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Abstract
We address the behavioral metric-based approximate minimization problem of Markov Chains
(MCs), i.e., given a finite MC and a positive integer k, we are interested in finding a k-state
MC of minimal distance to the original. By considering as metric the bisimilarity distance of
Desharnais at al., we show that optimal approximations always exist; show that the problem
can be solved as a bilinear program; and prove that its threshold problem is in PSPACE and
NP-hard. Finally, we present an approach inspired by expectation maximization techniques that
provides suboptimal solutions. Experiments suggest that our method gives a practical approach
that outperforms the bilinear program implementation run on state-of-the-art bilinear solvers.
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1 Introduction

Minimization of finite automata, i.e., the process of transforming a given finite automaton
into an equivalent one with minimum number of states, has been a major subject since the
1950s due to its fundamental importance for any implementation of finite automata tools.

The first algorithm for the minimization of deterministic finite automata (DFAs) is due
to Moore [27], with time complexity O(n2s), later improved by the now classical Hopcroft’s
algorithm [17] to O(ns logn), where n is the number of states and s the size of the alphabet.
Their algorithms are based on a partition refinement of the states into equivalence classes
of the Myhill-Nerode equivalence relation. Partition refinement has been employed in the
definition of efficient minimization procedures for a wide variety of automata: by Kanellakis
and Smolka [19, 20] for the minimization of labelled transition systems (LTSs) w.r.t. Milner’s
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strong bisimulation [26]; by Baier [4] for the reduction of Markov Chains (MCs) w.r.t.
Larsen and Skou’s probabilistic bisimulation [23]; by Alur et al. [2] and by Yannakakis and
Lee [30], respectively, for the minimization of timed transition systems and timed-automata.
This technique was used also in parallel and distributed implementations of the above
algorithms [31, 8], and in the online reachability analysis of transition systems [24].

In [18], Jou and Smolka observed that for reasoning about the behavior of probabilistic
systems (and more in general, all type of quantitative systems), rather than equivalences, a
notion of distance is more reasonable in practice, since it permits “a shift in attention from
equivalent processes to probabilistically similar processes”. This observation motivated the
development of metric-based semantics for quantitative systems, that consists in proposing
1-bounded pseudometrics capturing the similarities of the behaviors in the presence of small
variations of the quantitative data. These pseudometrics generalize behavioral equivalences
in the sense that, two processes are at distance 0 iff they are equivalent, and at distance 1 if
no significant similarities can be observed between them.

The first proposal of a behavioral pseudometric is due to Desharnais et al. [12] on labelled
MCs, a.k.a. probabilistic bisimilarity distance, with the property that two MCs are at distance
0 iff they are probabilistic bisimilar. Its definition is parametric on a discount factor λ ∈ (0, 1]
that controls the significance of the future steps in the measurement. This pseudometric
has been greatly studied by van Breugel and Worrell [28, 29, 10] who noticed, among other
notable results, its relation with the Kantorovich distance on probability distributions and
provided a polynomial-time algorithm for its computation.

The introduction of metric-based semantics motivated the interest in the approximate
minimization of quantitative systems. The goal of approximate minimization is to start from
a minimal automaton and produce a smaller automaton that is close to the given one in a
certain sense. The desired size of the approximating automaton is given as input. Inspired
by the aggregation of equivalent states typical of partition refinement techniques, in [15],
the approximate minimization problem has been approached by aggregating states having
relative smaller distance. An example of this approach on MCs using the λ-bisimilarity
distance of Desharnais et al. is shown below.
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LetM be the MC on the left and assume we want to approximate it by an MC with at most
5 states. Since m1,m2 are the only two states at distance less than 1, the most natural choice
for an aggregation shall collapse (via convex combination) m1 and m2, obtaining the MC in
the middle, which has distance 4

9 ( λ2

2−λ ) fromM. However, the approximate aggregation of
states does not necessarily yield the closest optimal solution. Indeed, the MC on the right is
a closer approximant ofM, at distance 1

6 ( λ2

2−λ ) from it.
In this paper we address the issue of finding optimal solutions to the approximate

minimization problem. Specifically we aim to answer to the following problem, left open
in [15]: “given a finite MC and a positive integer k, what is its ‘best’ k-state approximant?
Here by ‘best’ we mean a k-state MC at minimal distance to the original”. We refer to this
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problem as Closest Bounded Approximant (CBA) and we present the following results related
to it.
1. We characterize CBA as a bilinear optimization problem, proving the existence of optimal

solutions. As a consequence of this result, approximations of optimal solutions can be
obtained by checking the feasibility of bilinear matrix inequalities (BMIs) [22, 21].

2. We provide upper- and lower-bound complexity results for the threshold problem of CBA,
called Bounded Approximant problem (BA), that asks whether there exists a k-state
approximant with distance from the original MC bounded by a given rational threshold.
We show that BA is in PSPACE and NP-hard. As a corollary we obtain NP-hardness for
CBA.

