
Dynamic Beats Fixed: On Phase-Based
Algorithms for File Migration∗†

Marcin Bienkowski1, Jarosław Byrka2, and Marcin Mucha3

1 Institute of Computer Science, University of Wrocław, Wrocław, Poland
mbi@cs.uni.wroc.pl

2 Institute of Computer Science, University of Wrocław, Wrocław, Poland
jby@cs.uni.wroc.pl

3 Institute of Informatics, University of Warsaw, Warsaw, Poland
mucha@mimuw.edu.pl

Abstract
In this paper, we construct a deterministic 4-competitive algorithm for the online file migration
problem, beating the currently best 20-year old, 4.086-competitive Mtlm algorithm by Bartal
et al. (SODA 1997). Like Mtlm, our algorithm also operates in phases, but it adapts their
lengths dynamically depending on the geometry of requests seen so far. The improvement was
obtained by carefully analyzing a linear model (factor-revealing LP) of a single phase of the
algorithm. We also show that if an online algorithm operates in phases of fixed length and the
adversary is able to modify the graph between phases, no algorithm can beat the competitive
ratio of 4.086.

1998 ACM Subject Classification F.1.2 [Modes of Computation] Online Computation, G.1.6 [Op-
timization] Linear programming, F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases file migration, factor-revealing linear programs, online algorithms, com-
petitive analysis

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.13

1 Introduction

Consider the problem of managing a shared data item among sets of processors. For example,
in a distributed program running in a network, nodes want to have access to shared files,
objects or databases. Such a file can be stored in the local memory of one of the processors
and when another processor wants to access (read from or write to) this file, it has to
contact the processor holding the file. Such a transaction incurs a certain cost. Moreover,
access patterns to this file may change frequently and unpredictably, which renders any static
placement of the file inefficient. Hence, the goal is to minimize the total cost of communication
by moving the file in response to such accesses, so that the requesting processors find the file
“nearby” in the network.

The file migration problem serves as the theoretical underpinning of the application
scenario described above. The problem was coined by Black and Sleator [13] and was initially
called page migration, as the original motivation concerned managing a set of memory pages

∗ Extended abstract; the full version is available at https://arxiv.org/abs/1609.00831.
† Partially supported by Polish National Science Centre grants 2016/22/E/ST6/00499 and

2015/18/E/ST6/00456. The work of M. Mucha is part of a project TOTAL that has received funding
from the European Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No. 677651).

EA
T

C
S

© Marcin Bienkowski, Jarosław Byrka, and Marcin Mucha;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 13; pp. 13:1–13:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.13
https://arxiv.org/abs/1609.00831
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

13:2 Dynamic Beats Fixed: On Phase-Based Algorithms for File Migration

in a multiprocessor system. There the data item was a single memory page held at a local
memory of a single processor.

Most subsequent work referred to this problem as file migration and we will stick to this
convention in this paper. The file migration problem assumes the non-uniform model, where
the shared file is much larger than a portion accessed in a single time step. This is typical
when in one step a processor wants to read a single unit of data from a file or a record from
a database. On the other hand, to reduce the maintenance overhead, it is assumed that the
shared file is indivisible, and can be migrated between nodes only as a whole. This makes
the file migration much more expensive than a single access to the file. As the knowledge
of future accesses is either partial or completely non-existing, the accesses to the file can
be naturally modeled as an online problem, where the input sequence consists of processor
identifiers, which sequentially try to access pieces of the shared file.

1.1 The Model
The studied network is modeled as an edge-weighted graph or, more generally, as a metric
space (X , d) whose point set X corresponds to processors and d defines the distances between
them. There is a large indivisible file (historically called page) of size D stored at a point
of X . An input is a sequence of space points r1, r2, r3, . . . denoting processors requesting
access to the file. This sequence is presented in an online manner to an algorithm. More
precisely, we assume that the time is slotted into steps numbered from 1. Let algt denote
the position of the file at the end of step t and alg0 be the initial position of the file. In
step t ≥ 1, the following happens:
1. A requesting point rt is presented to the algorithm.
2. The algorithm pays d(algt−1, rt) for serving the request.
3. The algorithm chooses a new position algt for the file (possibly algt = algt−1) and

moves the file to algt paying D · d(algt−1,algt).

After the t-th request, the algorithm has to make its decision (where to migrate the file)
exclusively on the basis of the sequence up to step t. To measure the performance of an online
strategy, we use the standard competitive ratio metric [14]: an online deterministic algorithm
Alg is c-competitive if there exists a constant γ, such that for any input sequence I, it
holds that CALG(I) ≤ c · COPT(I) + γ, where CALG and COPT denote the costs of Alg
and Opt (optimal offline algorithm) on I, respectively. The minimum c for which Alg is
c-competitive is called the competitive ratio of Alg.

1.2 Previous Work
The problem was stated by Black and Sleator [13], who gave 3-competitive deterministic
algorithms for uniform metrics and trees and conjectured that 3-competitive deterministic
algorithms were possible for any metric space.

Westbrook [26] constructed randomized strategies: a 3-competitive algorithm against
adaptive-online adversaries and a (1 + φ)-competitive algorithm (for D tending to infinity)
against oblivious adversaries, where φ ≈ 1.618 denotes the golden ratio. By the result
of Ben-David et al. [10] this asserted the existence of a deterministic algorithm with the
competitive ratio at most 3 · (1 + φ) ≈ 7.854.

