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Abstract
The secretary problem is a classic model for online decision making. Recently, combinatorial
extensions such as matroid or matching secretary problems have become an important tool to
study algorithmic problems in dynamic markets. Here the decision maker must know the numer-
ical value of each arriving element, which can be a demanding informational assumption. In this
paper, we initiate the study of combinatorial secretary problems with ordinal information, in
which the decision maker only needs to be aware of a preference order consistent with the values
of arrived elements. The goal is to design online algorithms with small competitive ratios.

For a variety of combinatorial problems, such as bipartite matching, general packing LPs,
and independent set with bounded local independence number, we design new algorithms that
obtain constant competitive ratios.

For the matroid secretary problem, we observe that many existing algorithms for special
matroid structures maintain their competitive ratios even in the ordinal model. In these cases,
the restriction to ordinal information does not represent any additional obstacle. Moreover, we
show that ordinal variants of the submodular matroid secretary problems can be solved using
algorithms for the linear versions by extending [18]. In contrast, we provide a lower bound of
Ω(
√
n/(logn)) for algorithms that are oblivious to the matroid structure, where n is the total

number of elements. This contrasts an upper bound of O(logn) in the cardinal model, and
it shows that the technique of thresholding is not sufficient for good algorithms in the ordinal
model.
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1 Introduction

The secretary problem is a classic approach to model online decision making under uncertain
input. The interpretation is that a firm needs to hire a secretary. There are n candidates and
they arrive sequentially in random order for an interview. Following an interview, the firm
learns the value of the candidate, and it has to make an immediate decision about hiring him
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before seeing the next candidate(s). If the candidate is hired, the process is over. Otherwise,
a rejected candidate cannot be hired at a later point in time. The optimal algorithm is a
simple greedy rule that rejects all candidates in an initial learning phase. In the following
acceptance phase, it hires the first candidate that is the best among all the ones seen so far.
It manages to hire the best candidate with optimal probability 1/e. Notably, it only needs
to know if a candidate is the best seen so far, but no exact numerical values.

Since its introduction [15], the secretary problem has attracted a huge amount of research
interest. Recently, a variety of combinatorial extensions have been studied in the literature [7]
capturing a variety of fundamental online allocation problems in networks and markets,
such as network design [28], resource allocation [25], medium access in networks [22], or
competitive admission processes [12]. Prominently, in the matroid secretary problem [8], the
elements of a weighted matroid arrive in uniform random order (e.g., weighted edges of an
undirected graph G). The goal is to select a max-weight independent set of the matroid
(e.g., a max-weight forest of G). The popular matroid secretary conjecture claims that for
all matroids, there exists an algorithm with a constant competitive ratio, i.e., the expected
total weight of the solution computed by the algorithm is at least a constant fraction of the
total weight of the optimum solution. Despite much progress on special cases, the conjecture
remains open. Beyond matroids, online algorithms for a variety of combinatorial secretary
problems with downward-closed structure have recently been studied (e.g., matching [28, 25],
independent set [22], linear packing problems [26] or submodular versions [18]).

The best known algorithms for matroid or matching secretary problems rely heavily on
knowing the exact weight structure of elements. They either compute max-weight solutions
to guide the admission process or rely on advanced bucketing techniques to group elements
based on their weight. For a decision maker, in many applications it can be quite difficult
to determine an exact cardinal preference for each of the incoming candidates. In contrast,
in the original problem, the optimal algorithm only needs ordinal information about the
candidates. This property provides a much more robust guarantee, since the numerical values
can be arbitrary, as long as they are consistent with the preference order.

In this paper, we study algorithms for combinatorial secretary problems that rely only
on ordinal information. We assume that there is an unknown value for each element, but
our algorithms only have access to the total order of the elements arrived so far, which is
consistent with their values. We term this the ordinal model; as opposed to the cardinal
model, in which the algorithm learns the exact values. We show bounds on the competitive
ratio, i.e., we compare the quality of the computed solutions to the optima in terms of the
exact underlying but unknown numerical values. Consequently, competitive ratios for our
algorithms are robust guarantees against uncertainty in the input. Our approach follows a
recent line of research by studying the potential of algorithms with ordinal information to
approximate optima based on numerical values [4, 3, 1, 10].

