
Efficient Approximations for the Online Dispersion
Problem∗†

Jing Chen1, Bo Li2, and Yingkai Li3

1 Department of Computer Science, Stony Brook University, Stony Brook, NY,
USA
jingchen@cs.stonybrook.edu

2 Department of Computer Science, Stony Brook University, Stony Brook, NY,
USA
boli2@cs.stonybrook.edu

3 Department of Computer Science, Stony Brook University, Stony Brook, NY,
USA
yingkli@cs.stonybrook.edu

Abstract
The dispersion problem has been widely studied in computational geometry and facility location,
and is closely related to the packing problem. The goal is to locate n points (e.g., facilities or
persons) in a k-dimensional polytope, so that they are far away from each other and from the
boundary of the polytope. In many real-world scenarios however, the points arrive and depart at
different times, and decisions must be made without knowing future events. Therefore we study,
for the first time in the literature, the online dispersion problem in Euclidean space.

There are two natural objectives when time is involved: the all-time worst-case (ATWC)
problem tries to maximize the minimum distance that ever appears at any time; and the cumu-
lative distance (CD) problem tries to maximize the integral of the minimum distance throughout
the whole time interval. Interestingly, the online problems are highly non-trivial even on a seg-
ment. For cumulative distance, this remains the case even when the problem is time-dependent
but offline, with all the arriving and departure times given in advance.

For the online ATWC problem on a segment, we construct a deterministic polynomial-time al-
gorithm which is (2 ln 2+ε)-competitive, where ε > 0 can be arbitrarily small and the algorithm’s
running time is polynomial in 1

ε . We show this algorithm is actually optimal. For the same prob-
lem in a square, we provide a 1.591-competitive algorithm and a 1.183 lower-bound. Furthermore,
for arbitrary k-dimensional polytopes with k ≥ 2, we provide a 2

1−ε -competitive algorithm and
a 7

6 lower-bound. All our lower-bounds come from the structure of the online problems and hold
even when computational complexity is not a concern. Interestingly, for the offline CD problem
in arbitrary k-dimensional polytopes, we provide a polynomial-time black-box reduction to the
online ATWC problem, and the resulting competitive ratio increases by a factor of at most 2.
Our techniques also apply to online dispersion problems with different boundary conditions.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases dispersion, online algorithms, geometric optimization, packing, compet-
itive algorithms

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.11

∗ A full version of this extended abstract is available at http://arxiv.org/abs/1704.06823.
† The authors thank Joseph Mitchell for motivating us to study the online dispersion problem. We thank

Esther Arkin, Michael Bender, Rezaul A. Chowdhury, Jie Gao, Joseph Mitchell, Jelani Nelson, and the
participants of the Algorithm Reading Group for helpful discussions, and several anonymous reviewers
for helpful comments.

EA
T

C
S

© Jing Chen, Bo Li, and Yingkai Li;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 11; pp. 11:1–11:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.11
http://arxiv.org/abs/1704.06823
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

11:2 Efficient Approximations for the Online Dispersion Problem

1 Introduction

The problem of assigning elements to locations in a given area comes up only too often in
real life: where to seat the customers in a restaurant, where to put certain facilities in a city,
where to build nuclear power stations in a country, etc. Different problems have different
features and constraints, but one common feature that appears in many of them is not to
locate the elements too close to each other : for people’s privacy, for environmental safety,
and/or for serving more users. Another feature is also common in many applications: that is,
not to locate the elements too close to the boundary of the area. Indeed, for security reasons,
important national industrial facilities in many countries are built at a safe distance away
from the border. Such problems have been widely studied in computational geometry and
facility location; see, e.g., [32, 3, 2, 4]. In particular, in the dispersion problem defined by [2],
there is a k-dimensional polytope P and an integer n, and the goal is to locate n points in P
so as to maximize the minimum distance among them and from them to the boundary of P .

However, there is another important feature in all the scenarios mentioned above and
many other real-world scenarios: the presence of elements is time-dependent and decisions
need to be made along time, without knowing when the elements will come and go in the
future. Indeed, it may be hard to move an element once it is located, making it infeasible
for the decision maker to relocate all the present elements according to the optimal static
solution when an arrival/departure event occurs. Online dispersion and facility location
problems have been studied when the underlying locations are vertices of a graph [28, 17, 27].
In this paper we consider, for the first time in the literature, the online dispersion problem
in Euclidean space. The arriving and departure times of points are chosen by an adversary
who knows everything and works adaptively. An online dispersion algorithm decides where
to locate a point upon its arrival, without any knowledge about future events.

1.1 Main Results
We focus on two natural objectives for the online problem: the all-time worst-case (ATWC)
problem, which aims at maximizing the minimum distance that ever appears at any time;
and the cumulative distance (CD) problem, which aims at maximizing the integral of the
minimum distance throughout the whole time interval. Although polynomial-time constant
approximations have been given when time is not involved [2, 4], nothing was known about
the online problem. As we will show, solutions for the online problem are already complex
even on a segment. For cumulative distance, even when the problem is time-dependent but
offline, with all the arriving and departure times given in advance, it remains unclear how to
efficiently compute the optimal solution. We formally define the problem in Section 2 and
summarize our results in Table 1 below.

The most technical parts are the online ATWC problem and the offline time-dependent
CD problem. Interestingly, we provide an efficient reduction from the offline CD problem
to the online ATWC problem, and show that in order to solve the former, one can use an
algorithm for the latter as a black-box. For the online ATWC problem, it is not hard to
see that a natural greedy algorithm provides a 2-competitive ratio. Our main contributions
for this problem are to provide an efficient algorithm that is optimal for the 1-dimensional
case, improve the competitive ratio and prove a lower-bound for squares, and provide an
efficient implementation of the greedy algorithm for the general case. We also prove a simple
lower-bound for the general case.