3. We introduce the Minimum Significant Approximant Bound (MSAB) problem, that asks
what is the minimum size k for an approximant to have some significant similarity to
the original MC (i.e., at distance strictly less than 1). We show that this problem is
NP-complete when one considers the undiscounted bisimilarity distance.

4. Finally, we present an algorithm for finding suboptimal solutions of CBA that is inspired
by Expectation Maximization (EM) techniques [25, 7]. Experiments suggest that our
method gives a practical approach that outperforms the bilinear program implementation
– state-of-the-art bilinear solvers [21] fails to handle MCs with more than 5 states!

Related Work. In [16], the approximate minimization of MCs is addressed via the notion
of quasi-lumpability. An MC is quasi-lumpable if the given aggregations of the states can be
turned into actual bisimulation-classes by a small perturbation of the transition probabilities.
This approach differs from ours since there is no relation to a proper notion of behavioral
distance (the approximation is w.r.t. the supremum norm of the difference of the stochastic
matrices) and we do not consider any approximate aggregation of states. In [6], Balle et al.
consider the approximate minimization of weighted finite automata (WFAs). Their method
is via a truncation of a canonical normal form for WFAs that they introduced for the SVD
decomposition of infinite Hankel matrices. Both [16] and [6] do not consider the issue of
finding the closest approximant, which is the main focus of this paper, instead they give
upper bounds on the distance from the given model.

2 Markov Chains and Bisimilarity Pseudometric

In this section we introduce the notation and recall the definitions of (discrete-time) Markov
chains (MCs), probabilistic bisimilarity of Larsen and Skou [23], and the probabilistic bisimil-
arity pseudometric of Desharnais et al. [13].

For R ⊆ X ×X an equivalence relation, X/R denotes its quotient set and [x]R denotes
the R-equivalence class of x ∈ X. D(X) denotes the set of discrete probability distributions
on X, i.e., functions µ : X → [0, 1], s.t. µ(X) = 1, where µ(E) =

∑
x∈E µ(x) for E ⊆ X.

In what follows we fix a countable set L of labels.

I Definition 1 (Markov Chain). A Markov chain is a tuple M = (M, τ, `) consisting of a
finite nonempty set of states M , a transition distribution function τ : M → D(M), and a
labelling function ` : M → L.

Intuitively, if M is in state m it moves to state m′ with probability τ(m)(m′). Labels
represent atomic properties that hold in certain states. The set of labels ofM is denoted by
L(M) = {`(m) | m ∈M}. Hereafter, we useM = (M, τ, `) and N = (N, θ, α) to range over
MCs and we refer to their constituents implicitly.

ICALP 2017
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I Definition 2 (Probabilistic Bisimulation [23]). An equivalence relation R ⊆ M ×M is a
probabilistic bisimulation onM if whenever m R n, then
1. `(m) = `(n), and
2. for all C ∈M/R, τ(m)(C) = τ(n)(C).
Two states m,n ∈M are probabilistic bisimilar w.r.t.M, written m ∼M n if they are related
by some probabilistic bisimulation onM. In fact, probabilistic bisimilarity is the greatest
probabilistic bisimulation.

Any bisimulation R on M induces a quotient construction, the R-quotient of M, de-
notedM/R = (M/R, τ/R, `/R), having R-equivalence classes as states, transition function
τ/R([m]R)([n]R) =

∑
u∈[n]R

τ(m)(u), and labelling function `/R([m]R) = `(m). An MCM
is said minimal if it is isomorphic to its quotient w.r.t. probabilistic bisimilarity.

A 1-bounded pseudometric on X is a function d : X × X → [0, 1] such that, for any
x, y, z ∈ X, d(x, x) = 0, d(x, y) = d(y, x), and d(x, y) + d(y, z) ≥ d(x, z). 1-bounded
pseudometrics on X forms a complete lattice under the point-wise partial order d v d′ iff,
for all x, y ∈ X, d(x, y) ≤ d′(x, y).

A pseudometric is said to lift an equivalence relation if it enjoys the property that two
points are at distance zero iff they are related by the equivalence. A lifting for the probabilistic
bisimilarity is provided by the bisimilarity distance of Desharnais et al. [13]. Its definition is
based on the Kantorovich (pseudo)metric on probability distributions over a finite set X,
defined as K(d)(µ, ν) = min

{∫
d dω | ω ∈ Ω(µ, ν)

}
, where d is a (pseudo)metric on X and

Ω(µ, ν) denotes the set of couplings for (µ, ν), i.e., distributions ω ∈ D(X ×X) such that,
for all E ⊆ X, ω(E ×X) = µ(E) and ω(X × E) = ν(E).

I Definition 3 (Bisimilarity Distance). Let λ ∈ (0, 1]. The λ-discounted bisimilarity pseudo-
metric onM, denoted by δλ, is the least fixed-point of the following functional operator on
1-bounded pseudometrics over M (ordered point-wise)

Ψλ(d)(m,n) =
{

1 if `(m) 6= `(n)
λ · K(d)(τ(m), τ(n)) otherwise .

