O((logn)e depth,
then we know that (logn)d-Depth Circuit nε-Composition can compose its own circuit
in the same way that Circuit nε-Composition can, since the depth of the circuit is
(logn)e = o((logn)d).

As a result, if one step of a SPACE[s(n)] computation can be simulated with a O(n)-
size (logn)d-depth circuit, then nε steps can be simulated with a O(n · (logn)c+1) size
circuit, n2ε steps can be simulated with a O(n · (logn)2·(c+1)) size circuit, and so on, using
the (logn)d-Depth Circuit nε-Composition circuits. Since these are constructed by
simply composing (logn)d-Depth Circuit nε-Composition circuits, if the original is
SPACE[(logn)e]-uniform and O((logn)e) depth then all of the constructed circuits will be
as well, as long as the circuit size remains polynomial-sized. By composing k(n)/ε times,

C.D. Murray and R. R. Williams 8:15

we can construct SPACE[(logn)e]-uniform n · (logn)O(k(n)/ε)-size O(logn)e-depth circuits for
TISP[nk(n), s(n)]. Setting s(n) = (logn)d completes the proof. J

I Reminder of Theorem 3. For every ε ∈ (0, 1), c ≥ 1, d ∈ (1, 2), and e < d, the problem
(logn)d-Depth Circuit nε-Composition does not have SPACE[(logn)e]-uniform circuits
of n · (logn)c size and O((logn)e) depth.

Proof. Assume there are ε > 0, d ∈ (1, 2), and e < d that (logn)d-Depth Circuit
nε-Composition has SPACE[(logn)e]-uniform circuits of n · (logn)c size and O((logn)e)
depth. Setting k(n) := (logn)d−1, we have d − 1 < 1 by assumption, therefore k(n) =
o(logn/ log logn). Applying Lemma 16 to our assumption, we can infer that the class
SPACE[(logn)d] = TISP[nO((logn)d−1), (logn)d] has SPACE[(logn)e]-uniform circuits of n ·
(logn)c size and O((logn)e) depth. That is, every problem in SPACE[(logn)d] also has
SPACE[(logn)e]-uniform circuits of O((logn)e) depth. But by Proposition 12,

SPACE[(logn)e]-uniform DEPTH[(logn)e] ⊆ SPACE[(logn)e],

so we have actually derived SPACE[(logn)d] ⊆ SPACE[(logn)e]. This contradicts the space
hierarchy theorem [27], because e < d. J

4.1 Depth Lower Bound for SAT
Now we show that the SAT problem does not have subquadratic-space-uniform Õ(n)-size
circuits of log2−ε n depth, for all ε > 0. The results here will take the typical form of
“alternation-trading proofs” [31], where one quickly simulates a space-bounded computation
with alternations, removes the alternations using efficient (assumed) SAT circuits, and
attempts to prove a contradiction. The key difference between our proof approach and prior
ones is that we are able to use the space hierarchy theorem to establish the contradiction,
which leads to a stronger space and depth lower bound.

We will use the following powerful simulation lemma of Reischuk (based on Nepomn-
jascii [20]) in our proof.

I Lemma 17 ([23], p.282). For constructible functions t1(n), t2(n), s(n) and a(n), we have
the containment

Σa(n)TISP[t1(n)t2(n), s(n)] ⊆ Σa(n)+t2(n)TISP[a(n) · s(n) + t1(n) · t2(n) · s(n), t1(n) · s(n)].

In general, Reischuk’s lemma shows how alternating computations with large time bounds
and small space bounds can be converted into alternating computations with much lower
time bounds and slightly larger space bounds.

We need another lemma showing how good SAT circuits can yield circuits for alternating
computations. It is similar to other arguments of this kind, but we include it for completeness:

I Lemma 18. Let c, d > 0. If SAT ∈ SPACE[(logn)d]-uniform SIZE-DEPTH[n · (logn)c,
(logn)d], then for k ≥ 1

ΣkTIME[n] ⊆ SPACE[(logn)d]-uniform SIZE-DEPTH[n · (logn)(c+1)·k, (logn)d].

Proof. The proof is by induction on k, the number of alternations. For k = 1, the statement
becomes NTIME[n] ⊆ SPACE[(logn)d]-uniform SIZE-DEPTH[n · (logn)c+1, (logn)d], which is
true by assumption.