To establish our results, we show interesting new connections between dispersion and
ball-packing – both uniform packing (i.e., with balls of identical radius) and non-uniform

J. Chen, B. Li, and Y. Li 11:3

Table 1 Online and offline time-dependent dispersion problems in a k-dimensional polytope P .

Online Offline time-dependent

ATWC

k = 1: a 2 ln 2 (≈ 1.386) lower-bound and
an optimal algorithm; see Theorems 5 and 8.
k = 2: a 1.183 lower-bound and a 1.591-
competitive algorithm for squares; see Theor-
ems 11 and 12.
k ≥ 2: a 7

6 lower-bound and a 2
1−ε -

competitive algorithm for arbitrary poly-
topes P ; see Theorems 13 and 14.

Equivalent to dispersion without
time; see Claim 2.

CD No constant competitive algorithm even when
k = 1; see Claim 1.

A black-box reduction to online
ATWC for arbitrary k and P , with
the competitive ratio scaling up by
at most 2; see Theorem 15.

packing (i.e., with balls of different radii). All our algorithms are deterministic and of
polynomial time. Some of them take an arbitrarily small constant ε as a parameter and the
running time is polynomial in 1

ε . All inapproximability results hold even when running time
is not a concern. Due to lack of space, most proofs are given in the full version [8].

Discussion and future directions. An algorithm for high-dimensional polytopes may not
be directly applicable in dimension 1, because all locations are on the boundary when a
segment is treated as a high-dimensional polytope, and the minimum distance is always 0.
Accordingly, we do not know whether the lower-bound for dimension 1 carries through to
higher dimensions, and proving better lower-bounds will be an interesting problem for future
studies. In [8], we consider online dispersion without the boundary constraint, where the
lower-bound for dimension 1 indeed carries through. We show all our algorithms can be
adapted for this setting. Another important future direction is to understand the role of
randomized algorithms in the online dispersion problem. Finally, improving the (deterministic
or randomized) algorithms’ competitive ratios in various classes of polytopes is certainly a
long-lasting theme for the online dispersion problem. Special classes such as regular polytopes
and uniform polytopes may be reasonable starting points. Given the connections between
dispersion and ball-packing, it is conceivable that new competitive algorithms for online
dispersion may stem from and also imply new findings on ball-packing.

1.2 Related Work
Dispersion without time. In dispersion problems in general, the possible locations can be
either a continuous region or a set of discrete candidates. Two objectives have been studied
in the literature: the max-min distance as considered in this paper, and the maximum total
distance. In continuous settings, the authors of [2] consider the max-min distance with the
boundary condition. Under L∞-norm, they give a polynomial-time 1.5-approximation in
rectilinear polygons1 and show that a 14

13 -approximation in arbitrary polygons is NP-hard.
Moreover, they show there is no PTAS under any norm unless P=NP. [4] considers a similar
boundary condition under L2-norm and provides a 1.5-approximation in polygons with

1 A rectilinear polygon is a 2-dimensional polytope whose edges are axis-parallel.

ICALP 2017

11:4 Efficient Approximations for the Online Dispersion Problem

obstacles. [11] considers the problem of selecting n points in n given unit-disks, one per disk,
and the objective is to maximize the minimum distance.

In discrete settings, [32, 5] show that, if the distances among the candidate locations do
not satisfy triangle inequality, then there is no polynomial-time constant approximation for
either objective, unless P=NP; while if triangle inequality is satisfied, then there are efficient
2-approximations for both objectives. If the goal is to maximize total distance and the
candidate locations are in a k-dimensional space, [15] gives a PTAS under L1-norm; and [6, 7]
provide PTASes when locations need to satisfy matroid constraints. Finally, [3, 31, 25, 1]
consider various dispersion problems in obnoxious facility allocation.

Packing without time. It is well known that dispersion and packing are “dual” problems
of each other [26]. In this paper we show interesting new connections between them and
use several important results for packing in our analysis. Thus we briefly introduce this
literature. Indeed, the packing problem is one of the most extensively studied problems in
geometric optimization, and a huge amount of work has been done on different variants of
the problem; see [30, 21] for surveys on this topic.

One important problem is to pack circles with identical radius, as many as possible, in
a bounded region. [18] shows this problem to be strongly NP-hard and [22] gives a PTAS
for it. An APTAS for the circle bin packing problem is given in [29]. The dispersal packing
problem tries to maximize the radius of a given number of circles packed in a square. A lot
of effort has been made in finding the optimal radius and the corresponding packing when
the number of circles is a small constant; see [36, 35, 37, 30]. Heuristic methods have also
been used in finding approximations when the number of circles gets large [24, 41]. Finally,
an important packing problem is to understand the packing density: that is, the maximum
fraction of an infinite space covered by a packing of unit circles/spheres. The packing density
is solved for dimension 2 in [14] and for dimension 3 in [20]. Very recently, [42] and [9] solve
it for dimensions 8 and 24, respectively. Asymptotic lower bounds (as the dimension grows)
for the density of the densest packing are provided in [33].

Online geometric optimization. Many important geometric optimization problems have
been studied in online settings, although the settings and objectives are quite different from
ours. In particular, the seminal work of [38] provides a nearly-optimal competitive algorithm
for the classic online bin-packing problem. Algorithms for variants of the problem have been
considered ever since, such as a constant competitive ratio for packing circles in square bins
[23], and constant competitive ratios for bin-packing in higher dimensions [12, 13].

In online facility location [28], it is the demands rather than the facilities that come along
time. The facilities have open costs and the goal is to minimize the total open cost and the
total distance between demands and facilities. As shown in [28], when the demands arrive
adversarially, there is a randomized polynomial-time O(logn)-competitive algorithm, and a
constant competitive ratio is impossible. A deterministic O(logn

log logn)-competitive algorithm
and a matching lower-bound are provided in [17]. In incremental facility location [16], the
facilities can be opened, closed or merged, depending on the arriving demands. In [27, 34],
there is a cost for each location configuration and the goal is to minimize the cost when the
facilities arrive online. A constant competitive algorithm for this problem is provided in [27],
and [34] gives a reduction from the online problem to the offline version of the problem.