The first explicit deterministic construction was the 7-competitive algorithm Move-To-
Min (Mtm) by Awerbuch et al. [2]. Mtm operates in phases of length D, during which the
algorithm remains at a fixed position. In the last step of a phase, Mtm migrates the file to

M. Bienkowski, J. Byrka, and M. Mucha 13:3

a point that minimizes the sum of distances to all requests r1, r2, . . . , rD presented in the
phase, i.e., to a minimizer of the function fMTM(x) =

∑D
i=1 d(x, ri).

The ratio has been subsequently improved by the algorithm Move-To-Local-Min
(Mtlm) by Bartal et al. [8]. Mtlm works similarly to Mtm, but it changes the phase
duration to c0 ·D for a constant c0, and when computing the new position for the file, it
also takes the migration distance into consideration. Namely, it chooses to migrate the file
to a point that minimizes the function

fMTLM(x) = D · d(vMTLM, x) + c0+1
c0

∑c0·D
i=1 d(x, ri) ,

where vMTLM denotes the point at which Mtlm keeps its file during the phase. The algorithm
is optimized by setting c0 ≈ 1.841 being the only positive root of the equation 3c3−8c−4 = 0.
For such c, the competitive ratio of Mtlm is R0 ≈ 4.086, where R0 is the largest (real) root
of the equation R3 − 5R2 + 3R+ 3 = 0. Their analysis is tight.

It is worth noting that most of the competitive ratios given above hold when D tends to
infinity. In particular, for Mtlm we assume that c0 ·D is an integer and the ratio of 1 + φ of
Westbrook’s algorithm [26] is achieved only in the limit.

Better deterministic algorithms are known only for some specific graph topologies. There
are 3-competitive algorithms for uniform metrics and trees [13], and (3 + 1/D)-competitive
strategies for three-point metrics [23]. Chrobak et al. [15] showed 2 + 1/(2D)-competitive
strategies for continuous trees and products of trees, e.g., for Rn with `1 norm. Furthermore,
a (1 + φ)-competitive algorithm for Rn under any norm was also given in [15].

A straightforward lower bound of 3 for deterministic algorithms was given by Black and
Sleator [13] and later adapted to randomized algorithms against adaptive-online adversaries
by Westbrook [26]. The currently best lower bound for deterministic algorithms is due to
Matsubayashi [22], who showed a lower bound of 3 + ε that holds for any value of D, where
ε is a constant that does not depend on D. This renders the file migration problem one
of the few natural problems, where a known lower bound on the competitive ratio of any
deterministic algorithm is strictly larger than the competitive ratio of a randomized algorithm
against an adaptive-online adversary.

Finally, improved results were given for a simplified model where D = 1: the competitive
ratio for deterministic algorithms is then known to be between 3.164 and 3.414 [21].

1.3 Our Contribution
We propose a new deterministic algorithm that dynamically decides on the length of the
phase based on the geometry of requests received in the initial part of each phase. This
improves the 20-years old result of Bartal et al. [8].

The improvement was obtained by carefully analyzing a linear model (factor revealing
LP) of a single phase of the algorithm. It allowed us to identify some key tight examples
for the previous analysis, suggested a nontrivial construction of the new algorithm, and
facilitated a systematic search within the design parameter space.

More precisely, for a fixed algorithm Alg (from a relatively broad class), we create
a maximization LP with the following property: if the competitive ratio of Alg is at least R,
then so is the value of LP. A solution to the LP contains a succinct description of a metric
space along with a short description of a single-phase input, both constituting a lower bound
for Alg. Hence, the value of LP is an upper bound on Alg’s competitiveness. We discuss
the details of the LP approach in Section 4.

The way the algorithm was obtained is perhaps unintuitive. Nevertheless, the final
algorithm is an elegant construction involving only essentially integral constants. By studying

ICALP 2017

13:4 Dynamic Beats Fixed: On Phase-Based Algorithms for File Migration

the dual solution, we managed to extract a compact, human-readable, combinatorial upper
bound based on path-packing arguments and to obtain the following result.

I Theorem 1. There exists a deterministic 4-competitive algorithm for the file migration
problem.

We also show that improvement of Mtlm would not be possible by just selecting different
parameters for a phase-based algorithm operating with a fixed phase length. Our construction
shows that an analysis that treats each phase separately (e.g., the one employed for Mtlm [8])
cannot give better bounds on the competitive ratio than 4.086. (A weaker lower bound of
3.847 for algorithms that use fixed phase length was given by Bartal et al. [8].)

I Theorem 2. Fix any algorithm Alg that operates in phases of fixed length. Assume
that between the phases, the adversary can arbitrarily modify the graph while keeping the
distance between the files of Opt and Alg unchanged. Then, the competitive ratio of Alg
is at least R0 (for D tending to infinity), where R0 ≈ 4.086 is the competitive ratio of
algorithm Mtlm.

1.4 Other Related Work
The file migration problem has been generalized in a few directions. When we lift the
restriction that the file can only be migrated and not copied, the resulting problem is called
file allocation [9, 2, 18]. It makes sense especially when we differentiate read and write
requests to the file; for the former, we need to contact only one replica of the file; for the
latter all copies need to be updated. The attainable competitive ratios become then worse:
the best deterministic algorithm is O(logn)-competitive [2]; the lower bound of Ω(logn)
holds even for randomized algorithms and follows by a reduction from the online Steiner tree
problem [9, 17].