The operator Ψλ is monotonic, hence, by Tarski fixed-point theorem, δλ is well defined.
Intuitively, if two states have different labels δλ considers them as “incomparable” (i.e., at

distance 1), otherwise their distance is given by the Kantorovich distance w.r.t. δλ between
their transition distributions. The discount factor λ ∈ (0, 1] controls the significance of the
future steps in the measurement of the distance; if λ = 1, the distance is said undiscounted.

The distance δλ has also a characterization based on the notion of coupling structure.

I Definition 4 (Coupling Structure). A function C : M ×M → D(M ×M) is a coupling
structure forM if for all m,n ∈M , C(m,n) ∈ Ω(τ(m), τ(n)).

Intuitively, a coupling structure can be thought of as an MC on the cartesian productM×M ,
obtained as the probabilistic combination of two copies ofM.

Given a coupling structure C forM and λ ∈ (0, 1], let γCλ be the least fixed-point of the
following operator on [0, 1]-valued functions d : M ×M → [0, 1] (ordered point-wise)

ΓCλ(d)(m,n) =
{

1 if `(m) 6= `(n)
λ
∫
d dC(m,n) otherwise .

The function γCλ is called λ-discounted discrepancy of C, and the value γCλ(m,n) is the
λ-discounted probability of hitting from (m,n) a pair of states with different labels in C.
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I Theorem 5 (Minimal coupling criterion [10]). For arbitrary MCsM and discount factors
λ ∈ (0, 1], δλ = min

{
γCλ | C coupling structure forM

}
.

Usually, MCs are associated with an initial state to be thought of as their initial configur-
ations. In the rest of the paper when we talk about the distance between two MCs, written
δλ(M,N ), we implicitly refer to the distance between their initial states computed over the
disjoint union of their MCs.

3 The Closest Bounded Approximant Problem

In this section we introduce the Closest Bounded Approximant problem w.r.t. δλ (CBA-λ),
and give a characterization of it as a bilinear optimization problem.

I Definition 6 (Closest Bounded Approximant). Let k ∈ N and λ ∈ (0, 1]. The closest bounded
approximant problem w.r.t. δλ for an MCM is the problem of finding an MC N with at
most k states minimizing δλ(M,N ).

Clearly, when k is greater than or equal to the number of bisimilarity classes ofM, an
optimal solution of CBA-λ is the bisimilarity quotient. Therefore, without loss of generality,
we will assume 1 ≤ k < |M | andM to be minimal. Note that, under these assumptionsM
must have at least two nodes with different labels.

Let MC(k) denote the set of MCs with at most k states and MCA(k) its restriction to
those using only labels in A ⊆ L. Using this notation, the optimization problem CBA-λ on
the instance 〈M, k〉 can be reformulated as finding an MC N ∗ such that

δλ(M,N ∗) = min {δλ(M,N ) | N ∈ MC(k)} , (1)

In general, it is not obvious that for arbitrary instances 〈M, k〉 a minimum in (1) exists. At
the end of the section, we will show that such a minimum always exists (Corollary 9).

A useful property of CBA-λ is that an optimal solution can be found among the MCs
using labels from the given MC.

I Lemma 7 (Meaningful labels). LetM be an MC. Then, for any N ′ ∈ MC(k) there exists
N ∈ MCL(M)(k) such that δλ(M,N ) ≤ δλ(M,N ′).

In the following, fix 〈M, k〉 as instance of CBA-λ, let m0 ∈M be the initial state ofM.
By Lemma 7, Theorem 5 and Tarski fixed-point theorem

inf {δλ(M,N ) | N ∈ MC(k)} = (2)
= inf

{
γCλ(M,N ) | N ∈ MCL(M)(k) and C ∈ Ω(M,N )

}
(3)

= inf
{
d(M,N ) | N ∈ MCL(M)(k), C ∈ Ω(M,N ), and ΓCλ(d) v d

}
, (4)

where Ω(M,N ) denotes the set of all coupling structures for the disjoint union ofM and
N . This simple change in perspective yields a translation of the problem of computing the
optimal value of CBA-λ to the bilinear program in Figure 1.

In our encoding, N = {n0, . . . , nk−1} are the states of an arbitraryN = (N, θ, α) ∈ MC(k)
and n0 is the initial one. The variable θn,v is used to encode the transition probability θ(n)(v).
Hence, a feasible solution satisfying (9–11) will have the variable cm,nu,v representing the value
C(m,n)(u, v) for a coupling structure C ∈ Ω(M,N ). An assignment for the variables αn,l
satisfying (7–8) encodes (uniquely) a labeling function α : N → L(M) satisfying the following
property:

for all n ∈ N, l ∈ L(M) αn,l = 1 iff α(n) = l . (12)

ICALP 2017
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mimimize dm0,n0

such that λ
∑

(u,v)∈M×N c
m,n
u,v · du,v ≤ dm,n m ∈M , n ∈ N (5)

1− αn,l ≤ dm,n ≤ 1 n ∈ N , l ∈ L(M), `(m) 6= l (6)
αn,l · αn,l′ = 0 n ∈ N , l, l′ ∈ L(M), l 6= l′ (7)∑

l∈L(M) αn,l = 1 n ∈ N (8)∑
v∈N c

m,n
u,v = τ(m)(u) m,u ∈M , n ∈ N (9)∑

u∈M cm,nu,v = θn,v m ∈M , n, v ∈ N (10)
cm,nu,v ≥ 0 m,u ∈M , n, v ∈ N (11)

Figure 1 Characterization of CBA-λ as a bilinear optimization problem.