Dynamic resource division. Fair resource division is an important problem in economics
[39, 10, 40]. When the resource is 1-dimensional and homogenous, dynamic fair division

J. Chen, B. Li, and Y. Li 11:5

is in some sense the “dual” of online dispersion: locating n points as far as possible from
each other and from the boundary is the same as partitioning the segment into n+ 1 pieces
as evenly as possible. [19] provides an optimal d-disruptive mechanism for 1-dimensional
homogenous resource. Interestingly, our algorithm for the 1-dimensional case provides an
optimal mechanism when d = 1, although the techniques are quite different. Optimal
mechanisms for heterogenous or high-dimensional resource remain unknown. It would be
interesting to see if our techniques for dispersion can be used in resource division in general.

2 The Online Dispersion Problem

Given a k-dimensional polytope P , the dispersion problem [2] takes as input a positive
integer n and outputs n locations, X1, . . . , Xn ∈ P , for n points. For each point i, let
dis(Xi, ∂P) be the distance from Xi to ∂P , the boundary of P , measured by L2-norm. Also,
let dis(Xi, Xj) be the distance between Xi and Xj for any i 6= j. The objective is

Disp(n;P) , max
X1,...,Xn∈P

min
i,j∈[n]

{dis(Xi, ∂P), dis(Xi, Xj)}.

In [8], we also consider the dispersion problem where the distances to the boundary are not
taken into consideration. Most of our techniques can be applied there.

We now define the online dispersion problem, where each point i arrives at time si and
departs at time di, with di > si. Without loss of generality, 0 = s1 ≤ s2 ≤ · · · ≤ sn. An
online algorithm is notified upon an arrival/departure event. It must decide the location Xi

for i upon its arrival, knowing neither the future events nor the number n. An adversary
knows how the algorithm works and chooses future events after seeing the algorithm’s output
so far. In the time-dependent offline version of the problem, the times of all events, denoted
by a vector S = ((s1, d1), . . . , (sn, dn)), is given to the algorithm in advance.

Given such a vector S, let T = maxi∈[n] di be the last departure time. Moreover, given
locations X = (X1, . . . , Xn), for any t ≤ T , let

dmin(t;X) = min
i,j∈[n]:si≤t≤di,sj≤t≤di

{dis(Xi, ∂P), dis(Xi, Xj)}

be the minimum distance corresponding to the points that are present at time t. When X is
clear from the context, we may write dmin(t) for short. We consider two natural objectives:
the all-time worst-case (ATWC) problem, where the objective is

OPTA(S;P) , max
X1,...,Xn

min
t≤T

dmin(t);

and the cumulative distance (CD) problem, where the objective is

OPTC(S;P) , max
X1,...,Xn

∫ T

0
dmin(t)dt.

Note that both objectives are defined to be the optimum of the corresponding offline problems,
the same as the ex-post optimum for the online problems. Below we provide two simple
observations about the objectives.

I Claim 1. For the CD problem, even when k = 1 and P is the unit segment, no (randomized)
online algorithm achieves a competitive ratio to OPTC better than Ω(n).

Next, given any ex-post instance S = ((s1, d1), . . . , (sn, dn)), let m be the maximum number
of points simultaneously present at any time t: that is, m = maxt≤T |{i : si ≤ t ≤ di}|.

ICALP 2017

11:6 Efficient Approximations for the Online Dispersion Problem

I Claim 2. ∀ S = ((s1, d1), . . . , (sn, dn)), letting m = maxt≤T |{i : si ≤ t ≤ di}|, we have
OPTA(S;P) = Disp(m;P).

In light of the claims above, the online CD problem is highly inapproximable and the offline
ATWC problem is equivalent to the dispersion problem without time. Thus we will focus on
the online ATWC problem and the offline CD problem, especially the former. Our results
imply a simple O(n)-competitive algorithm for the online CD problem (see [8]), matching
the lower-bound in Claim 1.

Below we point out some connections between dispersion and ball-packing: they are
not hard to show, and similar results for the dispersion problem without the boundary
condition have been pointed out in [26]. More precisely, the (uniform) ball-packing problem
[22] in a polytope P takes as input a non-negative value r and outputs an integer n, the
maximum number of balls of radius r that can be packed non-overlappingly in P , together
with a corresponding packing. We denote the solution by Pack(r;P). The dispersal packing
problem [2] is a “mixture” of dispersion and packing: it takes as input an integer n and
outputs the maximum radius for n balls with identical radius that can be packed in P ,
together with a corresponding packing. That is, DP (n;P) , max{r : Pack(r;P) ≥ n}.

Recall that a k-dimensional convex polytope P has an insphere if the largest ball contained
wholly in P is tangent to all the facets (i.e., (k − 1)-faces) of P . Such a ball, if it exists,
is unique. It is referred to as the insphere of P . The center of the insphere maximizes the
minimum distance for any point in P to its facets, and has the same distance to all facets –
the radius of the insphere. We have the following two claims.

I Claim 3. For any k ≥ 1 and any k-dimensional convex polytope P with an insphere,
letting x be the radius of the insphere, we have Disp(n;P) = 2xDP (n;P)

x+DP (n;P) .

I Claim 4. For any k ≥ 1 and any k-dimensional convex polytope P with an insphere, given
the radius of the insphere,
(1) any polynomial-time algorithm for Disp(n;P) implies such an algorithm for Pack(r;P);
(2) any polynomial-time algorithm for Pack(r;P) implies an FPTAS for Disp(n;P).

