
A Circuit-Based Approach to Efficient
Enumeration∗†

Antoine Amarilli1, Pierre Bourhis2, Louis Jachiet3, and
Stefan Mengel4

1 LTCI, Télécom ParisTech, Université Paris-Saclay, Paris, France
antoine.amarilli@telecom-paristech.fr

2 CRIStAL, CNRS UMR 9189 & Inria Lille, Lille, France
pierre.bourhis@univ-lille1.fr

3 Université Grenoble Alpes, Grenoble, France
louis.jachiet@inria.fr

4 CNRS, CRIL UMR 8188, Lens, France
mengel@cril.fr

Abstract
We study the problem of enumerating the satisfying valuations of a circuit while bounding the
delay, i.e., the time needed to compute each successive valuation. We focus on the class of
structured d-DNNF circuits originally introduced in knowledge compilation, a sub-area of artificial
intelligence. We propose an algorithm for these circuits that enumerates valuations with linear
preprocessing and delay linear in the Hamming weight of each valuation. Moreover, valuations
of constant Hamming weight can be enumerated with linear preprocessing and constant delay.

Our results yield a framework for efficient enumeration that applies to all problems whose
solutions can be compiled to structured d-DNNFs. In particular, we use it to recapture classical
results in database theory, for factorized database representations and for MSO evaluation. This
gives an independent proof of constant-delay enumeration for MSO formulae with first-order free
variables on bounded-treewidth structures.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases circuits, constant-delay, enumeration, d-DNNFs, MSO

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.111

1 Introduction

When a computational problem has many solutions, computing all of them at once can take
too much time. Enumeration algorithms are an answer to this challenge, and have been
studied in many contexts (see overview in [36]). They generally consist of two phases. First,
in a preprocessing phase, the input is read and indexed. Second, in an enumeration phase
that uses the preprocessing result, the solutions are computed one after the other. The goal
is to limit the amount of time between each pair of successive solutions, which is called delay.

We focus on a well-studied class of efficient enumeration algorithms with very strict
requirements: the preprocessing must be linear in the input size, and the delay between

∗ For the full version with proofs, see [3], https://arxiv.org/abs/1702.05589.
† This work was partly funded by the French ANR Aggreg project, by the CPER Nord-Pas de

Calais/FEDER DATA Advanced data science and technologies 2015-2020, by the PEPS JCJC INS2I
2017 CODA, and by the Télécom ParisTech Research Chair on Big Data and Market Insights.

EA
T

C
S

© Antoine Amarilli, Pierre Bourhis, Louis Jachiet, and Stefan Mengel;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 111; pp. 111:1–111:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.111
https://arxiv.org/abs/1702.05589
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


111:2 A Circuit-Based Approach to Efficient Enumeration

d-DNNF

v-tree

augmented
d-DNNF
(Def. 3.6)

normal
d-DNNF
(Def. 4.2)

normal
d-DNNF

+OR-index

compressed
traces

(Def. 6.1)

satisfying
valuations

Prp.
3.9

Prp.
4.3

Thm.
5.4

Prp.
6.3

Prp.
6.5

Linear-time preprocessing phase (Sec. 3–5) Enumeration phase (Sec. 6)

Figure 1 Overview of the proof of Theorem 2.1.

successive solutions must be constant. Such algorithms have been studied in particular for
database applications, to enumerate query answers (see [19, 6, 20, 7, 8, 25, 24] and the recent
survey [33]), or to enumerate the tuples of factorized database representations [29].

One shortcoming of these existing enumeration algorithms is that they are typically
shown by building a custom index structure tailored to the problem, and designing ad hoc
preprocessing and enumeration algorithms. This makes it hard to generalize them to
other problems, or to implement them efficiently. In our opinion, it would be far better if
enumeration for multiple problems could be done via one generic representation of the results
to enumerate, reusing general algorithms for the preprocessing and enumeration phases.

This paper accordingly proposes a new framework for constant-delay enumeration algo-
rithms, inspired by the field of knowledge compilation in artificial intelligence. Knowledge
compilation studies how the solutions to computational problems can be compiled to generic
representations, in particular classes of Boolean circuits, on which reasoning tasks can then
be solved using general-purpose algorithms. In this paper, we show how this knowledge
compilation approach can be implemented for constant-delay enumeration, by compiling to a
prominent class of circuits from knowledge compilation called deterministic decomposable
negation normal form (in short, d-DNNF) [17]. These circuits generalize several forms of
branching programs such as OBDDs [18] and were recently shown to be more expressive
than Boolean circuits of bounded treewidth [13]. Further, there are many efficient algorithms
to compute d-DNNF representations of small width CNF formulae for a wide range of
width notions [12], and even software implementations to compute such representations for
given Boolean functions [30, 14]. d-DNNFs are also intimately related to state-of-the-art
propositional model counters based on exhaustive DPLL [21], to syntactically multi-linear
arithmetic circuits [32], and to probabilistic query evaluation in database theory [22].

Our main technical contribution is an efficient algorithm to enumerate the satisfying
valuations of a d-DNNF under a standard structuredness assumption, namely, assuming that
a so-called v-tree is given [31]: this assumption holds in all works cited above. Our first main
result (Theorem 2.1) shows that we can enumerate the satisfying valuations of such a circuit
with linear preprocessing and delay linear in the Hamming weight of each valuation. Further,
our second main result (Theorem 2.2) shows that, if we impose a constant bound on the
Hamming weight, we can enumerate the valuations with constant delay. In these results we
express valuations succinctly as the set of the variables that they set to true.

To show our results, we consider d-DNNFs under a semantics with implicit negation:
variables that are not tested must be set to zero. We call this semantics zero-suppressed, like
zero-suppressed OBDDs [37]. Our preprocessing rewrites such d-DNNFs to a normal form
(Section 4) and pre-computes a multitree reachability index on them (Section 5), allowing
us to enumerate efficiently the traces of the circuit and the desired valuations (Section 6).
To enumerate for d-DNNFs in standard semantics, we show how to rewrite them to zero-
suppressed semantics, using the structuredness assumption and a new notion of range gates
to make the process efficient (Section 3). The overall proof (see Figure 1) is very modular.

Our second contribution is to illustrate how our circuit-based framework and enumeration
results can be useful in database theory. As a proof of concept, we present two known results



A. Amarilli, P. Bourhis, L. Jachiet, and S. Mengel 111:3

that we can extend, or recapture with an independent proof. First, we re-prove with our
framework that the answers to MSO queries on trees and bounded-treewidth structures can
be enumerated with linear preprocessing and delay linear in each assignment, i.e., constant-
delay if the free variables are first-order. This was previously shown by Bagan [6] with a
custom construction, by Kazana and Segoufin [25] using a powerful result of Colcombet [15],
and by Courcelle [16] in a more general setting (but with O(n logn) preprocessing) using
AND/OR-DAGs (that share some similarities with DNNFs). Our proof follows our proposed
approach: we compute a circuit representation of the output following the provenance
constructions in [4], and simply apply our enumeration result to this circuit. Second, we show
how d-DNNFs generalize the deterministic factorized representations of relational instances
studied in database theory [29]. We can thus enumerate with linear preprocessing and
constant delay for arbitrary deterministic d-representations, which extends the result of [29].