The constraint (7) models the fact that each node n ∈ N is assigned to at most one label
l ∈ L(M), and the constraint (8) ensures that each node is assigned to at least one label.
Conversely, any labeling α : N → L(M) admits an assignment of the variables αn,l that
satisfy (7–8) and (12). Finally, an assignment for the variables dm,n satisfying the constraints
(5–6) represents a prefix point of ΓCλ. Note that (6) guarantees that dm,n = 1 whenever
α(n) 6= `(m) – indeed, by (7), αn,l = 0 iff α(n) 6= `(m).

Let Fλ〈M, k〉 denote the bilinear optimization problem in Figure 1. Directly from the
arguments stated above we obtain the following result.

I Theorem 8. inf {δλ(M,N ) | N ∈MC(k)} is the optimal value of Fλ〈M, k〉.

I Corollary 9. Any instance of CBA-λ admits an optimal solution.

Proof. Let h be the number of variables in Fλ〈M, k〉. The constraints (6–11) describe a
compact subset of Rh – it is an intersection of closed sets bounded by [0, 1]h. The objective
function of Fλ〈M, k〉 is linear, hence the infimum is attained by a feasible solution. The
thesis follows by Theorem 8. J

The following example shows that even by starting with a MC with rational transition
probabilities, optimal solutions for CBA-λ may have irrational transition probabilities.

I Example 10. Consider the MC M depicted below, with initial state m0 and labeling
represented by colors. An optimal solution of CBA-1 on 〈M, 3〉 is the MC Nxy depicted
below, with initial state n0 and parameters x = 1

30
(
10 +

√
163
)
, y = 21

100 .

M =
m0 m1 m2 m3

m4

79
100

21
100

79
100

21
100

79
100

21
100

1

1

Nxy =
n0 n1

n2

y

1− x− y
x

1

1

Since the distance δ1(M,Nxy) = 436
675 −

163
√

163
13500 ≈ 0.49 is irrational, by [10, Proposition 13],

any optimal solution must have some irrational transition probability.
Next we show that the above is indeed an optimal solution. Assume by contradiction

that N ∗ 6∼ Nxy is an optimal solution. By Lemma 7, we can assume L(N ∗) ⊆ L(M). If
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L(N ∗) = L(M), then δ1(M,N ∗) = min {δ1(M,Nzy) | z ∈ [0, 1− y]} since one can show
that for any y′ 6= y and z′, there exists z ∈ [0, 1− y], such that δ1(M,Nzy) ≤ δ1(M,Nz′y′).
δ1(M,Nzy) is analytically solved by z3 − z2 − 21

100z −
79

100 and its minimum value is achieved
at z = 1

30
(
10 +

√
163
)
. This contradicts N ∗ 6∼ Nxy. Assume L(N ∗) ( L(M). By [10,

Corollary 11], for any measurable set A ⊆ Lω, δ1(M,N ∗) ≥ |PM(A)−PN∗(A)|, where PN (A)
denotes the probability that a run of N is in A. If `(m0) /∈ L(N ∗), we have that δ1(M,N ∗) ≥
|PM(`(m0)Lω) − PN∗(`(m0)Lω)| = PM(`(m0)Lω) = 1 > δ1(M,Nxy). Analogously, if
`(m3) /∈ L(N ∗) we have δ1(M,N ∗) ≥ PM(L∗`(m3)Lω) =

( 79
100
)3
> δ1(M,Nxy). Finally, if

`(m4) /∈ L(N ∗), δ1(M,N ∗) ≥ PM(L∗`(m4)Lω) = 21
100
∑2
i=0
( 79

100
)i
> δ1(M,Nxy). J

4 The Bounded Approximant Threshold Problem

The Bounded Approximant problem w.r.t. δλ (BA-λ) is the threshold decision problem of
CBA-λ, that, given MC M, integer k ≥ 1, and rational ε ≥ 0, asks whether there exists
N ∈ MC(k) such that δλ(M,N ) ≤ ε.

From the characterization of CBA-λ as a bilinear optimization problem (Theorem 8) we
immediately get the following complexity upper-bound for BA-λ.

I Theorem 11. For any λ ∈ (0, 1], BA-λ is in PSPACE.