The file migration problem has been also extended to accommodate memory capacity
constraints at nodes (when more than one file is used) [1, 3, 4, 6], dynamically changing
networks [4, 12], and different objective functions (e.g., minimizing congestion) [19, 25]. For
a more systematic treatment of the file migration and related problems, see surveys [7, 11].
For more applied approaches, see the survey [16] and the references therein.

2 4-Competitive Algorithm Dynamic-Local-Min

We start with an insight concerning the hard inputs for the Mtlm algorithm [8]. We identified
two classes of tight instances for Mtlm: bipartite and linear (cf. Figure 1). It can be shown
that if the algorithm knew in advance on which instance it was run, it could improve its
performance by changing the phase length. Namely, for bipartite instances a longer phase
would help the algorithm, whereas a shorter phase would be beneficial for linear instances.

To decide the length of the phase, we need to measure the level of request concentration as
compared to the distance from the current position of an algorithm to the center of requests.
Intuitively, observing that (from some time) requests are concentrated around a certain
point motivates the algorithm to shorten the phase and quickly move to the “center of the
requests”. If, on the other hand, requests are scattered and the current algorithm’s position
is essentially in the middle of the observed requests, it appears reasonable to wait longer
before moving the file. This rule agrees with the desired behavior of the algorithm on linear
and bipartite instances.

Turning the above intuition into an effective phase extension rule is not trivial. We
present an algorithm based on a rule that we have extracted from an optimization process

M. Bienkowski, J. Byrka, and M. Mucha 13:5

Q

a

S

a b

Figure 1 The geometries of selected tight instances for Mtlm. In both cases, the algorithm
starts at point a. In the linear instance (on the right), the requests are initially given at a and then
later at b, and the algorithm is expected to migrate the file to point b. In the bipartite instance (on
the left) the requests are given at nodes from set S and the algorithm is expected to migrate the file
to one of the nodes from set Q.

using a natural linear model of the amortized phase-based analysis. This linear model is quite
complex and we present it in Section 4. It can be seen as an alternative (computer-based)
proof for the performance guarantee of our algorithm. Such proof technique might be
interesting on its own and useful for analyzing other online games played on metric spaces.

2.1 Notation
For succinctness, we introduce the following notions. For any two points v1, v2 ∈ X , let
[v1, v2] = D · d(v1, v2). We extend this notation to sequences of points, i.e., [v1, v2, . . . , vj] =
[v1, v2] + [v2, v3] + . . .+ [vj−1, vj]. Moreover, if v ∈ X is a point and S ⊆ X is a multiset of
points, then

[v, S] = [S, v] = D · 1
|S|

∑
x∈S d(v, x) ,

i.e., [v, S] is the average distance from v to a point of S times D. We extend the sequence
notation introduced above to sequences of points and multisets of points, e.g., [v, S, u, T] =
[v, S] + [S, u] + [u, T]. The symbol [S, T] is not defined for multisets S, T ; we will only use
this notation for sequences that do not contain two consecutive multisets.

Observe that the sequence notation allows for easy expressing of the triangle inequality:
[v1, v2] ≤ [v1, v3, v2]; we will extensively use this property. Note that the following “multiset”
version of the triangle inequality also holds: [v1, v2] ≤ [v1, S, v2].

2.2 Algorithm definition
We propose a new phase-based algorithm that dynamically decides on the length of the
current phase, which we call Dynamic-Local-Min (Dlm). Dlm operates in phases, but it
chooses their lengths depending on the geometry of requests seen in the initial part of the
phase. Roughly speaking, when it recognizes that the currently seen requests more closely
resemble a linear tight example for Mtlm, it ends the phase after 1.75D steps. Otherwise,
it assumes that the presented graph is more in the flavor of the bipartite construction, and
ends the phase only after 2.25D steps.

For any step t, we denote the position of Dlm’s file at the end of step t by dlmt and
that of Opt by opt. We identify the requests with the points where they are issued.

Assume a phase starts in step t + 1; that is, dlmt is the position of Dlm at the very
beginning of a phase. Within the phase, Dlm waits 1.75D steps and at step t+ 1.75D, it
finds a node vg that minimizes the function

g(v) = [dlmt, v,R1, v,R2] = [dlmt, v] + 2 · [v,R1] + [v,R2] ,

ICALP 2017

13:6 Dynamic Beats Fixed: On Phase-Based Algorithms for File Migration

where R1 is the multiset of the requests from steps t+ 1, . . . , t+D and R2 is the multiset of
the subsequent requests from steps t+D + 1, . . . , t+ 1.75D.

If g(vg) ≤ 1.5 · [dlmt,R2], the algorithm moves its file to vg, and ends the current phase.
Intuitively, this condition corresponds to detecting if there exists a point that is substantially
closer to the first 1.75D requests of the phase than the current position. The condition is
constructed in a way to be conclusive for each of the possible outcomes. If indeed such point
exists, then by moving the file to this point, we get much closer to the file of Opt. If there is
no such good point, then also the optimal solution is experiencing some request related costs.
Then, we may afford to wait a little longer and meanwhile get a more accurate estimation of
the possible location of the file of Opt.

That is, if g(vg) > 1.5 · [dlmt,R2], Dlm waits the next 0.5D steps and (in step t+2.25D)
it moves its file to the point vh, where vh is the minimizer of the function

h(v) = [dlmt, v] + [v,R1] + 1.25 · [v,R2] + 0.75 · [v,R3] .