The paper is structured as follows. Section 2 gives the main definitions and results.
We then describe the preprocessing phase of our algorithm: we reduce the input circuit
to zero-suppressed semantics in Section 3, rewrite it to a normal form in Section 4, and
compute the multitree index in Section 5. We then describe the enumeration algorithm in
Section 6. We present our two applications in Section 7 and conclude in Section 8. Due to
space restrictions, many details and the proofs are found in the complete version [3].

2 Preliminaries and Problem Statement

Circuits. A circuit C = (G,W, g0, µ) is a directed acyclic graph (G,W ) whose vertices G
are called gates, whose edges W are called wires, which has an output gate g0 ∈ G, and where
each gate g ∈ G has a type µ(g) among ∧ (AND-gate), ∨ (OR-gate), ¬ (NOT-gate), or var
(variable). We represent the circuit with adjacency lists that indicate, for each gate g ∈ G,
the gates having a wire to g (called the inputs of g), and the gates of which g is an input; the
number of such gates is called respectively the fan-in and fan-out of g. The size |C| of this
representation is then |G|+ |W |. We require that variables have fan-in zero, that NOT-gates
have fan-in one, and we will always work on negation normal form (NNF) circuits where the
input of NOT-gates is always a variable. A circuit without NOT-gates is called monotone.

We write Cvar for the set of variables of C. A valuation of Cvar is a function ν : Cvar →
{0, 1}. A circuit defines a Boolean function on Cvar, i.e., a function φ that maps each
valuation ν of Cvar to {0, 1}. The image of ν by φ is defined by substituting each gate in Cvar
by its value in ν, evaluating the circuit using the standard semantics of Boolean operations,
and returning the value of the output gate g0. Note that AND-gates (resp., OR-gates) with
no inputs always evaluate to 1 (resp., to 0) in this process. We call a gate unsatisfiable if it
evaluates to 0 under all valuations (and satisfiable otherwise); we call it 0-valid if it evaluates
to 1 under the valuation which sets all variable gates to 0. We say that ν satisfies C if φ
maps ν to 1 (i.e., g0 evaluates to 1 under ν), and call ν a satisfying valuation.

For enumeration, we represent a valuation ν of C as the set Sν of variables of Cvar that it
sets to 1, i.e., {g ∈ Cvar | ν(g) = 1}. We call Sν an assignment, and a satisfying assignment
if ν is a satisfying valuation. The Hamming weight |ν| of ν is the cardinality of Sν . Unlike
valuations, assignments of constant Hamming weight are of constant size, no matter the size
of Cvar. We write {} for the empty assignment, and write ∅ for an empty set of assignments.

The main class of circuits that we will study are d-DNNFs [17], of which we now recall
the definition. We say that an AND-gate g of a circuit C is decomposable if there is no pair
g1 6= g2 of input gates to g such that some variable g′ ∈ Cvar has a directed path both to g1
and to g2: intuitively, a decomposable AND-gate is a conjunction of inputs on disjoint sets of

ICALP 2017



111:4 A Circuit-Based Approach to Efficient Enumeration

variables. We say that an OR-gate g of C is deterministic if there is no pair g1 6= g2 of input
gates of g and valuation ν of C such that g1 and g2 both evaluate to 1 under ν: intuitively, a
deterministic OR-gate is a disjunction of mutually exclusive inputs. A circuit C is a d-DNNF
if all its AND-gates are decomposable, and all its OR-gates are deterministic.

We further study the subclass of d-DNNFs called structured d-DNNFs, i.e., those having
a v-tree [31]. A v-tree on a set S of variables is a rooted unranked ordered tree T whose
set of leaves is exactly S. We write <T for the order on T in which the nodes are visited
in a pre-order traversal. For a circuit C, we say that a v-tree T on the set Cvar is a v-tree
of C if there is a mapping λ from the gates of C to the nodes of T such that: (i) λ maps the
variables of C to themselves; (ii) for each wire (g, g′) of C, the node λ(g) is a descendant
of λ(g′) in T ; and (iii) for each AND-gate g of C with inputs g1, . . . , gn (in this order), the
nodes λ(g1), . . . , λ(gn) are descendants of λ(g), none of them is a descendant of another, and
we have λ(g1) <T · · · <T λ(gn). Note that having a v-tree implies (by iii) that all AND-gates
are decomposable. A structured d-DNNF is a d-DNNF C given with a v-tree T of C.

Enumeration. As usual for efficient enumeration algorithms [33], we work in the RAM
model with uniform cost measure (see, e.g., [2]), where pointers, numbers, labels for vertices
and edges, etc., have constant size; thus an assignment has size linear in its Hamming weight.

An enumeration algorithm with linear-time preprocessing computes a set of results S(I)
from an input instance I. It consists of two parts. First, the preprocessing phase takes as
input an instance I and produces in linear time an indexed instance I ′ and an initial state.
Second, the enumeration phase repeatedly calls an algorithm A. Each call to A takes as input
the indexed instance I ′ and the current state, and returns a result and a new state: a special
state value indicates that the enumeration is over so A should not be called again. The
results produced by the calls to A must be exactly the elements of S(I), with no duplicates.

We say that the enumeration algorithm has linear delay if the time to produce each new
output element E is linear in the size of E (and independent of the input instance I). In
particular, when the output elements have constant size, each element must be produced
with constant delay, which we call constant-delay enumeration. The memory usage of an
enumeration algorithm is the maximum number of memory cells used during the enumeration
phase (not counting the indexed instance I ′, which resides in read-only memory), expressed
as a function of the input instance size |I| and of the size |O| of the largest output (as in [6]).
Note that constant delay does not imply a bound on memory usage, because the state can
become large even if we only add a constant quantity of information at each step.

Main results. Our main theorem on circuit enumeration is the following:

I Theorem 2.1. Given a structured d-DNNF C with a v-tree T , we can enumerate its
satisfying assignments with linear-time preprocessing, linear delay, and memory usage
O(|O| · log |C|), where |O| is the Hamming weight of the largest assignment.