To the best of our knowledge, it is still unknown whether ball-packing in regular polytopes
(which is a special case of convex polytopes with an insphere) is NP-hard or not. Therefore
the complexity of dispersion in regular polytopes remains open. Note that ball-packing in
arbitrary polytopes is NP-hard [18], so is a 14

13 -approximation for dispersion in rectilinear
polygons [2]. Moreover, a claim similar to Claim 4 applies to DP (n;P) and Pack(r;P) in
arbitrary polytopes. The relation between dispersion and packing in arbitrary polytopes is
not so clear and worth further investigation: for example, it would be interesting to know if
there exists a counterpart of Claim 4 when the polytope does not have an insphere.

Finally, the insert-only model, where all points have the same departure time, is a special
case of our general model. Interestingly, as will become clear in our analysis, the difficulty of
the general online ATWC problem is captured by the problem under this special model. The
insert-only model was also considered by [27, 34] in settings different from ours and with a
different objective function. We further discuss this model in [8].

3 The 1-Dimensional Online All-Time Worst-Case Problem

Note that a 1-dimensional polytope is simply a segment. Without loss of generality, we
consider the unit segment P = [0, 1]. Below we first provide a lower bound for the competitive
ratio of any algorithm, even computationally unbounded ones.

J. Chen, B. Li, and Y. Li 11:7

q
q0 = 0

q
q1

q
q2

q
q3 · · ·

q
qr−1

q
qr

q
qr+1 = 1

Figure 1 The pre-fixed positions in Q for dimension 1.

3.1 The Lower Bound
I Theorem 5. No online algorithm achieves a competitive ratio better than 2 ln 2 (≈ 1.386)
for the 1-dimensional ATWC problem.

Proof Ideas. Letting σ′r =
∑2r
i=r+1

1
i for any positive integer r, we show that no algorithm

achieves a competitive ratio better than 2σ′r. Roughly speaking, we construct an instance
(i.e., an adversary) for the online ATWC problem with three stages. In the first stage, r − 1
points arrive simultaneously; in the second stage, r new points arrive one by one; and finally,
all 2r − 1 points depart simultaneously. If an algorithm A is α-competitive to OPTA with
α < 2σ′r, it must be α-competitive after the arrival of each point, as it does not know the
total number of points. Thus for each arriving point, there must exist an interval long enough
such that putting the new point inside the interval does not violate the competitive ratio. We
show that in order for A to do so, the segment must be longer than P itself, a contradiction.
Theorem 5 holds by setting r →∞. The complete proof is in [8]. J

3.2 A Polynomial-Time Online Algorithm
Next, we provide a deterministic polynomial-time online algorithm whose competitive ratio
to OPTA can be arbitrarily close to 2 ln 2. Intuitively, a good algorithm should disperse the
points as evenly as possible. However, if at some point of time with m points present, the
resulting m+ 1 intervals on the segment have almost the same length, then the next arriving
point will force the minimum distance to drop by a factor of 2, while the optimum only
changes from 1

m+1 to 1
m+2 , causing the competitive ratio to drop by almost 2. To overcome

this problem, the algorithm must find a balance between two consecutive points, choosing a
sub-optimal solution for the former so as to leave enough space for the latter. The difficulty,
as for online algorithms in general, is that this balance needs to be kept for arbitrarily many
pairs of consecutive point, as the sequence of points is chosen by an adversary who observes
the algorithm’s output. Inspired by our lower bound, roughly speaking, our algorithm uses a
parameter r to pre-fix the locations of the first r points and the resulting r + 1 intervals,
and then inserts the next r + 1 points in the middle of these intervals. The idea is that,
when done properly, after these 2r + 1 points, the resulting configuration is almost the same
as if the algorithm has used parameter 2r + 1 to pre-fix the first 2r + 2 intervals: then the
procedure can repeat for arbitrary sequences.

More specifically, given a positive integer r, let Q = {q1, . . . , qr} be a set of positions
on the segment, such that the length ratios of the r + 1 intervals sliced by them are

1
r+1 : 1

r+2 : · · · : 1
2r+1 . That is, letting σr =

∑2r+1
i=r+1

1
i , the lengths of the intervals are

1
σr(r+1) ,

1
σr(r+2) , · · · ,

1
σr(2r+1) , and qi = 1

σr

∑r+i
j=r+1

1
j for each i ∈ [r], as illustrated by

Figure 1, with q0 = 0 and qr+1 = 1. Note that σr differs from σ′r in Theorem 5 by 1
2r+1 . Also,

σr is strictly decreasing in r and limr→∞ σr = ln 2. Moreover, for any two intervals (qj−1, qj)
and (qj′−1, qj′) with j < j′ ≤ r + 1, we have |(qj′−1, qj′)| < |(qj−1, qj)| < 2|(qj′−1, qj′)|.

Our algorithm, Algorithm 1, also takes as parameter an ordering for the positions in Q,
denoted by τ = (τ1, τ2, . . . , τr). We have the following two lemmas, whose main ideas are
sketched below. Recall that, given S = ((s1, d1), . . . , (sn, dn)), m is the maximum number of
points simultaneously present at any time t.

ICALP 2017

11:8 Efficient Approximations for the Online Dispersion Problem

Algorithm 1. A polynomial-time algorithm for the 1-dimensional online ATWC problem.
Parameter: A positive integer r, the corresponding set Q = {q1, . . . , qr}, and an ordering τ

for Q.
Input: A sequence of points arriving and departing along time.
1: Denote by Q̂ the set of positions ever occupied by a point. At any point of time, a

position in Q̂ is labeled occupied if currently there is a point there and vacant otherwise.
Initially Q̂ = ∅.

2: When a point i leaves, change the label of its position in Q̂ from occupied to vacant.
3: When a point i arrives:
4: if Q̂ = ∅ or all positions in Q̂ are labelled occupied then
5: if Q 6⊆ Q̂ then
6: Choose the first position q according to τ with q ∈ Q \ Q̂, add it to Q̂ and label it

occupied.
7: Put i at position q.
8: else
9: Find position q which is the middle of the largest interval created by the positions

in Q̂.
10: Put i at position q, add q to Q̂ and label it occupied.
11: end if
12: else
13: Arbitrarily choose a vacant position q from Q̂ and label it occupied.
14: Put i at position q.
15: end if

I Lemma 6. ∀ r and τ , Algorithm 1 is 2σr-competitive to OPTA for any S with m > r.