Proof. By Theorem 8, deciding an instance 〈M, k, ε〉 of BA-λ can be encoded as a decision
problem for the existential theory of the reals, namely, checking the feasibility of the
constraints (6–11) in conjunction with dm0,n0 ≤ ε. The encoding is polynomial in the size of
〈M, k, ε〉, thus it can be solved in PSPACE (cf. Canny [9]). J

In the rest of the section we provide a complexity lower-bound for BA-λ, by showing
that BA-λ is NP-hard via a reduction from Vertex Cover. Recall that, a vertex cover of
an undirected graph G is a subset C of vertices such that every edge in G has at least one
endpoint in C. Given a graph G and a positive integer h, the Vertex Cover problem asks
if G has a cover of size at most h.

Before presenting the reduction we establish structural properties for an optimal solution
of CBA-λ in the case the given MC has injective labeling (i.e., no two distinct states with
the same label). Specifically, we show that an optimal solution for an instance 〈M, k〉 of
CBA-λ can be found among MCs with injective labeling into L(M).

I Lemma 12. IfM has injective labeling, there exists N ∈ MCL(M)(k) with injective labeling
that minimizes the distance δλ(M,N ).

I Lemma 13. For all m ∈M and n ∈ N , δλ(m,n) ≥ λ · τ(m)({u ∈M | `(u) /∈ L(N )}).

Note that Lemma 13 provides a lower-bound on the optimal distance betweenM and
any N ∈ MC(k). This lower-bound will be useful in the proof of the following result.

I Theorem 14. For any λ ∈ (0, 1], BA-λ is NP-hard.

Proof. We provide a polynomial-time many-one reduction from Vertex Cover.
Let 〈G = (V,E), h〉 be an instance of Vertex Cover and let e = |E|. Without loss of

generality we assume e ≥ 2 and k < n. From G we construct the MC MG = (M, τ, `) as
follows. The set of states M is given as the union of V and E to which we add two extra
states: a root r (thought of as the initial state) and a sink s. Each node ofMG is associated
with a unique label (i.e., ` is injective). The sink state s and all v ∈ V loop to themselves

ICALP 2017
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Figure 2 (Left) An undirected graph G; (Center) The MCMG associated to the graph G; (Right)
The MCMC associated to the vertex cover C = {2, 3} of G. (see Thm. 14).

with probability 1. All the other states go with probability 1− 1
e to the sink state s. The rest

of their transition probability mass is assigned as follows. The root r goes with probability 1
e2

to each a ∈ E, and all (u, v) ∈ E go with probability 1
2e to their endpoints u, v. An example

of construction forMG is given in Figure 2. Next we show that

〈G, h〉 ∈ Vertex Cover iff 〈MG, e+ h+ 2, λ
2

2e2 〉 ∈ BA-λ .

(⇒) Let C be a h-vertex cover of G. ConstructMC ∈ MC(e+ h+ 2) by taking a copy
ofMG, removing all states in V \ C, and redirecting the exceeding transition probability to
the sink state s (an example is shown in Figure 2). Next we show that δλ(MG,MC) ≤ λ2

2e2 .
For convenience, the states inMC will be marked with a bar. By construction ofMG,MC ,
for each a ∈ E, δλ(a, a) ≤ λ

2e . Thus, δλ(MG,MC) = δλ(r, r̄) = λ
e2

∑
a∈E δλ(a, a) ≤ λ2

2e2 .

(⇐) By contradiction, assume there exists N = (N, θ, α) ∈ MC(e + h + 2) such that
δλ(MG,N ) ≤ λ2

2e2 but no vertex cover of G of size h. Since ` is injective, by Lemma 12 we
can assume α to be injective and L(N ) ⊆ L(MG). We consider three cases separately:

Case: `(s) /∈ L(N ). By Lemma 13 and the fact that e > 1 and λ ∈ (0, 1], we get the
following contradiction: δλ(MG,N ) = δλ(r, n0) ≥ λ · τ(r)(s) = λ(e−1)

e > λ2

2e2 .
Case: `((u, v)) /∈ L(N ), for some (u, v) ∈ E. By Lemma 13 and the fact that λ ∈ (0, 1]

and e > 1, leading to the contradiction δλ(MG,N ) = δλ(r, n0) ≥ λ · τ(r)((u, v)) = λ
e2 >

λ2

2e2 .
Case: `(s) ∈ L(N ) and {`((u, v)) | (u, v) ∈ E} ⊆ L(N ). Let N ′ ⊆ N be the states with

labels in {`(u) | u ∈ V }. By the structural hypothesis assumed on N , we have |N ′| ≤ h.
For each (u, v) ∈ E, two possible cases apply: if α(n) ∈ {`(u), `(v)}, for some n ∈ N ′, then
δλ((u, v), (u, v)) ≥ λ

2e ; otherwise δλ((u, v), (u, v)) ≥ λ
e >

λ
2e . By hypothesis, there is no vertex

cover of size h, hence there is at least one edge (u, v) ∈ E for which the second case applies.
Therefore, δλ(MG,N ) = δλ(r, n0) = λ

e2

∑
(u,v)∈E δλ((u, v), (u, v)) > λ

e2 · e · λ2e = λ2

2e2 .