CCC 2017

8:16 Easiness Amplification and Uniform Circuit Lower Bounds

Suppose that for some fixed value of k the lemma holds. Consider some L ∈ Σk+1TIME[n].
We can then construct a circuit of size n · (logn)(c+1)·(k+1) and depth O((logn)d) using
O((logn)d) space that computes L. Since L is verified in linear time, the number of bits of
nondeterminism in the first alternation is at most linear, so there is a ΠkTIME[n] verifier
V (x, y) for L that takes both the input x to L and the first set of nondeterministic bits
y as input and checks whether y is a valid witness that x ∈ L. By assumption, V has
SPACE[(logn)d]-uniform SIZE-DEPTH[n · (logn)(c+1)·k, (logn)d circuits.

Consider the Circuit-SAT instance that consists of the above circuit that computes
V as well as the input x that is meant to be the input of the original language L. The
description of this circuit is of size N = n · (logn)(c+1)·k+1, so by assumption there is a
circuit of size N · (logN)c = n · (logn)(c+1)·k+1 · (O(logn))c = n · (logn)(c+1)·(k+1) and depth
O((logN)d) = O((logn)d) computable in SPACE[(logN)d] = SPACE[(logn)d] that solves
this SAT instance.

Both the Πk verifier circuit for L and the Circuit-SAT circuit can be constructed in
SPACE[(logn)d], and by hard-coding the description of the verifier circuit as input to the
Circuit-SAT instance, the resulting circuit will solve L. Furthermore the size and depth of
the circuit is simply the size and depth of the Circuit-SAT instance, since the Πk circuit is
fed as a description (only the size of the description matters). This circuit then exists for
every L ∈ Σk+1TIME[n]. Therefore if

ΣkTIME[n] ⊆ SPACE[(logn)d]-uniform SIZE-DEPTH[n · (logn)(c+1)·k, (logn)d]

then

Σk+1TIME[n] ⊆ SPACE[(logn)d]-uniform SIZE-DEPTH[n · (logn)(c+1)·(k+1), (logn)d]

and the induction holds for all k ≥ 1.
Note that the above argument holds even if the circuits are non-uniform. Furthermore,

as long as the size of the circuits remain fairly small, k can also be a function of the input
size. If k(n) = o(logn/ log logn), then the circuits produced will still have n1+o(1)-length
descriptions at every step of the induction, since

n · (logn)(c+1)·o(logn/ log logn) ≤ n · no(c+1) = n1+o(1).

The main factor that determines the size, depth and uniformity of the next alternation in
the induction is the size of the previous circuit in the induction. Therefore, as long as that
circuit has Õ(n) size, the inductive step will hold. J

I Reminder of Theorem 6. For all d < 2, and all c ≥ 1,

SAT 6∈ SPACE[logd n]-uniform SIZE-DEPTH[n · (logn)c, (logn)d] .

Proof. Assume that SAT ∈ SPACE[(logn)d]-uniform SIZE-DEPTH[n · (logn)c, (logn)d]. We
will show that this assumption contradicts the space hierarchy theorem.

By Lemma 18, we conclude for constructible k(n) = o(logn/ log logn) that

Σk(n)TIME[n] ⊆ SPACE[(logn)d]-uniform SIZE-DEPTH[n · (logn)(c+1)·k(n), (logn)d]. (2)

Set s(n) = (logn)d′ in the following, where d < d′ < 2. Applying Lemma 17 with
a(n) = 0, t1(n) = O(n), t2(n) = s(n)/ logn, and s(n) arbitrary, we have the containment

SPACE[s(n)] = TISP[2O(s(n)), s(n)] ⊆ Σs(n)/ lognTIME[n · s(n)2/ logn].