R3 is the multiset of the last 0.5D requests from the prolonged phase (from steps t+1.75D+
1, . . . , t+ 2.25D). Also in this case, the next phase starts right after the file movement.

Note that the short phase consists of D requests denoted R1 followed by 0.75D requests
denoted R2, while the long phase consists additionally of 0.5D requests denoted R3. We
will say that the short phase consists of two parts, R1 and R2, and the long phase consists
of three parts, R1, R2 and R3.

2.3 DLM Analysis
We start with a lower bound on Opt. The following bound is an extension of the bound
given implicitly in [8]; its proof is given in the full version of the paper.

I Lemma 3. Let R be a subsequence of at most 2D consecutive requests from the input
issued at steps t+ 1, t+ 2, . . . , t+ |R|. Then, 4 · COPT(R) ≥ (2|R|/D) · [opt,R,opt+|R|] +
(4− 2|R|/D) · [opt,opt+|R|].

We define a potential function at (the end of) step t as Φt = 3 · [dlmt,opt]. It suffices to
show that in any (short or long) phase consisting of steps t+ 1, t+ 2, . . . , t+ `, during which
requests R are given, it holds that

CALG(R) + Φt+` ≤ 4 · COPT(R) + Φt . (1)

Theorem 1 follows immediately by summing the above bound over all phases of the input.

2.3.1 Proof for a short phase
We consider any short phase R consisting of part R1, spanning steps t+ 1, . . . , t+D, and
part R2, spanning steps t+D + 1, . . . , t+ 1.75D. For succinctness, we define op0 = opt,
op1 = opt+D and op2 = opt+1.75 D. By Lemma 3 applied to R1 and R2,

4 · COPT(R) + Φt = 3 · [dlmt,op0] + 4 · COPT(R1) + 4 · COPT(R2)
≥ 3 · [dlmt,op0] + 2 · [op0,op1] + 2 · [op0,R1,op1] (2)

+ 2.5 · [op1,op2] + 1.5 · [op1,R2,op2] .

We treat the amount (2) as our budget. This is illustrated below; the coefficients are written
as edge weights.

M. Bienkowski, J. Byrka, and M. Mucha 13:7

op0 op1

R1 R2

dlmt op2

3 2 2.5

2 2 1.5 1.5

xxxxxxxxxxxxxxxxxxxxxx

Budget = 4 OPT
+ initial potential
(short phase case)

Now, we bound CALG(R) + Φt+1.75 D using the definition of Alg and the triangle inequality.

CALG(R) + Φt+1.75 D

= CALG(R1) + CALG(R2) + 3[vg,op2]
≤ [dlmt,R1] + 0.75 · [dlmt,R2] + [dlmt, vg] + 3 · [vg,op2]
≤ [dlmt,R1] + 0.75 · [dlmt,R2] + [dlmt, vg] + 2 · [vg,R1,op2] + [vg,R2,op2]
= [dlmt,R1] + 0.75 · [dlmt,R2] + 2 · [op2,R1] + [op2,R2]

+ [dlmt, vg] + 2 · [vg,R1] + [vg,R2]
= [dlmt,R1] + 0.75 · [dlmt,R2] + 2 · [op2,R1] + [op2,R2] + g(vg) . (3)

The first four summands of (3) can be bounded as

[dlmt,R1] + 0.75 · [dlmt,R2] + 2 · [op2,R1] + [op2,R2] (4)
≤ [dlmt,op0,R1] + 0.75 · [dlmt,op0,op1,R2] + 2 · [op2,op1,R1] + [op2,R2] ,

and their total weights in the final expression are depicted below.
op0 op1

R1 R2

dlmt op2

1.75 0.75 2

1 2 0.75 1

xxxxxxxxxxxxxxxxxxxxxx

DLM cost
+ final potential
(part 1, short phase)

For the last summand of (3), g(vg), we use the fact that vg is a minimizer of the function g
(and hence g(vg) ≤ g(op0)), and the property of the short phase (g(vg) ≤ 1.5 · [dlmt,R2]).
Therefore,

g(vg) ≤ 0.5 · g(op0) + 0.75 · [dlmt,R2]
≤ 0.5 · [dlmt,op0,R1,op0,R2] + 0.75 · [dlmt,R2] (5)
≤ 0.5 · [dlmt,op0,R1,op0,op1,op2,R2] + 0.75 · [dlmt,op0,op1,R2] .

op0 op1

R1 R2

dlmt op2

1.25 1.25 0.5

1 0.75 0.5

xxxxxxxxxxxxxxxxxxxxxx

DLM cost
+ final potential
(part 2, short phase)

By combining (3), (4) and (5) (or simply adding the edge coefficients on the last two figures)
we observe that the budget ((2), i.e., the edge coefficients on the first figure) is not exceeded.
This implies 4-competitiveness, i.e., that (1) holds for any short phase.

2.3.2 Proof for a long phase
We consider any long phase R consisting of part R1, spanning steps t+ 1, . . . , t+D; part R2,
spanning steps t+D+ 1, . . . , t+ 1.75 ·D; and part R3, spanning steps t+ 1.75 ·D+ 1, . . . , t+
2.25 · D. Similarly to the proof for a short phase, we define op0 = opt, op1 = opt+D,

ICALP 2017

13:8 Dynamic Beats Fixed: On Phase-Based Algorithms for File Migration

op2 = opt+1.75 D, and op3 = opt+2.25 D. We emphasize that the positions of Opt in a long
and a short phase can be completely different.