1.1 Our Contribution
We first point out that many algorithms proposed in the literature continue to work in the
ordinal model. In particular, a wide variety of algorithms for variants of the matroid secretary
problem with constant competitive ratios continue to obtain their guarantees in the ordinal
model (see Table 1 for an overview). This shows that many results in the literature are much
stronger, since the algorithms require significantly less information. Notably, the algorithm
of [9] extends to the ordinal model and gives a ratio of O(log2 r) for general matroids, where
r is the rank of the matroid. In contrast, the improved algorithms with ratios of O(log r)
and O(log log r) [8, 30, 16] are not applicable in the ordinal model.
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For several combinatorial secretary problems we obtain new algorithms for the ordinal
model. For online bipartite matching we give an algorithm that is 2e-competitive. More
generally, it obtains a ratio of 3e when the value of the matching is a submodular set function
of the chosen edges. We also extend this result to online packing LPs with at most d non-zero
entries per variable. Here we obtain an O(d(B+1)/B)-competitive algorithm, where B is a
tightness parameter of the constraints. Another extension is matching in general graphs, for
which we give a 8.78-competitive algorithm.

We give an O(α2
1)-competitive algorithm for the online weighted independent set problem

in graphs, where α1 is the local independence number of the graph. For example, for the
prominent case of unit-disk graphs, α1 = 5 and we obtain a constant-competitive algorithm.

For matroids, we extend a result of [18] to the ordinal model: The reduction from
submodular to linear matroid secretary can be done with ordinal information for marginal
weights of the elements. More specifically, we show that whenever there is an algorithm that
solves the matroid secretary problem in the ordinal model on some matroid class and has
a competitive ratio of α, there is also an algorithm for the submodular matroid secretary
problem in the ordinal model on the same matroid class with a competitive ratio of O(α2).
The ratio can be shown to be better if the linear algorithm satisfies some further properties.

Lastly, we consider the importance of knowing the weights, ordering, and structure of
the domain. For algorithms that have complete ordinal information but cannot learn the
specific matroid structure, we show a lower bound of Ω(

√
n/(logn)), even for partition

matroids, where n is the number of elements in the ground set. This bound contrasts the
O(log2 r)-competitive algorithm and indicates that learning the matroid structure is crucial in
the ordinal model. Moreover, it contrasts the cardinal model, where thresholding algorithms
yield O(log r)-competitive algorithms without learning the matroid structure.

For structural reasons, we present our results in a slightly different order. We first discuss
the matroid results in Section 3. Then we proceed with matching and packing in Section 4
and independent set in Section 5. Due to spatial constraints, all missing proofs are deferred
to the full version [23].

2 Preliminaries and Related Work

In the typical problem we study, there is a set E of elements arriving sequentially in random
order. The algorithm knows n = |E| in advance. It must accept or reject an element before
seeing the next element(s). There is a set S ⊆ 2E of feasible solutions. S is downward-closed,
i.e., if S ∈ S, then S′ ∈ S for every S′ ⊆ S. The goal is to accept a feasible solution that
maximizes an objective function f . In the linear version, each element has a value or weight
we, and f(S) =

∑
e∈S we. In the submodular version, f is submodular and f(∅) = 0.

In the linear ordinal model, the algorithm only sees a strict total order over the elements
seen so far that is consistent with their weights (ties are broken arbitrarily). For the
submodular version, we interpret the value of an element as its marginal contribution to a
set of elements. In this case, our algorithm has access to an ordinal oracle O(S). For every
subset S of arrived elements, O(S) returns a total order of arrived elements consistent with
their marginal values f(e|S) = f(S ∪ {e})− f(S). We chose this particular model because it
elegantly aligns with the online setting. Both stronger and weaker definitions are possible
and these are interesting avenues for future work.