Proof Ideas. Since Algorithm 1 only creates a new position when the number of points
simultaneously present on the line increases, for any time t, the number of positions created
is exactly the maximum number of points that has appeared simultaneously on the line.
Thus only m positions is created for instance S. We prove that when m > r, the minimum
distance produced by our algorithm, denoted by dmin(m), is 1

2l+1σr(r+i) , where l, i are the
unique integers such that l ≥ 0, 0 ≤ i ≤ r + 1 and 2l(r + 1) + 2l(i− 1) ≤ m < 2l(r + 1) + 2li.
Note that the minimum distance only depends on m. By comparing OPTA with dmin(m),
we show that the competitive ratio 2σr holds for all m > r. J

I Lemma 7. For any integer l > 0 and r = 2l − 1, there exists an ordering τ for the
corresponding set Q, s.t. Algorithm 1 is 2σr-competitive to OPTA for any S with m ≤ r.

Proof Ideas. Interestingly, due to the structure of Algorithm 1, we only need to consider the
instance S = ((1, r + 1), (2, r + 1), . . . , (r, r + 1)). We construct an ordering τ = {τd}d∈[r] for
Q such that the competitive ratio at any time d ∈ [r] is smaller than 2σr. To do so, we fill in
a complete binary tree with r nodes as in Figure 2, and τ is obtained by traversing the tree in
a breadth-first manner starting from the root. Given any d = 2i + s with i ∈ {0, 1, . . . , l− 1}
and s ∈ {0, 1, . . . , 2i − 1}, we have τd = q2l−i−1(2s+1). Denoting the competitive ratio at time
d by apx(d), we prove that

apx(d) = σr

(2i + s+ 1) ·
∑2l−1+2l−i−1(2s+2)
j=2l+2l−i−1(2s+1)

1
j

.

J. Chen, B. Li, and Y. Li 11:9

0 2l2l−1

���
HHH

2l−2 3× 2l−2

�
��

A
AA

2l−3 3× 2l−3

�
��

A
AA

5× 2l−3 7× 2l−3

�
�
A
A
�
�
A
A

�
�
A
A
�
�
A
A..

.

0 84

J
J
JJ

2 6
�
�
��

B
B
BB

�
�
��

B
B
BB

1 3 5 7

Figure 2 The left-hand side shows the top three levels of the binary tree for a general l,
with τ = (q2l−1 , q2l−2 , q3×2l−2 , q2l−3 , q3×2l−3 , q5×2l−3 , q7×2l−3 , . . .). The right-hand side shows the
complete binary tree for l = 3, with τ = (q4, q2, q6, q1, q3, q5, q7).

Writing apx(d) as apx(i, s), we prove that, fixing i, apx(i, s) is strictly increasing in s; and
letting s = 2i− 1, apx(i, s) is strictly increasing in i. Thus the worst competitive ratio occurs
at i = l− 1 and s = 2l−1− 1. As apx(l− 1, 2l−1− 1) = (2− 1

2l)σr < 2σr, Lemma 7 holds. J

The theorem below follows easily from the above two lemmas.

I Theorem 8. There exists a deterministic polynomial-time online algorithm for the ATWC
problem, whose competitive ratio can be arbitrarily close to 2 ln 2. Moreover, the running
time is polynomial in 1

ε for competitive ratio 2 ln 2 + ε.

Remark. When the number of points is large but the maximum number m of simultaneously
present points is small, the running time of the algorithm for each arriving point is polynomial
in m and can be much faster than being polynomial in the size of the input.

Following Theorem 5, Algorithm 1 is essentially optimal. Inspired by our constructions of
Q and τ , we actually characterize the optimal solution for the online ATWC problem, whose
competitive ratio is exactly 2 ln 2: see Theorem 9. However, this solution involves irrational
numbers and cannot be exactly computed in polynomial time.

I Theorem 9. For any integer d = 2i+s with i ≥ 0 and 0 ≤ s ≤ 2i−1, let τd = log2(1+ 2s+1
2i+1).

If Algorithm 1 creates the d-th new position in Q̂ to be τd, the competitive ratio is 2 ln 2.

4 The 2-Dimensional Online All-Time Worst-Case Problem

We now consider the 2-dimensional online ATWC problem in a square – without loss of
generality, P = [0, 1]2. One difficulty is that, different from the 1-dimensional problem where
it is trivial to have Disp(n;P) = 1

n+1 for any n ≥ 1, here neither Disp(n;P) nor Pack(r;P)
has a known closed-form optimal solution (whether polynomial-time computable or not).
Accordingly, our lower-bound and our competitive algorithm must rely on some proper upper-
and lower-bounds for Disp(n;P), which is part of the reason why the resulting bounds are
not tight. In particular, we have the following.

I Lemma 10. For any n ≥ 1, 2
5+
√

2
√

3n
≤ Disp(n;P) ≤ 2

2+
√

2
√

3n
.

4.1 The Lower Bound
Interestingly, not only the dispersion problem is closely related to uniform packing (i.e., the
disks all have the same radius) as we have seen in Section 2, but we also obtain a lower bound
for the online ATWC problem by carefully fitting a non-uniform packing into the square.

ICALP 2017

11:10 Efficient Approximations for the Online Dispersion Problem

1

23

4

5

1

6

7

8

9

10

11

12

13

14

151617

18

19

20

21

22

23 24

252627282930

31

32

33

34

35 36

x x x cx cx cx cx

cx

cx

cx

cx

x

x

x

Figure 3 The set of pre-fixed positions, Q = {q1, . . . , q36}, and the grid created by Q. A grid
point labelled by i indicates the position qi. The colored areas are used in the algorithm’s description.
More specifically, denoting a rectangle by the position in Q at its lower-left corner, the green area
is (3, 10, 2; 18, 5, 9; 1, 19, 4); the two pink areas are (23, 6, 20; 28, 27, 26) and (34, 21; 33, 7; 32, 22);
the red area is (31, 8; 30, 29); the two blue areas are (35, 36) and (24, 25); the orange area is
(17, 16, 15, 11, 12, 13, 14); and finally the yellow area contains all the remaining rectangles: that is,
rectangles adjacent to the left boundary and the bottom boundary.