If we fix a maximal Hamming weight k ∈ N, we can show constant-delay enumeration:

I Theorem 2.2. For any k ∈ N, given a structured d-DNNF C with a v-tree T , we can
enumerate its satisfying assignments of Hamming weight ≤ k with preprocessing in time
O(|T |+ k2 · |C|), delay in O(k), and memory in O(k · log |C|), i.e., linear-time preprocessing
and constant delay for fixed k.

In both results, remember that |C| is the number of gates and wires of C. We prove our
two results in Sections 3–6: the first three sections present the three steps of the linear-time



A. Amarilli, P. Bourhis, L. Jachiet, and S. Mengel 111:5

preprocessing algorithm, and the last one presents the enumeration algorithm. We then use
the results for database applications in Section 7, in particular re-proving constant-delay
enumeration for MSO queries with free first-order variables on bounded-treewidth structures.

The memory bound in our results is not constant and depends logarithmically on the
input. While we think that this is reasonable, we also show constant-memory enumeration
for some restricted circuit classes: the details are deferred to [3] for lack of space.

3 Reducing to Zero-Suppressed Semantics

We start our linear preprocessing by rewriting the input circuit to an alternative zero-
suppressed semantics where negation is coded implicitly. For this rewriting, we will use the
structuredness assumption on the circuit, in a weaker form called having a compatible order :
this is the first thing that we present. We will also extend slightly our circuit formalism, to
concisely represent sets of inputs with range gates that use this order: we present this second.
Last, we present the alternative semantics, and give our translation result (Proposition 3.9).

Compatible orders. Our structuredness requirement is to have a compatible order :

I Definition 3.1. An order for a circuit C is a total order < on Cvar. For two variables
g1, g2 ∈ Cvar, the interval [g1, g2] consists of the variables g which are between g1 and g2
for <, i.e., g1 ≤ g ≤ g2 or g2 ≤ g ≤ g1. The interval of a gate g is then [min(g),max(g)],
where min(g) denotes the smallest gate according to < that has a directed path to g, and
max(g) is defined analogously. In particular, the interval of any g ∈ Cvar is [g, g] = {g}.

We say that the order < is compatible with C if, for every AND-gate g with inputs
g1, . . . , gn (in this order), for all 1 ≤ i < j ≤ n, we have max(gi) < min(gj); in particular,
the intervals of g1, . . . , gn are pairwise disjoint.

Note that, if a circuit C has compatible order <, every AND-gate g is decomposable: if
some g′ ∈ Cvar had a directed path to two inputs of g then their intervals would intersect.

Observe further that, given a structured d-DNNF C with a v-tree T , we can easily
compute a compatible order < for C in linear time in T . Indeed, let < be the restriction
to Cvar of the order <T on T given by pre-order traversal. Considering any suitable mapping λ
from C to T , for any gate g, we know that min(g) is no less than the first leaf of T in <
reachable from λ(g), and that max(g) is no greater than the last leaf reachable from λ(g).
The intervals of the inputs g1, . . . , gn to an AND-gate are then pairwise disjoint, because
they are included in the sets of reachable leaves from the nodes λ(g1), . . . , λ(gn) in the v-tree,
and none of these nodes is a descendant of another, so they cannot share any descendant
leaf. Hence, if we know a v-tree T for C then we know an order < for C.

Augmented circuits. We use compatible orders to define circuits with a new type of gates:

I Definition 3.2. For k ∈ N, we define a k-augmented circuit C as a circuit with a compatible
order < and with k additional types of gates, called range gates: there are the = i-range gates
for 0 ≤ i < k, and the ≥k-range gates. These gates must have exactly two inputs, which
must be variables of C (they are not necessarily different, so we allow multi-edges in circuits
for this purpose). We talk of augmented circuits when the value of k does not matter.

When evaluating a k-augmented circuit under a valuation ν, each = i-range gate g (resp.,
≥k-range gate g) with inputs g1 and g2 evaluates to 1 if there are exactly i gates (resp., at
least k gates) in [g1, g2] set to 1 by ν; note that g may be unsatisfiable if |[g1, g2]| is too small.

ICALP 2017



111:6 A Circuit-Based Approach to Efficient Enumeration

Range gates are related to the threshold gates studied in circuit complexity (see e.g. [11]),
but we only apply them directly to variables. We can of course emulate range gates with
standard gates, e.g., ≥0-gates always evaluate to 1, and a ≥1-range gate on g1 and g2 can
be expressed as an OR-gate g having the interval [g1, g2] as its set of inputs. However, the
point of range gates is that we can now write this in constant space, thanks to <. This will
be important to rewrite circuits in linear time to our alternative semantics.

Zero-suppressed semantics. We are now ready to introduce our alternative semantics for
augmented circuits. We will do so only on monotone augmented circuits, i.e., without
NOT-gates, because negation will be coded implicitly. We use the notion of traces:

I Definition 3.3. An upward tree T of a monotone augmented circuit C = (G,W, µ, g0) is a
subgraph (G′,W ′) of C, with G′ ⊆ G and W ′ ⊆W , which is a rooted tree up to reversing
the direction of the wires. For all (g′, g) ∈ W ′, we call g′ ∈ G′ a child of g ∈ G′ in T , and
call g the parent of g′ in T ; note that g′ is an input of g in C. A gate g ∈ G′ in T is an
internal gate of T if it has a child in T , and a leaf otherwise. T is a partial trace if its internal
gates are AND-gates and OR-gates and if its gates satisfy the following:

for every AND-gate g in T , all its inputs in C are children of g in T ;
for every OR-gate g in T , exactly one of its inputs in C is a child of g in T .

Note that T cannot contain OR-gates with no inputs, and that its leaves consist of range
gates, variable gates, and AND-gates with no inputs. We call T a trace of C if its root is g0.

We define traces as trees, not general DAGs, because we cannot reach the same gate
in a trace by two different paths (remember that AND-gates in augmented circuits are
decomposable). We can see each trace (G′,W ′) of C = (G,W, µ, g0) as an augmented circuit
(G′,W ′, µ, g0), up to adding to range gates in the trace their inputs in C, and we then have:

I Observation 3.4. A valuation ν of a monotone augmented circuit C satisfies C if and
only if ν satisfies a trace of C.

Observe that we can check if a valuation ν of C satisfies a trace T simply by looking at
the value of ν on the leaves of T ; the definition of ν outside the intervals of the leaves does
not matter. We will change this point to define zero-suppressed semantics, where ν can only
satisfy T if it maps to 0 all the other variables. We then call ν a minimal valuation of T :

I Definition 3.5. Let C be a monotone augmented circuit, ν be a valuation of C, and T be
a trace or partial trace of C. We call ν a minimal valuation of T if:

For every variable g in T , we have ν(g) = 1;
For every ./i-range gate g in T with inputs g1 and g2 in C (where ./ ∈ {=,≥} and i ∈ N),
the number n of variables in [g1, g2] that are set to 1 by ν satisfies the constraint n ./ i;
All other variables of Cvar are set to 0 by ν.