Given this information, we strive to design algorithms with small competitive ratio
f(S∗)/E[f(Salg)]. Here S∗ is an optimal feasible solution and Salg the solution returned by
the algorithm. Note that Salg is a random variable due to random-order arrival and possible
internal randomization of the algorithm.

ICALP 2017
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Table 1 Existing algorithms for matroid secretary problems that provide the same guarantee in
the ordinal model.

Matroid general k-uniform graphic cographic transversal laminar regular

Ratio O(log2 r) 1 + O(
√

1/k), e 2e 3e 16 3
√

3e 9e

Reference [9] [15, 27, 6] [28] [31] [13] [24] [14]

In the matroid secretary problem, the pair M = (E,S) is a matroid. We summarize
in Table 1 some of the existing results for classes of the (linear) problem that transfer to
the ordinal model. The algorithms for all restricted matroid classes other than the graphic
matroid assume a-priori complete knowledge of the matroid – only weights are revealed
online. The algorithms do not use cardinal information, their decisions are based only on
ordinal information. As such, they translate directly to the ordinal model. Notably, the
algorithm from [9] solves even the general submodular matroid secretary problem in the
ordinal model.

2.1 Related Work
Our work is partly inspired by [4, 5], who study ordinal approximation algorithms for
classical optimization problems. They design constant-factor approximation algorithms for
matching and clustering problems with ordinal information and extend the results to truthful
mechanisms. Our approach here differs due to online arrival. Anshelevich et al. [3] examine
the quality of randomized social choice mechanisms when agents have metric preferences but
only ordinal information is available to the mechanism. Previously, [1, 10] studied ordinal
measures of efficiency in matchings, for instance the average rank of an agent’s partner.

The literature on the secretary problem is too broad to survey here. We only discuss
directly related work on online algorithms for combinatorial variants. In[29, 21], the authors
study hiring a single secretary when only a partial ordering of the candidates is available.
For multiple-choice secretary, where we can select any k candidates, there are algorithms
with ratios that are constant and asymptotically decreasing in k [27, 6]. More generally, the
matroid secretary problem has attracted a large amount of research interest [8, 11, 30, 16],
and the best-known algorithm in the cardinal model has ratio O(log log r). For results on
specific matroid classes, see the overview in Table 1. Extensions to the submodular version
are treated in [9, 18].

Another prominent domain is online bipartite matching, in which one side of the graph is
known in advance and the other arrives online in random order, each vertex revealing all
incident weighted edges when it arrives [28]. In this case, there is an optimal algorithm with
ratio e [25]. Moreover, our paper is related to Göbel et al. [22] who study secretary versions
of maximum independent set in graphs with bounded inductive independence number ρ.
They derive an O(ρ2)-competitive algorithm for unweighted and an O(ρ2 logn)-competitive
algorithm for weighted independent set.

In addition, algorithms have been proposed for further variants of the secretary problem,
e.g., the temp secretary problem (candidates hired for a fixed duration) [19], parallel sec-
retary (candidates interviewed in parallel) [17], or local secretary (several firms and limited
feedback) [12]. For these variants, some existing algorithms (e.g., for the temp secretary
problem in [19]) directly extend to the ordinal model. In general, however, the restriction to
ordinal information poses an interesting challenge for future work in these domains.
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Algorithm 1: Greedy [18]
Input : ground set E
Output : independent set I

1 Let I ← ∅ and E′ ← E.
2 while E′ 6= ∅ do
3 Let u← maxu′ f(u′|I) and E′ ← E′ \ {u};
4 if (I ∪ {u} independent inM) ∧ (f(u|I) ≥ 0) then add u to I;

Algorithm 2: Online(p) algorithm [18]
Input :n = |E|, size of the ground set
Output : independent set Q ∩N

1 Choose X from the binomial distribution B(n, 1/2).
2 Reject the first X elements of the input. Let L be the set of these elements.
3 Let M be the output of Greedy on the set L.
4 Let N ← ∅.
5 for each element u ∈ E \ L do
6 Let w(u)← 0.
7 if u accepted by Greedy applied to M ∪ {u} then
8 With probability p do the following:
9 Add u to N .