The idea is to imagine each position created in an online algorithm as a disk centered at that
position. The radius of each disk is a function of the algorithm’s competitive ratio and the
optimal solutions to specific dispersion problems without time. Note that the area covered
by the disks is upper-bounded by the area of the square containing them. Combining these
relations together gives us the following theorem.

I Theorem 11. No online algorithm achieves a competitive ratio better than 1.183 for the
2-dimensional ATWC problem in a square.

4.2 A Polynomial-Time Online Algorithm
Now we provide a deterministic polynomial-time online algorithm which is 1.591-competitive
to OPTA. Similar to Algorithm 1, we construct a set Q of pre-fixed positions. However, it is
unclear how to define Q of arbitrary size in the square, and we construct a set of 36 positions,
denoted by Q = {q1, . . . , q36}. It depends on a parameter 1 < c <

√
2 and x = 1

3+4c , as in
Figure 3. The qi’s indices specify the order according to which they should be occupied, thus
we do not need an extra ordering τ . Note these positions create a grid in P and split it into
multiple rectangles. The choice of c (and x, Q) will become clear in the analysis.

Whenever a new position needs to be created, we pick the first position in Q that has
never been occupied yet. When all positions in Q are occupied, we may (1) create a new
position in the center of a current rectangle with the largest area, split this rectangle into four
smaller ones accordingly, and add the vertices of the new rectangles into the grid; or (2) create
a new position at a grid point that has never been occupied yet. The main Algorithm 2 is
similar to Algorithm 1. It uses in Step 8 a sub-routine to implement (1) and (2) above: the
Position Creation Phase, as defined in [8], where we further provide some intuition on the
choices of Q, x, and c. Setting c = 1.271, we have the following.

J. Chen, B. Li, and Y. Li 11:11

Algorithm 2. A polynomial-time online algorithm for the ATWC problem in a square.

Parameter: c such that 1 < c <
√

2, the corresponding x = 1
3+4c , and Q.

Input: A sequence of points arriving and departing along time.
1: Denote by Q̂ the set of positions ever occupied by a point. At any point of time, a

position in Q̂ is labeled occupied if currently there is a point there and vacant otherwise.
Initially Q̂ = ∅.

2: When a point w leaves, change the label of its position in Q̂ from occupied to vacant.
3: When a point w arrives:
4: if Q̂ = ∅ or all positions in Q̂ are labelled occupied then
5: if |Q̂| < 36 then
6: Put w at position q|Q̂|+1, add this position to Q̂ and label it occupied.
7: else
8: Compute a position q according to the Position Creation Phase defined in [8].
9: Put w at position q, add q to Q̂ and label it occupied.

10: end if
11: else
12: Arbitrarily choose a vacant position q from Q̂ and label it occupied.
13: Put w at position q.
14: end if

I Theorem 12. Algorithm 2 runs in polynomial time and is 1.591-competitive for the
2-dimensional online ATWC problem in a square.

Note that the upper-bound for Disp(n;P) in Lemma 10 is not tight when n is small.
With better upper-bounds for Disp(n;P), better competitive ratios for our algorithm can be
directly obtained via a similar analysis. Moreover, we believe the competitive ratio can be
improved by using a larger set Q and the best ordering for positions in Q. Such a Q and a
rigorous analysis based on it are left for future studies. Finally, similar techniques can be
used when P is a rectangle, but the gap between the lower- and upper-bounds will be even
larger, and the analysis will be more complicated without adding much new insight to the
problem. Thus we leave a thorough study on rectangles for the future.

5 The General k-Dimensional Online ATWC Problem

Although the literature gives us little understanding about the optimal dispersion/packing
problem in an arbitrary k-dimensional polytope P with k ≥ 2, we are still able to provide a
simple lower-bound and a simple polynomial-time algorithm for the online ATWC problem.
Below we only state the theorems.

I Theorem 13. For any k ≥ 2, no online algorithm achieves a competitive ratio better than
7
6 for the ATWC problem for arbitrary polytopes.

For any polytope P , letting the covering rate be the ratio between the edge-lengths
of the maximum inscribed cube and the minimum bounding cube, we have the following
theorem. Note that, although a natural greedy algorithm provides a 2-competitive ratio,
the exact greedy solution may not be computable in polynomial time. Here we show the
greedy algorithm can be efficiently approximated arbitrarily closely. The geometric problems
of finding the minimum bounding cube, deciding whether a position is in P , and finding the
distance between a point in P and the boundary of P are given as oracles.

ICALP 2017

11:12 Efficient Approximations for the Online Dispersion Problem

Algorithm 3. Algorithm AI for computing I = {I1, I2} satisfying properties Φ.1 and Φ.2.
Input: A sequence S = ((s1, d1), . . . , (sn, dn)).
1: Let I1 = I2 = ∅, s = −1, d = 0 and T = maxi∈[n] di. (s and d are end-points of a

“sliding window” for the arriving times under consideration.)
2: Let index = 1.
3: while d 6= T do
4: Let Ŝ = {i|i ∈ S, si > s, si ≤ d, di > d}.
5: if Ŝ 6= ∅ then
6: Arbitrarily choose j ∈ arg max

i∈Ŝ
di and add j to Iindex; s = d; then d = dj .

7: else
8: s = d; then d = min

i∈S,si>d
si.

9: end if
10: index = 3− index.
11: end while
12: Output I = {I1, I2}.