Note that this implies that ν satisfies T . We call ν a minimal valuation for a gate g of C
(resp., for C) if it is a minimal valuation of a partial trace rooted at g (resp., at the output g0).

Note that C may have two minimal valuations ν1 and ν2 whose assignments S1 and S2 are
such that S1 ( S2 (see, e.g., Example 3.7 below). Minimality only imposes that, relatively to
a trace T , the valuation sets to 0 all variables that are not tested in T . Minimal valuations
allow us to define the zero-suppressed semantics of a monotone augmented circuit C: the
satisfying valuations of C in this semantics are those that are minimal for some trace.



A. Amarilli, P. Bourhis, L. Jachiet, and S. Mengel 111:7

I Definition 3.6. A monotone augmented circuit C in zero-suppressed semantics captures the
(generally non-monotone) Boolean function Φ mapping a valuation ν to 1 iff ν is a minimal
valuation for C. We call S(C) the set of satisfying assignments of C in this semantics.

We call C a d-DNNF in zero-suppressed semantics if it satisfies the analogue of determin-
ism: there is no OR-gate g with two inputs g1 6= g2 and valuation ν of C that is a minimal
valuation for both g1 and g2. (Decomposability again follows from the compatible order.)

I Example 3.7. Consider the monotone circuit C whose output gate is an OR-gate with
three inputs: x, y, and an AND-gate of y and z. The circuit C captures x ∨ y in standard
semantics, and it is not a d-DNNF. C has three traces, having one minimal valuation each.
In the zero-suppressed semantics, we have S(C) = {{x}, {y}, {y, z}}, and C captures the
Boolean function (x ∧ ¬y ∧ ¬z) ∨ (¬x ∧ y). Further, C is a d-DNNF in that semantics.

Zero-suppressed semantics makes enumeration easier, because it expresses negation
implicitly in a very concise way. The name is inspired by zero-suppressed OBDDs [37,
Chapter 8]: variables that are not tested when following a trace are implicitly set to 0. We
can equivalently define the assignments S(C) of C inductively as follows:

I Lemma 3.8. Let C be a monotone augmented circuit. Let us define inductively a set of
assignments S(g) for each gate g in the following way:

for all g ∈ Cvar, we set S(g) := {g};
for all ./i-range gates g with inputs g1 and g2, we set S(g) := {t ⊆ [g1, g2] | |t| ./ i};
for all OR-gates g with inputs g1, . . . , gn, we set S(g) :=

⋃
1≤i≤n S(gi) (with S(g) = ∅ if

g has no inputs);
for all AND-gates g with inputs g1, . . . , gn, we set S(g) := {S1 ∪ · · · ∪ Sn | (S1, . . . , Sn) ∈∏

1≤i≤n S(gi)} (with S(g) = {{}} if g has no inputs); observe that the unions are always
disjoint because C has a compatible order.

Then, for any gate g, the set S(g) contains exactly the assignments that describe a minimal
valuation for g. In particular, for g0 the output gate of C, the set S(g0) is exactly S(C).

We can now state our main reduction result for this section: we can rewrite any d-DNNF
to an equivalent d-DNNF in zero-suppressed semantics, by introducing ≥0-range gates to
write explicitly that the variables not tested in a trace are unconstrained:

I Proposition 3.9. Given a d-DNNF circuit C and a compatible order <, we can compute
in linear time a monotone 0-augmented circuit C∗ having < as a compatible order, such
that C∗ is a d-DNNF in zero-suppressed semantics and such that S(C∗) is exactly the set of
satisfying assignments of C.

4 Reducing to Normal Form Circuits

In this section, given Proposition 3.9, we work on a monotone 0-augmented d-DNNF circuit C
in zero-suppressed semantics, with a compatible order < to define the semantics of range gates.
We present our next two preprocessing steps for the enumeration of the assignments S(C)
of C: restricting our attention to valuations of the right Hamming weight (for Theorem 2.2
only), and bringing C to a normal form that makes enumeration easier.

Homogenization. Our input augmented circuit C in zero-suppressed semantics may have
satisfying assignments of arbitrary Hamming weight. When proving Theorem 2.1, this is
intended, and the construction that we are about to describe is not necessary. However, when
proving Theorem 2.2 about enumerating valuations of constant weight, we need to restrict

ICALP 2017



111:8 A Circuit-Based Approach to Efficient Enumeration

our attention to such valuations, to ensure constant delay. We do so using the following
homogenization result, adapted from the technique of Strassen [34]:

I Proposition 4.1. Given k ∈ N and a monotone augmented d-DNNF circuit C in zero-
suppressed semantics with compatible order <, we can construct in time O(k2 ·|C|) a monotone
augmented d-DNNF circuit C ′ in zero-suppressed semantics with compatible order < such
that S(C ′) = {t ∈ S(C) | |t| ≤ k}.

Proof Sketch. We create k+2 copies of each gate g, with each copy capturing the assignments
of a specific weight from 0 to k inclusive (or, for the k + 2-th copy, the assignments with
weight > k). In particular, for ≥0-gates g, for 0 ≤ i ≤ k, we use an = i-gate for the copy of g
capturing weight i. We then re-wire the circuit so that weights are correctly preserved. J

Note that this is the only place where our preprocessing depends on k: in particular, for
constant k, the construction is linear-time. This result allows us to assume in the sequel
that the set of assignments of the circuit in zero-suppressed semantics contains precisely the
valuations that we are interested in, i.e., those that have suitable Hamming weight.

Normal form. Now that we have focused on the interesting valuations of our circuit C, we
can bring it to our desired normal form:

I Definition 4.2. A normal circuit C is a monotone augmented circuit such that:
C is arity-two, i.e., each gate has fan-in at most two.
C is ∅-pruned, i.e., no gate g is unsatisfiable (i.e., each gate has some minimal valuation).
C is {}-pruned, i.e., no gate g is 0-valid (i.e., the valuation that sets all variables to 0 is
not a minimal valuation for any gate).
C is collapsed, i.e., it has no AND-gate with fan-in 1.
C is discriminative, i.e., for every OR-gate g with an input that is not an OR-gate (we
call g an exit), g has fan-in 1, fan-out 1, and the one gate with g as input is an OR-gate.

C is a normal d-DNNF if it is additionally a d-DNNF in the zero-suppressed semantics.

The pruned requirements slightly weaken the expressiveness of normal circuits C, because
they forbid that S(C) = ∅ or {} ∈ S(C), which are easy to handle separately. We then have:

I Proposition 4.3. Given a monotone augmented d-DNNF circuit C in zero-suppressed
semantics with compatible order < and with S(C) 6= ∅ and S(C) 6= {{}}, we can build in
O(|C|) a normal d-DNNF C ′, with < as a compatible order, such that S(C ′) = S(C)\{{}}.