By Lemma 3, we obtain a bound very similar to that for a short phase; again, we treat it
as a budget and depict its coefficients as edge weights.

4 · COPT(R) + Φt = 3 · [dlmt,op0] + 4 · COPT(R1) + 4 · COPT(R2) + 4 · COPT(R3)
≥ 3 · [dlmt,op0] + 2 · [op0,op1] + 2 · [op0,R1,op1] (6)

+ 2.5 · [op1,op2] + 1.5 · [op1,R2,op2]
+ 3 · [op2,op3] + [op2,R3,op2] .

op0 op1

R1 R2

dlmt op2

3 2 2.5

2 2 1.5 1.5

op3

1 1

3

R3
xxxxxxxxxxxxxxxxxxxxxx

Budget = 4 OPT
+ initial potential
(long phase case)

Now, we bound CALG(R) + Φt+2.25 D, using the definition of Alg and the triangle inequality.

CALG(R) + Φt+2.25 D

= CALG(R1) + CALG(R2) + CALG(R3) + 3 · [vh,op3]
= [dlmt,R1] + 0.75 · [dlmt,R2] + 0.5 · [dlmt,R3] + [dlmt, vh] + 3 · [vh,op3]
≤ [dlmt,R1] + 0.75 · [dlmt,R2] + 0.5 · [dlmt,R3] + [dlmt, vh]

+ [vh,R1,op3] + 1.25 · [vh,R2,op3] + 0.75 · [vh,R3,op3]
= [dlmt,R1] + 0.75 · [dlmt,R2] + 0.5 · [dlmt,R3] (7)

+ [op3,R1] + 1.25 · [op3,R2] + 0.75 · [op3,R3] + h(vh) .

Since Dlm has not migrated the file after the first two parts, g(v) ≥ 1.5 · [dlmt,R2] for
any node v. Therefore 0.75 · [dlmt,R2] ≤ 0.5 · g(op0) = 0.5 · [dlmt,op0,R1,op0,R2] ≤
0.5 · [dlmt,op0,R1,op0,op1,R2]. Using this and the triangle inequality, the first three
summands of (7) can be bounded and depicted as follows:

[dlmt,R1] + 0.75 · [dlmt,R2] + 0.5 · [dlmt,R3]
≤ [dlmt,op0,R1] + 0.5 · [dlmt,op0,R1,op0,op1,R2] (8)

+ 0.5 · [dlmt,op0,op1,op2,R3] .

op0 op1

R1 R2

dlmt op2

2 1 0.5

2 0.5

op3

0.5

R3
xxxxxxxxxxxxxxxxxxxxxx

DLM cost
+ final potential
(part1, long phase)

The next three summands of (7) can be also bounded appropriately:

[op3,R1] + 1.25 · [op3,R2] + 0.75 · [op3,R3]
≤ [op3,op2,op1,R1] + 1.25 · [op3,op2,R2] + 0.75 · [op3,R3] . (9)

op0 op1

R1 R2

dlmt op2

2.251

1

op3

0.75

R3
xxxxxxxxxxxxxxxxxxxxxx

DLM cost
+ final potential
(part 2, long phase)1.25

M. Bienkowski, J. Byrka, and M. Mucha 13:9

Lastly, for bounding h(vh), we use the fact that vh is a minimizer of h, and hence

h(vh) ≤ h(op1)
= [op1,dlmt] + [op1,R1] + 1.25 · [op1,R2] + 0.75 · [op1,R3]
≤ [op1,op0,dlmt] + [op1,R1] + [op1,R2] + 0.25 · [op1,op2,R2] (10)

+ 0.5 · [op1,op2,R3] + 0.25 · [op1,op2,op3,R3] .

Note that in (10) we split some of the paths and choose the longer ones, so that the budgets
on edges are not violated. Bound (10) is depicted on the figure below.

op0 op1

R1 R2

dlmt op2

0.251

1

op3

0.25

R3
xxxxxxxxxxxxxxxxxxxxxx

DLM cost
+ final potential
(part 3, long phase)0.25

1

0.51

1

By combining (7), (8), (9) and (10) (or simply adding edge coefficients on the last three
figures), we observe that the budget ((6), i.e., the edge coefficients on the first figure) is
not exceeded. This implies 4-competitiveness, i.e., that (1) holds for any long phase and
concludes the proof of Theorem 1.

3 Lower Bound for Phase-Based Algorithms

A fixed-phase algorithm chooses phase length c ·D and after every c ·D requests it makes
a migration decision solely on the basis of its current position and the last c ·D requests.
We now proceed to argue that no fixed-phase algorithm Alg can beat the competitive ratio
R0 ≈ 4.086 achieved by Mtlm [8] (cf. Theorem 2). As already stated in the introduction,
to ensure that the algorithm cannot base its choices on the previous phases, we will give
the adversary an additional power: it may modify the graph between the phases of Alg,
as long as the distance between nodes keeping the files of Alg and Opt (valg and vopt,
respectively) is preserved. We emphasize that the analysis of Mtlm [8] essentially uses this
model: each phase is analyzed completely separately from others. The full proof is given in
the full version of the paper; here we informally highlight its key ideas.