The instance 〈MG, e+ h+ 2, λ
2

2e2 〉 of BA-λ can be constructed in polynomial time in the
size of 〈G, h〉. Thus, since Vertex Cover is NP-hard, so is BA-λ. J

5 Minimum Significant Approximant Bound

Recall that, two MCs are at distance 1 from each other when there is no significant similarity
between their behaviors. Thus an MC N is said to be a significant approximant for the MC
M w.r.t. δλ if δλ(M,N ) < 1.

Given an MC M, the Minimum Significant Approximant Bound problem w.r.t. δλ
(MSAB-λ) looks for the smallest k such that δλ(M,N ) < 1, for some N ∈ MC(k). The
decision version of this problem is called Significant Bounded Approximant problem w.r.t. δλ
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Figure 3 (Left) The MC MG associated to the graph G in Figure 2 and (right) an MC N
associated to the vertex cover C = {1, 2} of G such that δ1(MG,N ) < 1 (cf. Theorem 16).

(SBA-λ), and asks whether, for a given positive integer k, there exists N ∈ MC(k) such that
δλ(M,N ) < 1.

When the discount factor λ < 1, the two problems above turn out to be trivial. Indeed,
δλ(M,N ) ≤ λ when the initial states ofM and N have the same label. On the contrary,
in the case the distance is undiscounted (λ = 1), these problems are NP-complete. Before
presenting the result, we provide the following technical lemma.

I Lemma 15. LetM be a MC (assumed to be minimal) with initial state m0 and G(M) its
underlying directed graph. Then, 〈M, k〉 ∈ SBA-1 iff there exists a bottom strongly connected
component (SCC) G′ = (V,E) in G(M) and a path m0 . . .mh in G(M) such that mh ∈ V
and | {`(mi) | i < h,@ a path vi . . . vh−1mh in G′ s.t. ∀i ≤ j < h. `(mj) = `(vj)} |+ |V | ≤ k.

I Theorem 16. SBA-1 is NP-complete.

Proof. The membership in NP is easily proved by using the characterization in Lemma 15
and exploiting Tarjan’s algorithm for generating bottom SCCs. As for the NP-hardness, we
provide a polynomial-time many-one reduction from Vertex Cover. Let G = (V,E) be a
graph with E = {e1, . . . , en}. We construct the MCMG as follows. The set of states is given
by the set of edges E along with two states e1

i and e2
i , for each edge ei ∈ E, representing

the two endpoints of ei and an extra sink state e0. The initial state is en. The transition
probabilities are given as follows. The sink state e0 loops with probability 1 to itself. Each
edge ei ∈ E goes with probability 1

2 to e1
i and e2

i , respectively. For 1 ≤ i ≤ n, the states
e1
i and e2

i go with probability 1 to the state ei−1. The edge states and the sink state are
labelled by pairwise distinct labels, while the endpoints states e1

i and e2
i are labelled by the

node in V they represent. An example of construction forMG is shown in Figure 3.
Next we show the following equivalence:

〈G, h〉 ∈ Vertex Cover iff 〈MG, h+ n+ 1〉 ∈ SBA-1 (13)

By construction,MG is minimal and its underlying graph H has a unique bottom strongly
connected component, namely the self-loop in e0. Each path p = en ; e0 in H passes
through all edge states, and the set of labels of the endpoint states in p is a vertex cover of
G. Since e0, . . . , en have pairwise distinct labels, we have that G has a vertex cover of size at
most h iff there exists a path in H from en to e0 that has at most n+ 1 + h different labels.
Thus, (13) follows by Lemma 15. J

6 An Expectation Maximization-like Heuristic

In this section we describe an approximation algorithm for determining suboptimal solutions
of CBA-λ for an arbitrary instance 〈M, k〉.

ICALP 2017
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Algorithm 1 Approximate Minimization – Expectation Maximization-like heuristic
Input: M = (M, τ, `), N0 = (N, θ0, α), and h ∈ N.
1. i← 0
2. repeat
3. i← i+ 1
4. compute C ∈ Ω(M,Ni−1) such that δλ(M,Ni−1) = γCλ(M,Ni−1)
5. θi ← UpdateTransition(θi−1, C)
6. Ni ← (N, θi, α)
7. until δλ(M,Ni) > δλ(M,Ni−1) or i ≥ h
8. return Ni−1

Given an initial approximant N0 ∈ MC(k), the algorithm produces a sequence of MCs
N0,N1, . . . in MC(k) having successively decreased distance fromM. We defer until later a
discussion of how the initial MC N0 is chosen. The procedure is described in Algorithm 1.

The intuitive idea of the algorithm is to iteratively update the initial MC by assigning
relatively greater probability to transitions that are most representative of the behavior of
the MCM w.r.t. δλ. The procedure stops when the last iteration has not yield an improved
approximant w.r.t. the preceding one. The input also includes a parameter h ∈ N that
bounds the number of iterations.