I Theorem 14. For any constants γ, ε > 0, integer k ≥ 2 and k-dimensional polytope P
with covering rate at least γ, there exists a deterministic polynomial-time online algorithm
for the ATWC problem, with competitive ratio 2

1−ε and running time polynomial in 1
(γε)k .

6 The General k-Dimensional Offline CD Problem

By Claim 1, no online algorithm provides a good competitive ratio for the CD problem, thus
we focus on the offline problem. Given an input sequence S = ((s1, d1), . . . , (sn, dn)), we
first slice the whole time interval [0, T] into smaller ones by the arriving time si and the
departure time di of each point i ∈ [n]. Thus the set of present points only changes at the
end-points of the intervals and stays the same within an interval. Our algorithm will be such
that, in each time interval, the minimum distance is a good approximation to the optimal
dispersion problem without time, for the points present in this interval.

Interestingly, this is achieved by reducing the offline CD problem to the online ATWC
problem, for any dimension k and polytope P . To carry out this idea, we first provide a
polynomial-time algorithm AI (Algorithm 3) that, given a sequence S, selects a subset I of
points from S. The set I satisfies the following properties, as proved in [8].
(Φ.1) I can be partitioned into two groups I1 and I2 such that the points in the same group

have disjoint time intervals.
(Φ.2) For any time 0 ≤ t ≤ T , if there are points in S present at time t, then at least one of

them is selected to I.

The offline CD algorithm ACD uses algorithm AI to select I from its input S, eliminates
the selected points from S, and repeats on the remaining S. Recall that m is the maximum
number of points simultaneously present at any time. By property Φ.2, this procedure
ends in at most m iterations. Based on the partitions constructed by AI , ACD constructs
an instance of the online ATWC problem and uses any online algorithm AATWC for the
latter as a black-box, so as to decide how to locate the points. Algorithm ACD is defined in
Algorithm 4 and we have the following theorem. Below we sketch the main ideas.

J. Chen, B. Li, and Y. Li 11:13

Algorithm 4. ACD
Input: A sequence S = ((s1, d1), . . . , (sn, dn)).
1: Let r = 0.
2: while S 6= ∅ do
3: Run AI on S to obtain two disjoint sets I2r+1, I2r+2 ⊆ S.
4: S = S \ (I2r+1 ∪ I2r+2).
5: r = r + 1.
6: end while
7: Run AATWC on the following online sequence of 2r points: for all i ∈ {0, 1, . . . , r − 1},

points 2i+ 1 and 2i+ 2 arrive at time i. All points depart at time r.
8: Letting x2i+1, x2i+2 be the two positions returned by AATWC at time i, assign all points

in I2i+1 to x2i+1 and all points in I2i+2 to x2i+2.

I Theorem 15. ∀ k ≥ 1 and k-dimensional polytope P , given any polynomial-time σ-
competitive online algorithm AATWC for ATWC, there is a polynomial-time offline algorithm
ACD for CD with competitive ratio σmax

i≥1
Disp(i;P)
Disp(2i;P) ≤ 2σ, using AATWC as a black-box.

Proof Ideas. Given an input sequence S, we slice the whole time interval [0, T] into smaller
ones according to the arriving time and the departure time of each point. Denote these small
intervals by T1, . . . , Tl, where l is the number of small intervals created. For each interval Ti,
let Si be the set of points that overlap with Ti and ni = |Si|. By properties Φ.1 and Φ.2, all
points in Si are eliminated from S in the first ni iterations of AI , thus are located at the
first 2ni positions created by AATWC . The minimum distance among points in Ti (and to
the boundary) is at least Disp(2ni;P)

σ , since algorithm AATWC has competitive ratio σ. Thus,
within each Ti, the competitive ratio to the optimal solution is upper-bounded by σDisp(ni;P)

Disp(2ni;P) .
Taking summation over all Ti’s, the competitive ratio is upper-bounded by σmax

i≥1
Disp(i;P)

Disp(2i;P) .

Finally, we prove max
i≥1

Disp(i;P)
Disp(2i;P) ≤ 2, finishing the proof of Theorem 15. J

References

1 Shimon Abravaya and Michael Segal. Maximizing the number of obnoxious facilities to
locate within a bounded region. Computers & Operations Research, 37(1):163–171, 2010.

2 Christoph Baur and Sándor P. Fekete. Approximation of geometric dispersion problems.
Algorithmica, 30(3):451–470, 2001.

3 Boaz Ben-Moshe, Matthew J Katz, and Michael Segal. Obnoxious facility location: Com-
plete service with minimal harm. International Journal of Computational Geometry &
Applications, 10(06):581–592, 2000.

4 Marc Benkert, Joachim Gudmundsson, Christian Knauer, Esther Moet, René van Oostrum,
and Alexander Wolff. A polynomial-time approximation algorithm for a geometric disper-
sion problem. In International Computing and Combinatorics Conference, pages 166–175.
Springer, 2006.

5 Benjamin Birnbaum and Kenneth J. Goldman. An improved analysis for a greedy remote-
clique algorithm using factor-revealing LPs. Algorithmica, 55(1):42–59, 2009.

6 Alfonso Cevallos, Friedrich Eisenbrand, and Rico Zenklusen. Max-sum diversity via convex
programming. In Proceedings of the 32nd Symposium on Computational Geometry (SoCG),
pages 26:1–26:14. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

ICALP 2017

11:14 Efficient Approximations for the Online Dispersion Problem

7 Alfonso Cevallos, Friedrich Eisenbrand, and Rico Zenklusen. Local search for max-sum
diversification. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 130–142. SIAM, 2017.

8 Jing Chen, Bo Li, and Yingkai Li. Efficient approximations for the online dispersion
problem. arXiv:1704.06823, 2017. Full version.

9 Henry Cohn, Abhinav Kumar, Stephen D. Miller, Danylo Radchenko, and Maryna
Viazovska. The sphere packing problem in dimension 24. arXiv:1603.06518, 2016.