The adversarial construction consists of many epochs, each consisting of some number
of phases. At the beginning and at the end of an epoch, Alg and Opt keep their files at
the same node. We define three adversarial strategies, called plays: linear, bipartite, and
finishing. Each play consists of one or more phases. A prerequisite for each given play is
a particular distance between valg and vopt. Each play will have some properties: it will
incur some cost on Alg and Opt and will end with valg and vopt in a specific distance.

In the first phase of an epoch, when initially valg = vopt, the adversary uses the linear
play (the generated graph is a single edge of length 1), so that at the end of the phase,
d(valg, vopt) = 1. For such phase P , we have CALG(P) ≥ R0 · COPT(P)− (1/(1− 2α)) ·D,
where α = 1/(R0 − 1). Note that in this phase alone, the adversary does not enforce the
desired competitive ratio of R0, but it increases the distance between vopt and valg.

In each of the next L phases, the adversary employs the bipartite play; the graph used
corresponds to a tight bipartite example for Mtlm, cf. Figure 1). Let f be the value of
d(valg, vopt) at the beginning of a phase. If the algorithm plays well, then at the end of
the phase this distance decreases to 2α · f . Furthermore, neglecting lower order terms,
for such phase P , it holds that CALG(P) ≥ R0 · COPT(P) + f · D, i.e., the inequality
CALG(P) ≥ R0 · COPT(P) holds with the slack f ·D. The sum of these slacks over L phases

ICALP 2017

13:10 Dynamic Beats Fixed: On Phase-Based Algorithms for File Migration

is
∑L−1

i=0 (2α)i ·D, which tends to (1/(1 − 2α)) ·D when L grows. Hence, after one linear
and L bipartite phases (for a large L and neglecting lower order terms again), the cost paid
by Alg is at least R0 times the cost paid by Opt and the distance between their files is
negligible.

Finally, to decrease the distance between valg and vopt to zero, the adversary uses a third
type of play, the finishing one. This play incurs a negligible cost and it forces the positions
of Alg and Opt files to coincide, which ends an epoch.

4 Linear Program for File Migration

In this section, we present a linear programming model for the analysis of both algorithm
Mtlm by Bartal et al. [8] and our algorithm Dlm.

4.1 LP analysis of MTLM-like algorithms
In our approach, we analyze any Mtlm-like algorithm Alg. We use our notion of distances
from Section 2.1. Alg will be a variant of Mtlm parameterized with two values β and δ.
The length of its phase is δ ·D and the initial point of Alg is denoted by A0. We denote
the set of requests within a phase by R. At the end of a phase, Alg migrates the file to
a point A1 that minimizes the function

f(x) = [A0, x] + β · [x,R] .

As in the amortized analysis of the algorithm Mtlm [8], we will use a potential function
equal to φ times the distance between the files of Alg and Opt, where φ is a parameter
used in the analysis. We let O0 and O1 denote the initial and final position of Opt during
the studied phase, respectively. Then, the amortized cost of Alg in a single phase is
CALG = δ · [A0,R] + [A0, A1] + φ([A1, O1]− [A0, O0]).

The following factor-revealing LP mimics the proof given in [8]. Namely, it encodes
inequalities that are true for any phase and a graph on which Alg can be run. Its goal is to
maximize the ratio between CALG and COPT: as an instance can be scaled, we set COPT = 1
and we maximize CALG. Let V = {A0, A1, O0, O1} and V ′ = V ∪ {R}.

maximize CALG

subject to:
CALG = δ · [A0,R] + [A0, A1] + φ · ([A1, O1]− [A0, O0])
COPT = 1
COPT = Creq

OPT + Cmove
OPT

Cmove
OPT ≥ [O0, O1]

2 · Creq
OPT + δ · Cmove

OPT ≥ δ · [O0,R] + δ · [O1,R]
f(A1) ≤ f(v) for all v ∈ V
0 ≤ [v1, v3] ≤ [v1, v2] + [v2, v3] for all v1, v2, v3 ∈ V ′

As R is a set of requests, it does not necessarily correspond to a single point in the
studied metric. Nevertheless, our notion of average distances (i.e., [v1, v2]) allows us to write
the triangle inequalities for any pair of objects from set V ∪ {R}.

In the LP above, Creq
OPT, Cmove

OPT denote the cost of Opt for serving the request and the
cost of Opt for migrating the file, respectively. The inequality 2 · Creq

OPT + δ · Cmove
OPT ≥

δ · [O0,R] + δ · [O1,R] is a counterpart of the relation guaranteed by Lemma 3.

M. Bienkowski, J. Byrka, and M. Mucha 13:11

For any choice of parameters β, δ, and φ, the LP above finds an instance that maximizes
the competitive ratio of Alg. Note that such instance is not necessarily a certificate that
Alg indeed performs poorly: in particular, inequalities that lower-bound the cost of Opt
might not be tight. However, the opposite is true: if the value of CALG returned by the LP
is ξ, then for any possible instance the ratio is at most ξ.

Let c0 = 1.841 be the phase length of Mtlm. Setting δ = c0 and β = φ = 1 + c0 yields
that the optimal value of the LP is R0 ≈ 4.086, which can be interpreted as a numerical
counterpart of the original analysis in [8]. To obtain a formal mathematical proof, one may
take a dual solution to the LP. It gives the coefficients that multiplied by the corresponding
LP inequalities and summed over all inequalities yield a proof that the amortized cost of
Mtlm in any phase is at most R0 times the cost of Opt. Summed over all phases, this
implies that Mtlm is R0-competitive.