The rest of the section explains two heuristics for implementing the UpdateTransition
function invoked at line 5. This function shall return the transition probabilities for the
successive approximant (see line 6).

Define βCλ to be the least fixed-point of the following functional operator on 1-bounded
real-valued functions d : M ×N → [0, 1] (ordered point-wise):

BCλ(d)(m,n) =


1 if γCλ(m,n) = 0
0 if `(m) 6= α(n)
(1− λ) + λ

∫
M×N d dC(m,n) otherwise .

By Theorem 5, the relation RC =
{

(m,n) | γCλ(m,n) = 0
}
is easily shown to be a bisimulation,

specifically, the greatest bisimulation induced by C.
Define Cλ as the MC obtained by augmenting C with an ‘sink’ state ⊥ to which any other

state moves with probability (1− λ). Intuitively, the value βCλ(m,n) can be interpreted as
the reachability probability in Cλ of either hitting the sink state or a pair of bisimilar states
in RC along a path formed only by pairs of states with identical labels starting from (m,n).

I Lemma 17. For all m ∈M and n ∈ N , βCλ(m,n) = 1− γCλ(m,n).

From equation (3) and Lemma 17, we can turn the problem CBA-λ as

argmax
{
βCλ(M,N ) | N ∈ MCL(M)(k), C ∈ Ω(M,N )

}
. (14)

Equation (14) says that a solution of CBA-λ is the right marginal of a coupling structure
C such that Cλ maximizes the probability of generating paths with prefix in ∼=∗(RC ∪ ⊥)
starting from the pair (m0, n0) of initial states1, where ∼= = {(m,n) /∈ RC | `(m) = α(n)}.

In the rest of the section we assume Ni−1 ∈ MC(k) to be the current approximant with
associated coupling structure C ∈ Ω(M,Ni−1) as in line 4 in Algorithm 1.

1 We borrowed notation from regular expressions, such as union, concatenation, and Kleene star, to
express the set of finite paths ∼=∗RC as a language over the alphabet M ×N .
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The “Averaged Marginal” Heuristic. The first heuristic is inspired by the Expectation
Maximization (EM) algorithm described in [7]. The idea is to count the expected number of
occurrences of the transitions in C in the set of paths ∼=∗RC and, in accordance with (14),
updating C by increasing the probability of the transitions that were contributing the most.

For each m,u ∈M and n, v ∈ N let Zm,nu,v : (M ×N)ω → N be the random variable that
counts the number of occurrences of the edge ((m,n)(u, v)) in a prefix in ∼=∗(RC ∪ ⊥) of
the given path. We denote by E[Zm,nu,v | C] the expected value of Zm,nu,v w.r.t. the probability
distribution induced by Cλ. Using these values we define the optimization problem EM〈N , C〉:

maximize
∑
m,u∈M

∑
n,v∈N E[Zm,nu,v | C] · ln(cm,nu,v )

such that
∑
v∈N c

m,n
u,v = τ(m)(u) m,u ∈M , n ∈ N (15)∑

u∈M cm,nu,v = θn,v m ∈M , n, v ∈ N (16)
cm,nu,v ≥ 0 m,u ∈M , n, v ∈ N

A solution of EM〈N , C〉 can be used to improve a pair 〈N , C〉 in the sense of (14).

I Theorem 18. If βCλ(M,N ) > 0, then an optimal solution for EM〈N , C〉 describes an MC
N ′ ∈ MC(k) and a coupling structure C′ ∈ Ω(M,N ′) such that βC′λ (M,N ′) ≥ βCλ(M,N ).

Unfortunately, EM〈N , C〉 does not have an easy analytic solution and turns out to
be inefficiently solved by nonlinear optimization methods. On the contrary, the relaxed
optimization problem obtained by dropping the constraints (16) has a simple analytic solution,
and the first heuristic at line 5, updates θi as follows2

cm,nu,v =
τ(m)(n) ·E[Zm,nu,v | C]∑

x∈N E[Zm,nu,x | C]
, θi(n)(v) =


θi−1(n)(v) if ∃m ∈M.n RC m∑

m,u∈M cm,nu,v∑
x∈N

∑
m,u∈M cm,nu,x

otherwise

Note that, the cm,nu,v above may not describe a coupling structure. Nevertheless we recover
the transition probability θi, from it by averaging the right marginals.

The “Averaged Expectations” Heuristic. In contrast to the previous case, the second
heuristic will update θi by directly averaging the expected values of Zm,nu,v as follows

θi(n)(v) =


θi−1(n)(v) if ∃m ∈M.n RC m∑

m,u∈M E[Zm,nu,v | C]∑
x∈N

∑
m,u∈M E[Zm,nu,x | C]

otherwise .