C.D. Murray and R. R. Williams 8:17

Setting k(n) = s(n)/ logn and noting that s(n)/ logn = (logn)d′−1 = o(logn/ log logn), we
derive from the containment (2) that

Σs(n)/ lognTIME[n · s(n)2/ logn]

is contained in

SPACE[(logn)d]-uniform SIZE-DEPTH[n · s(n)2 · (logn)(c+1)·s(n)/ logn, O((logn)d)]
⊆ SPACE[(logn)d]-uniform DEPTH[O((logn)d)]
⊆ SPACE[o(s(n))]-uniform DEPTH[o(s(n))]
⊆ SPACE[o(s(n))]. (Proposition 12)

We have derived SPACE[s(n)] ⊆ SPACE[o(s(n))], which contradicts the space hierarchy
theorem [27]. J

5 Conclusion

In this paper, we showed how to “amplify” small-circuit upper bounds in a new way: if a
simple circuit composition problem has nearly-linear size circuits, then a much larger class
of problems also has nearly-linear size circuits. This led to new circuit lower bounds and
connections between lower bound problems. Many open problems have naturally arisen.

We have shown that TIME[n1+ε] does not have LOGSPACE-uniform linear-size circuits,
and the lower bound is non-relativizing. Can this be strengthened to P-uniform linear
circuits? Alternatively, can our lower bounds for circuit composition be generalized to
prove that TIME[nk] 6⊆ LOGSPACE-uniform SIZE[nk−ε], for any constant k?
We conjecture that the circuit composition problems defined in this paper, especially
General Circuit n-Composition, require non-uniform super-linear-size circuits. The
fact that we can at least rule out LOGSPACE-uniform circuits gives some hope that future
work can relax the uniformity conditions.
What additional consequences can be derived from assuming NP ⊂ SIZE[O(n)]? How well
can PSPACE-complete problems like QBF be solved with circuits, under this assumption?
From the results of this paper, we have that QBF has 2Õ(

√
n)-size circuits, assuming

SAT is in SIZE[O(n)] or assuming TIME[n1+ε] is in SIZE[O(n)]. Is it possible that
NP ⊂ SIZE[O(n)] implies PSPACE ⊂ P/poly?
Can we prove P 6⊂ PNP-uniform SIZE(O(n))? Is the problem equivalent to P 6⊂
SIZE(O(n))? A yes-answer would show that constructing these linear-size circuits cannot
even be done by a PNP process, progressing even closer to P 6⊂ SIZE(O(n)). We observe
that P 6⊂ SIZE(O(n)) is in fact equivalent to P 6⊂ PΣ2P-uniform SIZE(O(n)): in PΣ2P one
can guess and verify a linear-size circuit for a polynomial-time computation.

Acknowledgments. We thank the CCC referees for their helpful comments.

References
1 Miklos Ajtai. Determinism versus non-determinism for linear time RAMs (extended ab-

stract). In STOC: ACM Symposium on Theory of Computing (STOC), 1999.
2 Eric Allender and Michal Koucký. Amplifying lower bounds by means of self-reducibility.

J. ACM, 57(3):14:1–14:36, 2010.

CCC 2017

8:18 Easiness Amplification and Uniform Circuit Lower Bounds

3 Eric Allender, Michal Koucký, Detlef Ronneburger, Sambuddha Roy, and V. Vinay. Time-
space tradeoffs in the counting hierarchy. In Proceedings of the 16th Annual IEEE Con-
ference on Computational Complexity, Chicago, Illinois, USA, June 18-21, 2001, pages
295–302, 2001.

4 Sanjeev Arora and Boaz Barak. Complexity Theory: A Modern Approach. Cambridge
University Press, Cambridge, 2009.

5 Paul Beame, Michael E. Saks, Xiaodong Sun, and Erik Vee. Time-space trade-off lower
bounds for randomized computation of decision problems. J. ACM, 50(2):154–195, 2003.

6 Samuel R. Buss and Ryan Williams. Limits on alternation trading proofs for time-space
lower bounds. Computational Complexity, 24(3):533–600, 2015.

7 Stephen A. Cook. Deterministic CFL’s are accepted simultaneously in polynomial time
and log squared space. In STOC, pages 338–345, 1979.

8 Ning Ding. Some new consequences of the hypothesis that P has fixed polynomial-size
circuits. In Theory and Applications of Models of Computation TAMC, pages 75–86, 2015.

9 Magnus Gausdal Find, Alexander Golovnev, Edward A. Hirsch, and Alexander S. Ku-
likov. A better-than-3n lower bound for the circuit complexity of an explicit func-
tion. Electronic Colloquium on Computational Complexity (ECCC), 22:166, 2015. URL:
http://eccc.hpi-web.de/report/2015/166.