Among other advantages, this approach allows us to numerically find the instances that
are tight for the current analysis (cf. Section 2 and Figure 1): linear and bipartite instances
can be obtained this way.

4.2 LP analysis of DLM-like algorithms
Now we show how to adapt the LP from the previous section to analyze Dlm-type algorithms.
Recall that after 1.75D requests, Dlm evaluates the geometry of the so-far-received requests
and decides whether to continue this phase or not. Although the final parameters of Dlm are
elegant numbers (multiplicities of 1/4), they were obtained by a tedious optimization process
using the LP we present below. Furthermore, the LP below does not give us an explicit rule
for continuing the phase; it only tells that Dlm is successful either in a short or in a long
phase.

Recall that in a phase, Dlm considers three groups of consecutive δi ·D requests: R1,
R2, and R3, where δ1, δ2, and δ3 are parameters of Dlm. First, assume that Dlm always
processes three parts and afterwards it moves the file to a point A3 that minimizes the
function

h(x) = [A0, x] + β1 · [x,R1] + β2 · [x,R2] + β3 · [x,R3] ,

where βi are parameters that we choose later. We denote the strategy of an optimal algorithm
by OptL (short for Opt-Long). Let OL

0 , OL
1 , OL

2 and OL
3 denote the trajectory of OptL

(OL
0 is the initial position of the OptL’s file at the beginning of the phase, and OL

i is its
position right after the i-th part of the phase). Analogously to the previous section, we
obtain the following LP.

maximize CALGL

subject to:
CALGL = [A0, A3] +

∑
i=1,2,3 δi · [A0,Ri] + φ · ([A3, O

L
3]− [A0, O

L
0])

COPTL = 1
COPTL =

∑
i=1,2,3 (Creq

OPTL(i) + Cmove
OPTL(i))

Cmove
OPTL(i) ≥ [OL

i−1, O
L
i] for i = 1, 2, 3

2 · Creq
OPTL(i) + δ · Cmove

OPTL(i) ≥ δi · [OL
i−1,Ri] + δi · [OL

i ,Ri] for i = 1, 2, 3
h(A3) ≤ h(v) for all v ∈ V
0 ≤ [v1, v3] ≤ [v1, v2] + [v2, v3] for all v1, v2, v3 ∈ V ′

This time V = {A0, A3, O
L
0 , O

L
1 , O

L
2 , O

L
3 } and V ′ = V ∪ {R1,R2,R3}.

ICALP 2017

13:12 Dynamic Beats Fixed: On Phase-Based Algorithms for File Migration

We note that such parameterization alone does not improve the competitive ratio, i.e., for
any choice of parameters δi and βi, the objective value of the LP above is at least R0 ≈ 4.086.

However, as stated in Section 2.1, Dlm verifies if after two parts it can migrate its file to
a node A2 being the minimizer of the function

g(x) = [A0, x] + β′1 · [x,R1] + β′2 · [x,R2] ,

where β′i are parameters that we choose later.
In our analysis, we gave an explicit rule whether the migration to A2 should take place.

However, for our LP-based approach, we follow a slightly different scheme. Namely, if the
migration to A2 guarantees that the amortized cost in the short phase (the first two parts)
is at most 4 times the cost of any strategy for the short phase, then Dlm may move to A2
and we immediately achieve competitive ratio 4 on the short phase. Otherwise, we may
add additional constraints to the LP, stating that the competitive ratio of an algorithm
which moves to A2 is at least 4 (against any chosen strategy OptS). Analogously to OptL,
the trajectory of OptS is described by three points: OS

0 , OS
1 , and OS

2 . This allows us to
strengthen our LP by adding the following inequalities:

CALGS = [A0, A2] +
∑

i=1,2 δi · [A0,Ri] + φ · ([A2, O
S
2]− [A0, O

S
0])

COPTS =
∑

i=1,2 (Creq
OPTS(i) + Cmove

OPTS(i))
Cmove
OPTS(i) ≥ [OS

i−1, O
S
i] for i = 1, 2

2 · Creq
OPTS(i) + δ · Cmove

OPTS(i) ≥ δi · [OS
i−1,Ri] + δi · [OS

i ,Ri] for i = 1, 2
g(A2) ≤ g(v) for all v ∈ V
CALGS ≥ 4 · COPTS

We also change V to {A0, A3, O
L
0 , O

L
1 , O

L
2 , O

L
3 , O

S
0 , O

S
1 , O

S
2 }, both in new and in old inequal-

ities.
When we choose φ = 3, fix phase length parameters to be δ1 = 1, δ2 = 0.75, δ3 = 0.5 and

parameters for functions g and h to be β′1 = 2, β′2 = 1, β1 = 1, β2 = 0.25 and β3 = 0.75, we
obtain that the value of the above LP is 4. Again, this can be interpreted as a numerical
argument that Dlm is indeed a 4-competitive algorithm.

5 Conclusions

While in the last decade factor-revealing LPs became a standard tool for analysis of approxi-
mation algorithms, their application to online algorithms so far have been limited to online
bipartite matching and its variants (see, e.g., [24, 20]) and for showing lower bounds [5]. In
this paper, we successfully used the factor-revealing LP to bound the competitive ratio of
an algorithm for an online problem defined on an arbitrary metric space. We believe that
similar approaches could yield improvements also for other online graph problems.