Proof Sketch. We reuse the construction of Proposition 4.1 with k = 1 to split the gates so
that they are not 0-valid, eliminate bottom-up the unsatisfiable gates, make C arity-two in a
straightforward way, collapse all AND-gates with fan-in 1, and make C discriminative by
inserting new OR-gates (i.e., the exits) on all wires from non-OR-gates to OR-gates. J

This result allows us to assume in the sequel that we are working with normal d-DNNFs.

5 Indexing OR-Components

This section presents the last step of our preprocessing. Remember that we now work with
a normal d-DNNF, and we want to enumerate its set of assignments. Intuitively, this last
preprocessing will help us to enumerate the choices that can be made at OR-gates. Formally,
we will work on the OR-components of our circuit:



A. Amarilli, P. Bourhis, L. Jachiet, and S. Mengel 111:9

I Definition 5.1. The OR-component K of an OR-gate g in a normal circuit C is the set of
OR-gates that can be reached from g by going only through OR-gates, following wires in
either direction. We abuse notation and also see K as a DAG, whose vertices are the gates
of K, and whose edges are the wires between them.

Recall from Definition 4.2 that, as C is discriminative, all gates of an OR-component K
with no inputs in K must be exits; we call them the exits of K. For a gate g in K, the exits
of g are the gates of K that have a directed path to g in K; intuitively, they are the “possible
choices” for a partial trace rooted at g. Our goal is to preprocess each OR-component of C
to be able to enumerate efficiently the exits of all OR-gates of C. This enumeration task is
tricky, however: exploring K naively when enumerating would take time dependent of C,
but materializing a reachability index would take quadratic preprocessing time. Thus, we
design an efficient indexing scheme, using the fact that OR-components are multitrees:

I Definition 5.2. A DAG G is a multitree if it has no pair n 6= n′ of vertices such that there
are two different directed paths from n to n′. In particular, forests are multitrees, and so are
polytrees (DAGs with no undirected cycles).

I Lemma 5.3. For any normal d-DNNF C, each OR-component of C is a multitree.

We can then prepare the enumeration of exits of gates in OR-components, by designing
an efficient and generic indexing scheme on multitrees (see [3]). We deduce:

I Theorem 5.4. Given a normal d-DNNF C, we can compute in O(|C|) a structure called
OR-index allowing us to do the following: given an OR-gate g of C, enumerate the exits of g
in its OR-component K, with constant delay and memory usage O(log |K|).

6 Enumerating Assignments

We have described in the previous sections our linear-time preprocessing on the input circuit:
this produces a normal d-DNNF C together with an OR-index, and we wish to enumerate
its assignments S(C) in zero-suppressed semantics. In this section, we show that we can
enumerate the elements of S(C), producing each assignment t with delay O(|t|).

To prove this, we will go back to our definition of zero-suppressed semantics in Section 3,
namely, the minimal valuations of the traces of C (recall Definition 3.3). We will proceed in
two steps. First, we use our preprocessing and the OR-index to show an efficient enumeration
scheme for the traces of C, in a compact representation called compressed traces. Second, we
show how to enumerate efficiently the minimal valuations of a compressed trace.

Compressed traces. We cannot enumerate traces directly because they can be arbitrarily
large (e.g., contain long paths of OR-gates) even for assignments of small weight. We
accordingly define compressed traces as a variant of traces that collapse such paths:

I Definition 6.1. An OR-path of a monotone augmented circuit C = (G,W, µ, g0) is a path
from g ∈ G to g′ ∈ G where all intermediate gates are OR-gates; in particular if (g, g′) ∈W
then there is an OR-path from g to g′. A compressed upward tree of C is a pair (G′,W ′)
where G′ ⊆ G and where W ′ ⊆ G′×G′ is such that for each (g, g′) ∈W ′ there is an OR-path
from g to g′: we require that T is a rooted tree up to reversing the direction of the edges. T
is a compressed partial trace if its internal gates are AND-gates and OR-gates such that:

for every AND-gate g in T , all its inputs in C are children of g in T ;
for every exit g in T (it is an OR-gate), its one input in C is a child of g in T ;
for every non-exit OR-gate g in T , exactly one of its exits g′ in C is a child of g in T .

ICALP 2017



111:10 A Circuit-Based Approach to Efficient Enumeration

We write |T | := |G′|. We call T a compressed trace of C if its root is g0. The minimal
valuations of a compressed trace are defined like for non-compressed traces (Definition 3.5).

The use of compressed traces is that their size is linear in that of their minimal valuations:

I Lemma 6.2. For any compressed trace T of a normal circuit C and minimal valuation ν
for T and C, we have |T | ≤ 6 · |ν|.

From a trace T in a normal d-DNNF C, we can clearly define a compressed trace T ′ with
the same leaves, as follows. Whenever T contains an OR-gate g whose parent gate g′ in T is
not an OR-gate (or when g is the root of T ), as g cannot be an exit, we know that there is a
OR-path in T from g to an exit g′′ of g in its OR-component. We “compress” this OR-path
in T ′ as an edge from g to g′′. Conversely, given a compressed trace T ′, we can fill it to a
trace T with the same leaves, by replacing each edge from g to g′ by a witnessing OR-path;
there is only one way to do so because OR-components are multitrees (Lemma 5.3). Hence,
there is a bijection between traces and compressed traces that preserves the set of leaves. As
the minimal valuations of traces and compressed traces are defined in the same way from
this set, we can simply enumerate compressed traces instead of traces. We can then show:

I Proposition 6.3. Given a normal d-DNNF C with its OR-index, we can enumerate its
compressed traces, with the delay to produce each compressed trace T being in O(|T |).

In particular, if all compressed traces have constant size, then the delay is constant.

Proof Sketch. At each AND-gate, we enumerate the lexicographic product of the partial
traces of its two children; at each OR-gate, we enumerate its exits using the OR-index. J

Enumerating valuations of a compressed trace. We now show how, given a compressed
trace T , we can enumerate its minimal valuations (recall Definition 3.5). Restricting our
attention to the leaves of T , we can rephrase our problem in the following way:

I Definition 6.4. The assignment enumeration problem for a total order < on gates Cvar is
as follows: given pairwise disjoint intervals [g−1 , g

+
1 ], . . . , [g−n , g+

n ], and cardinality constraints
./1 ii, . . . , ./n in, where 0 < ij ≤

∣∣[g−j , g+
j ]
∣∣ and ./j ∈ {=,≥}, enumerate the values of the

products t1× · · · × tn for all the assignments of the tj ⊆ [g−j , g
+
j ] such that |tj | ./j ij for all j.