Computing the Expected Values. We compute E[Zm,nu,v | C] using a variant of the forward-
backward algorithm for hidden Markov models. Let Zm,n : (M ×N)ω → N be the random
variable that counts the number of occurrences of the pair (m,n) in a prefix in ∼=∗(RC ∪ ⊥)
of the path. We compute the expected value of Zm,n w.r.t. the probability induced by Cλ as
the solution zm,n of the following system of equations

zm,n =
{

0 if m 6∼= n

ι(m,n) + λ
∑
u,v(zu,v + 1) · C(u, v)(m,n) otherwise ,

where ι denotes the characteristic function for {(m0, n0)}. Then, the expected value of Zm,nu,v

w.r.t. the probability induced by Cλ is given by E[Zm,nu,v | C] = λ · zm,n · C(m,n)(u, v) · βCλ(u, v).

2 By abusing the notation, whenever the nominator is 0, we consider entire expression equal to 0, regardless
of any division by 0. The same convention is used implicitly in the rest of the section.
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Table 1 Comparison of the performance of Algorithm 1 on the IPv4 zeroconf protocol and the
classic Drunkard’s Walk w.r.t. the heuristics AM and AE.

Case |M | k
λ = 1 λ = 0.8

δλ-init δλ-final h time δλ-init δλ-final h time

IPv4
(AM)

53 5 0.856 0.062 3 25.7 0.667 0.029 3 25.9
103 5 0.923 0.067 3 116.3 0.734 0.035 3 116.5
53 6 0.757 0.030 3 39.4 0.544 0.011 3 39.4
103 6 0.837 0.032 3 183.7 0.624 0.017 3 182.7

IPv4
(AE)

53 5 0.856 0.110 2 14.2 0.667 0.049 3 21.8
103 5 0.923 0.110 2 67.1 0.734 0.049 3 100.4
53 6 0.757 0.072 2 21.8 0.544 0.019 3 33.0
103 6 0.837 0.072 2 105.9 0.624 0.019 3 159.5

DrkW
(AM)

39 7 0.565 0.466 14 259.3 0.432 0.323 14 252.8
49 7 0.568 0.460 14 453.7 0.433 0.322 14 420.5
59 8 0.646 – – TO 0.423 – – TO

DrkW
(AE)

39 7 0.565 0.435 11 156.6 0.432 0.321 2 28.6
49 7 0.568 0.434 10 247.7 0.433 0.316 2 46.2
59 8 0.646 0.435 10 588.9 0.423 0.309 2 115.7

Choosing the initial approximant. Similarly to EM algorithms, the choice of the initial
approximant N0 may have a significant effect on the quality of the solution. For the labeling
of the states, one should follow Lemma 7. As for the choice of the underlying structure one
shall be guided by Lemma 15. However, due to Theorem 14, it seems unlikely to have generic
good strategies for a starting approximant candidate. Nevertheless, good selections for the
transition probabilities may be suggested by looking at the problem instance.

Experimental Results Table 1 shows the results of some tests3 on Algorithm 1. run on
a number of instances 〈M, k〉 of increasing size, where M is the bisimilarity quotient of
either the IPv4 protocol [5, Ex.10.5] or the drunkard’s walk, parametric on the number of
states |M |. As initial approximant we use a suitably small instance of the same model. Each
row reports the distance to the original model respectively from N0 and Nh, where h is the
total number of iterations; and execution time (in seconds). We compare the two heuristics,
averaged marginals (AM) and averaged expectation (AE), on the same initial approximant.

The results obtained on the IPv4 protocol show significant improvements between the
initial and the returned approximant. Notably, these are obtained in very few iterations. On
this model, AM gives approximants of better quality compared with those obtained using
AE; however AE seems to be slightly faster than AM. On the drunkard’s walk model, the
two heuristics exhibit opposite results w.r.t. the previous experiment: AE provides the best
solutions with fewer iterations and significantly lower execution times.

7 Conclusions and Future Work

To the best of our knowledge, this is the first paper addressing the complexity of the optimal
approximate minimization of MCs w.r.t. a behavioral metric semantics. Even though for a
good evaluation of our heuristics more tests are needed, the current results seem promising.
Moreover, in the light of [10, 3], relating the probabilistic bisimilarity distance to the LTL-
model checking problem as δ1(M,N ) ≥ |PM(ϕ)−PN (ϕ)|, for all ϕ ∈ LTL, our results might
be used to lead saving in the overall model checking time. A deeper study of this topic

3 The tests are done on a prototype implementation coded in Mathematicar (http://people.cs.aau.
dk/giovbacci/tools.html) running on an Intel Core-i5 2.5GHz with 8GB of DDR3 RAM 1600MHz.

http://people.cs.aau.dk/giovbacci/tools.html
http://people.cs.aau.dk/giovbacci/tools.html
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will be the focus of future work. We close with an interesting open problem. Membership
of BA-λ in NP is left open. However, by arguments analogous to [11, 14] and leveraging
on the ideas that made us produce the MC in Example 10, we suspect that BA-λ is hard
for the square-root-sum problem. The latter is known to be NP-hard and in PSPACE, but
membership in NP has been open since 1976. Allender et al. [1] showed that it can be decided
in the 4th level of the counting hierarchy, thus it is unlikely its PSPACE-completeness.
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