10 Lance Fortnow. Time-space tradeoffs for satisfiability. Journal of Computer and System
Sciences, 60(2):337–353, April 2000.

11 Lance Fortnow, Richard Lipton, Dieter van Melkebeek, and Anastasios Viglas. Time-space
lower bounds for satisfiability. J. ACM, 52(6):833–865, 2005.

12 Lance Fortnow, Rahul Santhanam, and Ryan Williams. Fixed polynomial size circuit
bounds. In Proceedings of 24th Annual IEEE Conference on Computational Complexity,
pages 19–26, 2009.

13 Juris Hartmanis and Richard Stearns. On the computational complexity of algorithms.
Trans. Amer. Math. Soc. (AMS), 117:285–306, 1965.

14 Frederick Hennie and Richard Stearns. Two-tape simulation of multitape Turing machines.
Journal of the ACM, 13(4):533–546, October 1966.

15 John Hopcroft, Wolfgang Paul, and Leslie Valiant. On time versus space. Journal of the
ACM, 24(2):332–337, April 1977.

16 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 62(4):512–530, 2001.

17 Richard Lipton. Some consequences of our failure to prove non-linear lower bounds on
explicit functions. In Proceedings of 9th Annual Structure in Complexity Theory Conference,
pages 79–87, 1994.

18 Richard J. Lipton and Anastasios Viglas. Non-uniform depth of polynomial time and space
simulations. In Proceedings of Fundamentals of Computation Theory, 14th International
Symposium (FCT), pages 311–320, 2003.

19 Richard J. Lipton and Ryan Williams. Amplifying circuit lower bounds against polynomial
time, with applications. Computational Complexity, 22(2):311–343, 2013.

20 V. Nepomnjascii. Rudimentary predicates and turing calculations. Soviet Mathematics –
Doklady, 11(6):1462–1465, 1970.

21 Nicholas Pippenger. On simultaneous resource bounds (preliminary version). In FOCS,
pages 307–311, 1979.

22 Nicholas Pippenger and Michael J. Fischer. Relations among complexity measures. J. ACM,
26(2):361–381, 1979.

23 Rüdiger Reischuk. Einführung in die Komplexitätstheorie. Teubner, 1990.
24 Walter L. Ruzzo, Janos Simon, and Martin Tompa. Space-bounded hierarchies and proba-

bilistic computations. J. Comput. Syst. Sci., 28(2):216–230, 1984.

http://eccc.hpi-web.de/report/2015/166

C.D. Murray and R. R. Williams 8:19

25 Rahul Santhanam and Ryan Williams. On uniformity and circuit lower bounds. Computa-
tional Complexity, 23(2):177–205, 2014. Preliminary version in CCC’13.

26 Richard Stearns, Juris Hartmanis, and Philip Lewis. Hierarchies of memory limited com-
putations. In Proceedings of the Sixth Annual Symposium on Switching Circuit Theory and
Logical Design, pages 179–190. IEEE, 1965.

27 Richard Stearns, Juris Hartmanis, and Philip Lewis. Hierarchies of memory limited com-
putations. In Proceedings of the Sixth Annual Symposium on Switching Circuit Theory and
Logical Design, pages 179–190. IEEE, 1965.

28 Dieter Van Melkebeek. A survey of lower bounds for satisfiability and related problems,
volume 7. Now Publishers Inc, 2007.

29 Heribert Vollmer. Introduction to circuit complexity: a uniform approach. Springer Science
& Business Media, 1999.

30 R. Ryan Williams. Time-space tradeoffs for counting NP solutions modulo integers. Com-
putational Complexity, 17(2):179–219, 2008.

31 Ryan Williams. Alternation-trading proofs, linear programming, and lower bounds. TOCT,
5(2):6, 2013.

32 Christopher Wilson. Relativized circuit complexity. Journal of Computer and System
Sciences, 31(2):169–181, 1985.

33 Stanislav Žák. A Turing machine time hierarchy. Theoretical Computer Science, 26(3):327–
333, October 1983.

A Oracle Relative to Which Polytime has Small Constructible
Circuits

In the following, we use the standard model of oracle computation for logarithmic space of
Ruzzo, Simon, and Tompa [24]: there is an special oracle tape that is write-only, its content
does not count towards the space bound, and the oracle tape is erased after each oracle query.