Indeed, remember that, as C is {}-pruned, the leaves of T consist of variables and range
gates, and their intervals are pairwise disjoint thanks to decomposability. A ./ i-gate with
inputs g−, g+ codes the interval [g−, g+] with cardinality constraint ./ i, and a variable g
simply codes [g, g] with constraint = 1. Further, thanks to {}-pruning, we know that no
range gate is labeled with = 0 or ≥ 0, and thanks to ∅-pruning, we know that no range gate
is labeled with an infeasible cardinality constraint. We claim:

I Proposition 6.5. We can enumerate the solutions to the assignment enumeration problem
for < on Cvar, with each solution t being produced with delay linear in its size |t|.

Again, this is constant-delay when all solutions have size bounded by a constant.

Proof Sketch. We enumerate the possible assignments of weights to intervals with constant-
delay, to reduce to the case where all cardinality constraints are equalities. We then enumerate
the assignments in lexicographic order, using an existing scheme [26, Section 7.2.1.3]. J



A. Amarilli, P. Bourhis, L. Jachiet, and S. Mengel 111:11

We have concluded the proof of Theorem 2.1 (see Figure 1) and 2.2. Given our input
d-DNNF C and v-tree T rewritten to a compatible order, we rewrite C to an equivalent
normal d-DNNF and compute the OR-index. We then enumerate compressed traces, and the
valuations for each trace. The proof of Theorem 2.2 is the same except that we additionally
use Proposition 4.1 before Proposition 4.3 to restrict to valuations of Hamming weight ≤ k.

7 Applications

We now present two applications of our main results. Our first application recaptures the
well-known enumeration results for MSO queries on trees [6, 23]. The second application
describes links to factorized databases and strengthens the enumeration result of [29].

MSO enumeration. Recall that the class of monadic second-order formulae (MSO) consists
of first-order logical formulae extended with quantification over sets, see e.g. [27]. The
enumeration problem for a fixed MSO formula φ(X1, . . . , Xk) with free second-order variables,
given a structure I, is to enumerate the answers of φ on I, i.e., the k-tuples (B1, . . . , Bk)
of subsets of the domain of I such that I satisfies φ(B1, . . . , Bk). We measure the data
complexity of this task, i.e., its complexity in the input structure, with the query being fixed.

It was shown by Bagan [6] that MSO query enumeration on trees and bounded treewidth
structures can be performed with linear-time preprocessing and delay linear in each MSO
assignment; in particular, if the free variables of the formula are first-order, then the delay is
constant. This latter result was later re-proven by Kazana and Segoufin [25]. We show how
to recapture this theorem from our main results. From the results of Courcelle and standard
techniques (see, e.g., [23], Theorem 6.3.1 and Section 6.3.2), we restrict to binary trees.

I Definition 7.1. Let Γ be a finite alphabet. A Γ-tree T is a rooted unordered binary tree
where each node n ∈ T carries a label in Γ. We abuse notation and identify T to its node set.
MSO formulae on Γ-trees are written on the signature consisting of one binary predicate for
the edge relation and unary predicates for each label of Γ.

Let φ(X1, . . . , Xk) be an MSO formula on Γ-trees, and let T be a Γ-tree. We will show
our enumeration result by building a structured circuit capturing the assignments of φ on T :

I Definition 7.2. A singleton on X1, . . . , Xk and T is an expression of the form 〈Xi : n〉
with n ∈ T . An assignment on X1, . . . , Xk and T is a set S of singletons: it defines a k-tuple
(BS1 , . . . , BSk ) of subsets of T by setting BSi := {n ∈ T | 〈Xi : n〉 ∈ S} for each i. The
assignments of φ on T are the assignments S such that T satisfies φ(BS1 , . . . , BSk ).

We will enumerate assignments instead of answers: this makes no difference because we
can always rewrite each assignment in linear time to the corresponding answer. We now
state the key result: we can efficiently build circuits (with singletons as variable gates) that
capture the assignments to MSO queries. (While these circuits are not augmented circuits,
they are decomposable, so the definition of zero-suppressed semantics clearly extends.)

I Theorem 7.3. For any fixed MSO formula φ(X1, . . . , Xk) on Γ-trees, given a Γ-tree T , we
can build in time O(|T |) a monotone d-DNNF circuit C in zero-suppressed semantics whose
set S(C) of assignments (as in Definition 3.6) is exactly the set of assignments of φ on T .

Proof Sketch. We simplify φ to have a single free variable and limit to assignments on leaves
as in [6], and rewrite φ to a deterministic tree automaton A using the result of Thatcher and
Wright [35], in time independent of T (though the runtime is generally nonelementary in φ).

ICALP 2017



111:12 A Circuit-Based Approach to Efficient Enumeration

We then compute our circuit as a variant of the provenance circuits in our earlier work [4],
observing that it is a d-DNNF thanks to the determinism of the automaton as in [5]. This
second step is in O(|A| · |T |), so linear in T . A self-contained proof is given in [3]. J

Note that the resulting circuit is already in zero-suppressed semantics, and has no range
gates. By continuing as in the proof of Theorem 2.1 (for free second-order variables) or
of Theorem 2.2 (for free first-order variables), we deduce the MSO enumeration results
of [6, 25]. Note that, once we have computed the tree automaton for the query and the
circuit representation, our proof of the enumeration result is completely query-agnostic: we
simply apply our enumeration construction on the circuit. Our proof also does not depend
on the factorization forest decomposition theorem of [15] used by [25]; it consists only of the
simple circuit manipulation and indexing that we presented in Sections 4–6. Note that the
delay is in O(k · |T |), with no large hidden constants, and O(k) for first-order variables.

A limitation of our approach is that our memory usage bound includes a logarithmic
factor in T , whereas [6, 25] show constant-memory enumeration. However, we can show
that the circuit computed in Theorem 7.3 satisfies an upwards-determinism condition that
allow us to replace the indexing scheme of Theorem 5.4 (our memory bottleneck) by a more
efficient index. We can thus reprove the constant-memory enumeration of [6, 25]: see [3].

Factorized representations. Our second application is the factorized representations of [29],
a concise way to represent database relations [1] by “factoring out” common parts. The atomic
factorized relations are the empty relation ∅, the relation 〈〉 containing only the empty tuple,
and singletons 〈A : a〉 where A is an attribute and a is an element. Larger relations are built
using the relational union and Cartesian product operators on sub-relations with compatible
schemas. For example, 〈A1 : a1〉 × (〈A2 : a2〉 ∪ 〈A2 : a′2〉) is a factorized representation of the
relation on attributes A1, A2 containing the tuples (a1, a2) and (a1, a

′
2). A d-representation

is a factorized representation given as a DAG, to reuse common sub-expressions. We show
that d-representations can be seen as circuits in zero-suppressed semantics:

I Lemma 7.4. For any d-representation D, let C be the monotone circuit obtained by
replacing × and ∪ by AND and OR, replacing ∅ and 〈〉 by AND-gates and OR-gates with no
inputs, and keeping singletons as variables. Then all AND-gates of C are decomposable, and
S(C) (defined as in Section 3) is exactly the database relation represented by D.