References
1 Susanne Albers and Hisashi Koga. Page migration with limited local memory capacity. In

Proc. 4th Int. Workshop on Algorithms and Data Structures (WADS), pages 147–158, 1995.
2 Baruch Awerbuch, Yair Bartal, and Amos Fiat. Competitive distributed file allocation. In

Proc. 25th ACM Symp. on Theory of Computing (STOC), pages 164–173, 1993.
3 Baruch Awerbuch, Yair Bartal, and Amos Fiat. Heat & Dump: Competitive distributed

paging. In Proc. 34th IEEE Symp. on Foundations of Computer Science (FOCS), pages
22–31, 1993.

M. Bienkowski, J. Byrka, and M. Mucha 13:13

4 Baruch Awerbuch, Yair Bartal, and Amos Fiat. Distributed paging for general networks.
Journal of Algorithms, 28(1):67–104, 1998.

5 Yossi Azar, Ilan Reuven Cohen, and Alan Roytman. Online lower bounds via duality. In
Proc. 28th ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 1038–1050, 2017.

6 Yair Bartal. Competitive Analysis of Distributed On-line Problems – Distributed Paging.
PhD thesis, Tel-Aviv University, 1995.

7 Yair Bartal. Distributed paging. In Dagstul Workshop on On-line Algorithms, pages 97–117,
1996.

8 Yair Bartal, Moses Charikar, and Piotr Indyk. On page migration and other relaxed task
systems. Theoretical Computer Science, 268(1):43–66, 2001. Also appeared in Proc. of the
8th SODA, pages 43–52, 1997.

9 Yair Bartal, Amos Fiat, and Yuval Rabani. Competitive algorithms for distributed data
management. Journal of Computer and System Sciences, 51(3):341–358, 1995.

10 Shai Ben-David, Allan Borodin, Richard M. Karp, Gabor Tardos, and Avi Wigderson. On
the power of randomization in online algorithms. Algorithmica, 11(1):2–14, 1994.

11 Marcin Bienkowski. Migrating and replicating data in networks. Computer Science –
Research and Development, 27(3):169–179, 2012.

12 Marcin Bienkowski, Jaroslaw Byrka, Miroslaw Korzeniowski, and Friedhelm Meyer auf der
Heide. Optimal algorithms for page migration in dynamic networks. Journal of Discrete
Algorithms, 7(4):545–569, 2009.

13 David L. Black and Daniel D. Sleator. Competitive algorithms for replication and migration
problems. Technical Report CMU-CS-89-201, Department of Computer Science, Carnegie-
Mellon University, 1989.

14 Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Analysis. Cam-
bridge University Press, 1998.

15 Marek Chrobak, Lawrence L. Larmore, Nick Reingold, and Jeffery Westbrook. Page mi-
gration algorithms using work functions. Journal of Algorithms, 24(1):124–157, 1997.

16 Bezalel Gavish and Olivia R. Liu Sheng. Dynamic file migration in distributed computer
systems. Communications of the ACM, 33(2):177–189, 1990.

17 Makoto Imase and Bernard M. Waxman. Dynamic Steiner tree problem. SIAM Journal
on Discrete Mathematics, 4(3):369–384, 1991.

18 Carsten Lund, Nick Reingold, Jeffery Westbrook, and Dicky C.K. Yan. Competitive on-line
algorithms for distributed data management. SIAM Journal on Computing, 28(3):1086–
1111, 1999.

19 Bruce M. Maggs, Friedhelm Meyer auf der Heide, Berthold Vöcking, and Matthias Wester-
mann. Exploiting locality for data management in systems of limited bandwidth. In Proc.
38th IEEE Symp. on Foundations of Computer Science (FOCS), pages 284–293, 1997.

20 Mohammad Mahdian and Qiqi Yan. Online bipartite matching with random arrivals: an
approach based on strongly factor-revealing LPs. In Proc. 43rd ACM Symp. on Theory of
Computing (STOC), pages 597–606, 2011.

21 Akira Matsubayashi. Uniform page migration on general networks. International Journal
of Pure and Applied Mathematics, 42(2):161–168, 2008.

22 Akira Matsubayashi. A 3+Omega(1) lower bound for page migration. In Proc. 3rd Int.
Symp. on Computing and Networking (CANDAR), pages 314–320, 2015.

23 Akira Matsubayashi. Asymptotically optimal online page migration on three points. Algo-
rithmica, 71(4):1035–1064, 2015.

24 Aranyak Mehta, Amin Saberi, Umesh V. Vazirani, and Vijay V. Vazirani. Adwords and
generalized online matching. Journal of the ACM, 54(5), 2007.

ICALP 2017

13:14 Dynamic Beats Fixed: On Phase-Based Algorithms for File Migration

25 Friedhelm Meyer auf der Heide, Berthold Vöcking, and Matthias Westermann. Provably
good and practical strategies for non-uniform data management in networks. In Proc. 7th
European Symp. on Algorithms (ESA), pages 89–100, 1999.

26 Jeffery Westbrook. Randomized algorithms for the multiprocessor page migration. SIAM
Journal on Computing, 23:951–965, 1994.

	Introduction
	The Model
	Previous Work
	Our Contribution
	Other Related Work

	4-Competitive Algorithm Dynamic-Local-Min
	Notation
	Algorithm definition
	DLM Analysis
	Proof for a short phase
	Proof for a long phase

	Lower Bound for Phase-Based Algorithms
	Linear Program for File Migration
	LP analysis of MTLM-like algorithms
	LP analysis of DLM-like algorithms

	Conclusions