I Theorem 19. For every k ≥ 1, there is an oracle B such that every language solvable
in time nk with an oracle for B has O(n)-size B-oracle circuits constructible in logspace
equipped with an oracle for B.

Proof. Our construction is very similar to that of Wilson [32], who shows there are oracles
relative to which P has size O(n) circuits. To make the circuits logspace-constructible as
well, we add a simple but crucial modification to the oracle, which relies on having a fixed
polynomial upper bound on the running time.

Fix a constant k ≥ 1. In the following, let {Mi} be an enumeration of machines running
in at most nk + k steps, and let 〈·, ·〉 be an efficient pairing function. We construct the oracle
B in stages. In stage 0, we assign B to be the empty set.

In stage n:
Start with an empty set Sn. For every integer 1 ≤ i ≤ n and n-bit string x, execute Mi

on x with the current oracle B for nk + k steps. If Mi accepts x, put the pair 〈i, x〉 in Sn.
“Mark” every string that is queried by the Mi’s among these 2n executions. Note there
are at most (nk + k)n2n strings marked in this step, and the total number of marked
strings (over all stages 0, . . . , n) at this point is at most (nk + k)n2n+1.
Let yn be a string of length n+(k+1) logn+3k such that {〈i, x〉yn | 〈i, x〉 ∈ Sn} contains
no marked strings. There are t = nk+12n+3k such strings yn, so we are considering
t > (nk + k)n2n+1 different sets of strings over {0, 1}2n+(k+1) logn+3k. Hence at least one
of the sets does not contain a marked string. Put all 〈i, x〉yn in the oracle B.

CCC 2017

8:20 Easiness Amplification and Uniform Circuit Lower Bounds

Finally, put the set of strings {0nk+1+k+11j | the jth bit of yn is 1} in B as well, where
the j’s are construed as dlog2(n+ k logn+ 3k + 1)e-bit strings. Note that none of the
strings in this set can be marked in stage n, because all of them have length greater than
nk+1 + (k+ 1), and no Mi can query a string longer than nk + k over inputs x of length n.

Now, for any machine Mi and sufficiently large n� i, our circuit Cn computing Mi on
all inputs of length n consists of the single gate

B(〈i, x〉yn),

with the index i and the string yn hard-coded in Cn. By our construction of B, there is a
chosen string yn of length O(n) for which deciding 〈i, x〉yn ∈ B is equivalent to deciding if
Mi accepts x. The total number of wires (and hence size) in the circuit Cn is O(n).

Furthermore, for every machine Mi running in nk time, the circuits Cn for Mi can also
be constructed in O(k logn) space with an oracle for B. Given the string 1n, our logspace
machine Li for printing Cn first prints the index i of Mi in some natural encoding, and prints
n “sources” of Cn, indicating the inputs x1, . . . , xn. To construct the string yn, Li uses the
oracle B. In particular, the logspace machine Li has a counter which holds some integer
j = 1, . . . , n+ k logn+ 3k. For each j, Li prints 0nk+1+k+11j on the write-only oracle tape
(by maintaining a counter ` = 1, . . . , nk+1 + k + 1 for printing the zeroes) then queries B.
The j-th query answer tells Li the j-th bit of yn, so Li can output these bits as part of the
description of Cn. J

This oracle is especially interesting when contrasted with the lower bound of Santhanam
and Williams [25] that P 6⊂ P-uniform SIZE(O(n)). The proof of that lower bound does rela-
tivize (and thus is true for all oracles). The key difference between P 6⊂ P-uniform SIZE(O(n))
and the (non-relativizing) lower bound of Theorem 2 (general circuit composition is not in
LOGSPACE-uniform n1+o(1) size) seems to be that in the former, there is no fixed polynomial
upper bound on the complexity class (P) that is being simulated.

B Subexponential-Size Circuits for QBF from Small-Size Circuits for
SAT

We can also derive interesting new consequences from the assumption that the SAT problem
has Õ(n)-size circuits. They follow without much difficulty from the literature on SAT
time-space tradeoffs, but we feel the connections are worth recording.

I Claim 20 ([10]). If SAT ∈ TIME[O(n)] then there is a c > 0 such that for all k,
ΣkTIME[O(n)] ⊆ TIME[n · (logn)ck].