10 Let Mu ⊆M be the solution of Greedy immediately before it adds u to it.
11 w(u)← f(u|Mu).
12 Pass u to Linear with weight w(u).
13 return Q ∩N , where Q is the output of Linear.

3 Matroids

3.1 Submodular Matroids

We start our analysis by showing that – in addition to algorithms for special cases mentioned
above – a powerful technique for submodular matroid secretary problems [18] can be adjusted
to work even in the ordinal model. More formally, in this section we show that there is a
reduction from submodular matroid secretary problems with ordinal information (SMSPO)
to linear matroid secretary problems with ordinal information (MSPO). The reduction uses
Greedy (Algorithm 1) as a subroutine and interprets the marginal value when added to the
greedy solution as the value of an element. These values are then forwarded to whichever
algorithm (termed Linear) that solves the linear version of the problem. In the ordinal model,
we are unable to see the exact marginal values. Nevertheless, we manage to construct a
suitable ordering for the forwarded elements. Consequently, we can apply algorithm Linear
as a subroutine to obtain a good solution for the ordinal submodular problem.

LetM = (E,S) be the matroid, f the submodular function, and E the ground set of
elements. The marginal contribution of element u to set M is denoted by f(u|M) = f(M ∪
{u})− f(M). Since f can be non-monotone, Greedy in the cardinal model also checks if the
marginal value of the currently best element is positive. While we cannot explicitly make this
check in the ordinal model, note that f(u|M) ≥ 0 ⇐⇒ f(M ∪ {u}) ≥ f(M) = f(M ∪ {u′})

ICALP 2017
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for every u′ ∈ M . Since the ordinal oracle includes the elements of M in the ordering of
marginal values, there is a way to check positivity even in the ordinal model. Therefore, our
results also apply to non-monotone functions f .

A potential problem with Algorithm 2 is that we must compare marginal contributions
of different elements w.r.t. different sets. We can resolve this issue by following the steps
of the Greedy subroutine that tries to add new elements to the greedy solution computed
on the sample. We use this information to construct a correct ordering over the marginal
contributions of elements that we forward to Linear.

I Lemma 1. Let us denote by su the step of Greedy in which the element u is accepted when
applied to M + u. Then su1 < su2 implies f(u1|Mu1) ≥ f(u2|Mu2).

Proof. First, note that Mu1 ⊂ Mu2 when s1 < s2. We denote by mu1 the element of
M that would be taken in step su1 if u1 would not be available. Then we know that
f(u1|Mu1) ≥ f(mu1 |Mu1). Furthermore, since s1 < s2, f(mu1 |Mu1) ≥ f(u2|Mu1). Lastly,
by using submodularity, we know that f(u2|Mu1) ≥ f(u2|Mu2). J

When su1 = su2 , then Mu1 = Mu2 so the oracle provides the order of marginal values.
Otherwise, the lemma yields the ordinal information. Thus, we can construct an ordering for
the elements that are forwarded to Linear that is consistent with their marginal values in the
cardinal model. Hence, the reduction can be applied in the ordinal model, since the algorithm
executes exactly the same as in the cardinal model, and all results from [18] continue to hold.
We mention only the main theorem. It implies constant ratios for all problems in Table 1 in
the submodular version.

I Theorem 2. Given an arbitrary algorithm Linear for MSPO that is α-competitive on a
matroid class, there is an algorithm for SMSPO with competitive ratio is at most 24α(3α+1) =
O(α2) on the same matroid class. For SMSPO with monotone f , it can be improved to
8α(α+ 1).

3.2 A Lower Bound
Another powerful technique in the cardinal model is thresholding, where we first sample a
constant fraction of the elements to learn their weights. Based on the largest weight observed,
we pick a threshold and accept subsequent elements greedily if they exceed the threshold.
This approach generalizes the classic algorithm [15] and provides logarithmic ratios for many
combinatorial domains [8, 28, 22, 12]. Intuitively, these algorithms learn the weights but not
the structure.