Hence, our results in Theorem 2.2 can be rephrased in terms of factorized representations:

I Theorem 7.5. The tuples of a deterministic d-representation D over a schema S can be
enumerated with linear-time preprocessing, delay O(|S|), and memory O(|S| log |D|).

Note that the existing enumeration result on factorized representations (Theorem 4.11
of [29]) achieves a constant memory bound, unlike ours, but it applies only to deterministic
d-representations that are normal (Definition 4.6 of [29]), which we do not assume. Normal
d-representations are intuitively pruned and collapsed circuits where no OR-gate is an input
to an OR-gate: this assumption avoids the need, e.g., for the constructions of Section 5.

8 Conclusion

We have shown how to enumerate satisfying valuations for the structured d-DNNF circuits
used in AI, with linear preprocessing and delay linear in each valuation (so constant delay
for constant Hamming weight). We applied this to factorized databases, and to MSO query



A. Amarilli, P. Bourhis, L. Jachiet, and S. Mengel 111:13

enumeration [6, 23]. Beyond this, however, our method implies efficient enumeration for all
knowledge compilation problems that compile to structured d-DNNFs (see Introduction).

A natural question is to extend our constructions for other tasks, e.g., computing the i-th
valuation [6, 9]; managing updates [28]; or enumerating in order of weight, or in lexicographic
order: this latter problem is open for MSO [33, Section 6.1] but results are known for
factorized representations following an f-tree [10]. Another direction is to strengthen our
results to constant-memory enumeration on all d-DNNFs, or generalize them to other classes.
We also plan to study practical implementations, because our construction only performs
simple and modular transformations on input circuits, with no hidden large constants.

References
1 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of databases. Addison-

Wesley, 1995. URL: http://webdam.inria.fr/Alice/pdfs/all.pdf.
2 Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis of

Computer Algorithms. Addison-Wesley, 1974.
3 Antoine Amarilli, Pierre Bourhis, Louis Jachiet, and Stefan Mengel. A circuit-based

approach to efficient enumeration, 2017. URL: https://arxiv.org/abs/1702.05589,
arXiv:1702.05589.

4 Antoine Amarilli, Pierre Bourhis, and Pierre Senellart. Provenance circuits for trees and
treelike instances. In ICALP, 2015. URL: https://arxiv.org/abs/1511.08723.

5 Antoine Amarilli, Pierre Bourhis, and Pierre Senellart. Tractable lineages on treelike in-
stances: Limits and extensions. In PODS, 2016. URL: https://arxiv.org/abs/1604.
02761.

6 Guillaume Bagan. MSO queries on tree decomposable structures are computable with
linear delay. In CSL, 2006.

7 Guillaume Bagan, Arnaud Durand, Emmanuel Filiot, and Olivier Gauwin. Efficient
enumeration for conjunctive queries over X-underbar structures. In CSL, 2010. URL:
https://hal.inria.fr/hal-00489955.

8 Guillaume Bagan, Arnaud Durand, and Etienne Grandjean. On acyclic conjunctive queries
and constant delay enumeration. In CSL, 2007. URL: http://www.logique.jussieu.fr/
~durand/webperso/papers/BDGlongversion.pdf.

9 Guillaume Bagan, Arnaud Durand, Etienne Grandjean, and Frédéric Olive. Computing the
jth solution of a first-order query. ITA, 42(1), 2008. URL: https://hal-univ-diderot.
archives-ouvertes.fr/file/index/docid/221730/filename/bdgo.pdf.

10 Nurzhan Bakibayev, Tomáš Kočiskỳ, Dan Olteanu, and Jakub Závodnỳ. Aggregation and
ordering in factorised databases. PVLDB, 2013. URL: https://www.cs.ox.ac.uk/dan.
olteanu/papers/bkoz-vldb13-with-response.pdf.

11 David A. Mix Barrington, Neil Immerman, and Howard Straubing. On uniformity within
NC1. JCSS, 41(3), 1990. URL: http://www.sciencedirect.com/science/article/pii/
002200009090022D.

12 Simone Bova, Florent Capelli, Stefan Mengel, and Friedrich Slivovsky. On compiling CNFs
into structured deterministic DNNFs. In SAT, 2015. URL: http://www.dcs.bbk.ac.uk/
~florent/publi/cnf-to-ddnnf-upper-bound.pdf.

13 Simone Bova and Stefan Szeider. Circuit treewidth, sentential decision, and query compi-
lation. In PODS, 2017. URL: https://arxiv.org/abs/1701.04626.

14 Arthur Choi and Adnan Darwiche. Dynamic minimization of sentential decision diagrams.
In AAAI, 2013. URL: http://reasoning.cs.ucla.edu/fetch.php?id=128&type=pdf.

15 Thomas Colcombet. A combinatorial theorem for trees. In ICALP, 2007. URL: https:
//www.irif.fr/~colcombe/Publications/ICALP07-colcombet.pdf.

ICALP 2017

http://webdam.inria.fr/Alice/pdfs/all.pdf
https://arxiv.org/abs/1702.05589
http://arxiv.org/abs/1702.05589
https://arxiv.org/abs/1511.08723
https://arxiv.org/abs/1604.02761
https://arxiv.org/abs/1604.02761
https://hal.inria.fr/hal-00489955
http://www.logique.jussieu.fr/~durand/webperso/papers/BDGlongversion.pdf
http://www.logique.jussieu.fr/~durand/webperso/papers/BDGlongversion.pdf
https://hal-univ-diderot.archives-ouvertes.fr/file/index/docid/221730/filename/bdgo.pdf
https://hal-univ-diderot.archives-ouvertes.fr/file/index/docid/221730/filename/bdgo.pdf
https://www.cs.ox.ac.uk/dan.olteanu/papers/bkoz-vldb13-with-response.pdf
https://www.cs.ox.ac.uk/dan.olteanu/papers/bkoz-vldb13-with-response.pdf
http://www.sciencedirect.com/science/article/pii/002200009090022D
http://www.sciencedirect.com/science/article/pii/002200009090022D
http://www.dcs.bbk.ac.uk/~florent/publi/cnf-to-ddnnf-upper-bound.pdf
http://www.dcs.bbk.ac.uk/~florent/publi/cnf-to-ddnnf-upper-bound.pdf
https://arxiv.org/abs/1701.04626
http://reasoning.cs.ucla.edu/fetch.php?id=128&type=pdf
https://www.irif.fr/~colcombe/Publications/ICALP07-colcombet.pdf
https://www.irif.fr/~colcombe/Publications/ICALP07-colcombet.pdf


111:14 A Circuit-Based Approach to Efficient Enumeration

16 Bruno Courcelle. Linear delay enumeration and monadic second-order logic. Discrete
Applied Mathematics, 157(12), 2009. URL: https://www.labri.fr/perso/courcell/
Textes/LinDelayEnum.pdf.