Proof. It is enough to show that SAT ∈ TIME[O(n)] implies that

ΣkTIME[O(n)] ⊆ Σk−1TIME[n · (logn)d]

for a fixed constant d > 0. Suppose SAT ∈ TIME[O(n)]. Then by an efficient Cook-Levin
Theorem (see for example [11]), we have NTIME[O(n)] ⊆ TIME[Õ(n)] and coNTIME[O(n)] ⊆
TIME[Õ(n)]. Let L ∈ ΣkTIME[O(n)] have an acceptance condition of the form:

∃x1∀x2 . . . QkxkM(x, x1, x2, . . . , xk) (3)

C.D. Murray and R. R. Williams 8:21

where M is a deterministic O(n)-time machine, and all xi’s are O(n)-length strings. Then
on the tuple of strings (x, x1, x2, . . . , xk−1), the expression

QkxkM(x, x1, x2, . . . , xk) (4)

represents a computation in coNTIME[O(n)], which by hypothesis is computable in Õ(n)
time. Let N be a deterministic machine that computes the value of (4) in Õ(n) time, given
(x, x1, x2, . . . , xk−1) as input. Then deciding the truth of

∃x1∀x2 . . . Qk−1xk−1N(x, x1, . . . , xk−1)

is equivalent to deciding (3). Thus L can be decided in Σk−1TIME[Õ(n)], which completes
the proof. J

I Corollary 21. If SAT ∈ TIME[O(n)] then LOGSPACE ⊆
⋃
k TIME[n · (logn)k].

Proof. We know that for every L ∈ LOGSPACE there is a k such that L ∈ ΣkTIME[O(n)].
Apply the above claim. J

I Claim 22. If SAT ∈ SIZE[O(n)] then there is a c such that for all k, ΣkTIME[O(n)] ∈
SIZE[n(logn)ck].

Proof. Similar to Claim 20. If SAT ∈ SIZE[O(n)] then NTIME[O(n)] ⊆ SIZE[Õ(n)], which
means that

ΣkTIME[O(n)] ⊆ Σk−1TIME[n logc n]/(n logc n) ⊆ . . .

⊆ TIME[n logck n]/(n logck n) ⊆ SIZE[n(logn)ck] . J

I Corollary 23. If SAT ∈ SIZE[O(n)] then LOGSPACE ⊆
⋃
k SIZE[n · (logn)k].

Specifically, we can relate the circuit complexity of SAT and QBF as follows:

I Reminder of Theorem 7. If SAT is in SIZE[Õ(n)] then QBF is in SIZE[2O(
√
n logn)].

Proof. Suppose SAT ∈ SIZE[Õ(n)]. By Claim 22, we have

Σk(n)TIME[O(n)] ⊆ SIZE[n(logn)c·k(n)]. (5)

Let a(n) = 0, s(n) = O((logn)2/ log logn), t2(n) = k(n), and t1(n) = n. Applying Lemma 17,
we have

TISP[nk(n), O((logn)2/ log logn)] ⊆ Σk(n)TIME[Õ(n)]. (6)

Setting k(n) = ε logn/(log logn) for sufficiently small ε > 0, we have

SPACE[ε(logn)2/ log logn] ⊆ TISP[n · 2ε(logn)2/ log logn), ε(logn)2/ log logn]

⊆ TISP[n1+ε logn/ log logn), ε(logn)2/ log logn] ⊆ Σ1+ε logn/ log logn)TIME[Õ(n)]

⊂ SIZE[n(logn)1+ε logn/ log logn)] = SIZE[n1+2ε].

By padding each language in SPACE[ε(logn)2/ log logn] to size N = 2O(
√
n logn), we have

(logN)2/ log logN ≤ O(n logn/ logn) ≤ O(n) and N2 ≤ 2O(
√
n logn), we can conclude that

SPACE[O(n)], which includes QBF, has circuits of size 2O(
√
n logn). J

CCC 2017

	Introduction
	Our Results
	Intuition and Comparison

	Preliminaries
	Simulating Bounded Space

	LOGSPACE-Uniform Circuit Lower Bounds
	Log-Depth Circuit Lower Bounds
	Depth Lower Bound for SAT

	Conclusion
	Oracle Relative to Which Polytime has Small Constructible Circuits
	Subexponential-Size Circuits for QBF from Small-Size Circuits for SAT