10 Lester E. Dubins and Edwin H. Spanier. How to cut a cake fairly. The American Mathem-
atical Monthly, 68(1):1–17, 1961.

11 Adrian Dumitrescu and Minghui Jiang. Dispersion in disks. Theory of Computing Systems,
51(2):125–142, 2012.

12 Leah Epstein and Rob Van Stee. Optimal online algorithms for multidimensional packing
problems. SIAM Journal on Computing, 35(2):431–448, 2005.

13 Leah Epstein and Rob Van Stee. Bounds for online bounded space hypercube packing.
Discrete optimization, 4(2):185–197, 2007.

14 L. Fejes Tóth. Über die dichteste kugellagerung. Mathematische Zeitschrift, 48(1):676–684,
1942.

15 Sándor P. Fekete and Henk Meijer. Maximum dispersion and geometric maximum weight
cliques. Algorithmica, 38(3):501–511, 2004.

16 Dimitris Fotakis. Incremental algorithms for facility location and k-median. Theoretical
Computer Science, 361(2):275–313, 2006.

17 Dimitris Fotakis. On the competitive ratio for online facility location. Algorithmica, 50(1):1–
57, 2008.

18 Robert J. Fowler, Michael S. Paterson, and Steven L. Tanimoto. Optimal packing and
covering in the plane are NP-complete. Information processing letters, 12(3):133–137, 1981.

19 Eric Friedman, Christos-Alexandros Psomas, and Shai Vardi. Dynamic fair division with
minimal disruptions. In Proceedings of the sixteenth ACM conference on Economics and
Computation, pages 697–713. ACM, 2015.

20 Thomas C. Hales. A proof of the Kepler conjecture. Annals of mathematics, 162(3):1065–
1185, 2005.

21 Mhand Hifi and Rym M’hallah. A literature review on circle and sphere packing problems:
models and methodologies. Advances in Operations Research, 2009:150624:1–150624:22,
2009.

22 Dorit S. Hochbaum and Wolfgang Maass. Approximation schemes for covering and packing
problems in image processing and VLSI. Journal of the ACM (JACM), 32(1):130–136, 1985.

23 Pedro Hokama, Flávio K. Miyazawa, and Rafael C. S. Schouery. A bounded space algorithm
for online circle packing. Information Processing Letters, 116(5):337–342, 2016.

24 Wenqi Huang and Tao Ye. Greedy vacancy search algorithm for packing equal circles in a
square. Operations Research Letters, 38(5):378–382, 2010.

25 Matthew J. Katz, Klara Kedem, and Michael Segal. Improved algorithms for placing
undesirable facilities. Computers & Operations Research, 29(13):1859–1872, 2002.

26 Marco Locatelli and Ulrich Raber. Packing equal circles in a square: a deterministic global
optimization approach. Discrete Applied Mathematics, 122(1):139–166, 2002.

27 Ramgopal R. Mettu and C. Greg Plaxton. The online median problem. SIAM Journal on
Computing, 32(3):816–832, 2003.

28 Adam Meyerson. Online facility location. In 42rd Annual IEEE Symposium on Foundations
of Computer Science, pages 426–431. IEEE, 2001.

29 Flávio K Miyazawa, Lehilton L.C. Pedrosa, Rafael C. S. Schouery, Maxim Sviridenko, and
Yoshiko Wakabayashi. Polynomial-time approximation schemes for circle packing problems.
In European Symposium on Algorithms, pages 713–724. Springer, 2014.

J. Chen, B. Li, and Y. Li 11:15

30 Ronald Peikert, Diethelm Würtz, Michael Monagan, and Claas de Groot. Packing circles in
a square: a review and new results. In System Modelling and Optimization: Proceedings of
the 15th IFIP Conference, Zurich, Switzerland, September 2–6, 1991, pages 45–54. Springer,
1992.

31 Zhongping Qin, Yinfeng Xu, and Binhai Zhu. On some optimization problems in obnoxious
facility location. In International Computing and Combinatorics Conference, pages 320–329.
Springer, 2000.

32 Sekharipuram S. Ravi, Daniel J. Rosenkrantz, and Giri K. Tayi. Heuristic and special case
algorithms for dispersion problems. Operations Research, 42(2):299–310, 1994.

33 Claude Ambrose Rogers. Existence theorems in the geometry of numbers. Annals of
Mathematics, pages 994–1002, 1947.

34 Daniel J. Rosenkrantz, Giri K. Tayi, and S. S. Ravi. Obtaining online approximation
algorithms for facility dispersion from offline algorithms. Networks, 47(4):206–217, 2006.

35 J. Schaer. The densest packing of nine circles in a square. Canad. Math. Bull, 8:273–277,
1965.

36 J. Schaer and A. Meir. On a geometric extremum problem. Canad. Math. Bull, 8:21–27,
1965.

37 B.L. Schwartz. Separating points in a square. J. Recr. Math, 3:195–204, 1970.
38 Steven S. Seiden. On the online bin packing problem. Journal of the ACM (JACM),

49(5):640–671, 2002.
39 Hugo Steinhaus. The problem of fair division. Econometrica, 16:101–104, 1948.
40 Walter Stromquist. How to cut a cake fairly. The American Mathematical Monthly,

87(8):640–644, 1980.
41 Péter Gábor Szabó and Eckard Specht. Packing up to 200 equal circles in a square. In

Models and Algorithms for Global Optimization, pages 141–156. Springer, 2007.
42 Maryna Viazovska. The sphere packing problem in dimension 8. arXiv:1603.04246, 2016.

ICALP 2017

	Introduction
	Main Results
	Related Work

	The Online Dispersion Problem
	The 1-Dimensional Online All-Time Worst-Case Problem
	The Lower Bound
	A Polynomial-Time Online Algorithm

	The 2-Dimensional Online All-Time Worst-Case Problem
	The Lower Bound
	A Polynomial-Time Online Algorithm

	The General k-Dimensional Online ATWC Problem
	The General k-Dimensional Offline CD Problem