17 Adnan Darwiche. On the tractable counting of theory models and its application to truth
maintenance and belief revision. J. Applied Non-Classical Logics, 11(1-2), 2001. doi:
10.3166/jancl.11.11-34.

18 Adnan Darwiche and Pierre Marquis. A knowledge compilation map. JAIR, 17, 2002. URL:
https://www.jair.org/media/989/live-989-2063-jair.pdf.

19 Arnaud Durand and Etienne Grandjean. First-order queries on structures of bounded
degree are computable with constant delay. TOCL, 8(4), 2007. URL: https://arxiv.
org/abs/cs/0507020.

20 Arnaud Durand, Nicole Schweikardt, and Luc Segoufin. Enumerating answers to first-
order queries over databases of low degree. In PODS, 2014. URL: https://hal.inria.
fr/hal-01070898/en.

21 Jinbo Huang and Adnan Darwiche. DPLL with a trace: From SAT to knowledge compila-
tion. In IJCAI, 2005. URL: https://ijcai.org/Proceedings/05/Papers/0876.pdf.

22 Abhay Kumar Jha and Dan Suciu. Knowledge compilation meets database theory: Com-
piling queries to decision diagrams. TCS, 52(3), 2013.

23 Wojciech Kazana. Query evaluation with constant delay. PhD thesis, École normale
supérieure de Cachan, 2013. URL: https://tel.archives-ouvertes.fr/tel-00919786/
document.

24 Wojciech Kazana and Luc Segoufin. Enumeration of first-order queries on classes of struc-
tures with bounded expansion. In PODS. ACM, 2013. URL: https://hal.inria.fr/
hal-00908779/en.

25 Wojciech Kazana and Luc Segoufin. Enumeration of monadic second-order queries on
trees. TOCL, 14(4), 2013. URL: https://hal.archives-ouvertes.fr/docs/00/90/70/
85/PDF/cdlin-survey.pdf.

26 Donald E. Knuth. The Art of Computer Programming. Volume 4A: Combinatorial Algo-
rithms, Part 1. Addison-Wesley, 2005.

27 Leonid Libkin. Elements of Finite Model Theory. Springer, 2004.
28 Katja Losemann and Wim Martens. MSO queries on trees: enumerating answers under

updates. In CSL-LICS, 2014. URL: http://www.theoinf.uni-bayreuth.de/download/
lics14-preprint.pdf.

29 Dan Olteanu and Jakub Závodnỳ. Size bounds for factorised representations of query results.
TODS, 40(1), 2015. URL: http://www.cs.ox.ac.uk/dan.olteanu/papers/oz-tods15.
pdf.

30 Umut Oztok and Adnan Darwiche. A top-down compiler for sentential decision diagrams.
In IJCAI, 2015. URL: http://reasoning.cs.ucla.edu/fetch.php?id=157&type=pdf.

31 Knot Pipatsrisawat and Adnan Darwiche. New compilation languages based on struc-
tured decomposability. In AAAI, 2008. URL: http://aaai.org/Papers/AAAI/2008/
AAAI08-082.pdf.

32 Ran Raz, Amir Shpilka, and Amir Yehudayoff. A lower bound for the size of syntactically
multilinear arithmetic circuits. SIAM J. Comput., 38(4), 2008. doi:10.1137/070707932.

33 Luc Segoufin. A glimpse on constant delay enumeration (invited talk). In STACS, 2014.
doi:10.4230/LIPIcs.STACS.2014.13.

34 Volker Strassen. Vermeidung von divisionen. Journal für die reine und angewandte Math-
ematik, 264, 1973. URL: https://eudml.org/doc/151394.

35 James W. Thatcher and Jesse B. Wright. Generalized finite automata theory with an
application to a decision problem of second-order logic. Math. Systems Theory, 2(1), 1968.

https://www.labri.fr/perso/courcell/Textes/LinDelayEnum.pdf
https://www.labri.fr/perso/courcell/Textes/LinDelayEnum.pdf
http://dx.doi.org/10.3166/jancl.11.11-34
http://dx.doi.org/10.3166/jancl.11.11-34
https://www.jair.org/media/989/live-989-2063-jair.pdf
https://arxiv.org/abs/cs/0507020
https://arxiv.org/abs/cs/0507020
https://hal.inria.fr/hal-01070898/en
https://hal.inria.fr/hal-01070898/en
https://ijcai.org/Proceedings/05/Papers/0876.pdf
https://tel.archives-ouvertes.fr/tel-00919786/document
https://tel.archives-ouvertes.fr/tel-00919786/document
https://hal.inria.fr/hal-00908779/en
https://hal.inria.fr/hal-00908779/en
https://hal.archives-ouvertes.fr/docs/00/90/70/85/PDF/cdlin-survey.pdf
https://hal.archives-ouvertes.fr/docs/00/90/70/85/PDF/cdlin-survey.pdf
http://www.theoinf.uni-bayreuth.de/download/lics14-preprint.pdf
http://www.theoinf.uni-bayreuth.de/download/lics14-preprint.pdf
http://www.cs.ox.ac.uk/dan.olteanu/papers/oz-tods15.pdf
http://www.cs.ox.ac.uk/dan.olteanu/papers/oz-tods15.pdf
http://reasoning.cs.ucla.edu/fetch.php?id=157&type=pdf
http://aaai.org/Papers/AAAI/2008/AAAI08-082.pdf
http://aaai.org/Papers/AAAI/2008/AAAI08-082.pdf
http://dx.doi.org/10.1137/070707932
http://dx.doi.org/10.4230/LIPIcs.STACS.2014.13
https://eudml.org/doc/151394


A. Amarilli, P. Bourhis, L. Jachiet, and S. Mengel 111:15

36 Kunihiro Wasa. Enumeration of enumeration algorithms. CoRR, abs/1605.05102, 2016.
URL: https://arxiv.org/abs/1605.05102.

37 Ingo Wegener. Branching programs and binary decision diagrams. SIAM, 2000.

ICALP 2017

https://arxiv.org/abs/1605.05102

	Introduction
	Preliminaries and Problem Statement
	Reducing to Zero-Suppressed Semantics
	Reducing to Normal Form Circuits
	Indexing OR-Components
	Enumerating Assignments
	Applications
	Conclusion