We show that this technique does not easily generalize to the ordinal model. The
algorithms with small ratios in the ordinal model rely heavily on the matroid structure.
Indeed, in the ordinal model we show a polynomial lower bound for algorithms in the matroid
secretary problem that learn the ordering but not the structure. Formally, we slightly simplify
the setting as follows. The algorithm receives the global ordering of all elements in advance.
It determines (possibly at random) a threshold position in the ordering. Then elements
arrive and are accepted greedily if ranked above the threshold. Note that the algorithm does
not use sampling, since in this case the only meaningful purpose of sampling is learning the
structure. We call this a structure-oblivious algorithm.

I Theorem 3. Every structure-oblivious randomized algorithm has a competitive ratio of at
least Ω(

√
n/(logn)).
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Figure 1 Values for the family of instances described in the proof of Theorem 11, where the
position of the “valuable” ones is denoted by the thick segment.
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Figure 2 One instance from the family described in the proof of Theorem 11.

Proof. In the proof, we restrict our attention to instances with weights in {0, 1} (for a formal
justification, see the full version [23]). We give a distribution of such instances on which every
deterministic algorithm has a competitive ratio of Ω(

√
n/(logn)). Using Yao’s principle, this

shows the claimed result for randomized algorithms.
All instances in the distribution are based on a graphic matroid (in fact, a partition

matroid) of the following form. There is a simple path of 1 + k segments. The edges in each
segment have weight of 0 or 1. We call the edges with value 1 in the last k segments the
“valuable edges”. The total number of edges is the same in each instance and equals n+ 1.
All edges in the first segment have value 1 and there is exactly one edge of value 1 in all
other segments (that being the aforementioned valuable edges). In the first instance there
are in total k + 1 edges of value 1 (meaning that there is only one edge in the first segment).
In each of the following instances this number is increased by k (in the i-th instance there
are (i− 1) · k + 1 edges in the first segment) such that the last instance has only edges with
value 1 (there are n− k + 1 edges in the first segment). The zero edges are always equally
distributed on the last k path segments. The valuable edges are lower in the ordering than
any non-valuable edge with value 1 (see Figure 1). Each of the instances appears with equal
probability of kn (see Figure 2 for one example instance).

A deterministic algorithm picks a threshold at position i. The expected value of the
solution is

E[w(Salg)] ≤ 1 + k

n

i
k∑
`=1

k

`
≤ 1 + k2

n
log i

k
≤ k2

n
log n

k
+ 1 ,

where log denotes the natural logarithm and the expression results from observing that the
algorithm cannot obtain more than a value of 1 if its threshold i falls above the valuable
1’s. Otherwise it gets an additional fraction of k, depending on how close the threshold is
positioned to the valuable 1’s. For instance, if the threshold is set between 1 and k positions

ICALP 2017
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below the valuable 1’s, the algorithm will in expectation select edges of total value of at
least 1 + k/2. This follows from the random arrival order of the edges and the fact that
the ratio of valuable to non-valuable edges that the algorithm is ready to accept is at least
1 : 2. Furthermore, we see that for this distribution of instances the optimal way to set
a deterministic threshold is at the lowest position. Using k =

√
n, a lower bound on the

competitive ratio is

k
k2

n log n
k + 1

= n

k log n
k + n

k

= Ω
( √

n

logn

)
. J

4 Matching and Packing

4.1 Bipartite Matching

In this section, we study online bipartite matching. The vertices on the right side of the
graph (denoted by R) are static and given in advance. The vertices on the left side (denoted
by L) arrive sequentially in a random order. Every edge e = (r, l) ∈ R×L has a non-negative
weight w(e) ≥ 0. In the cardinal model, each vertex of L reveals upon arrival the weights of
all incident edges. In the ordinal model, we are given a total and strict order of all edges that
have arrived so far, consistent with their weights1. Before seeing the next vertex of L, the
algorithm has to decide to which vertex r ∈ R (if any) it wants to match the current vertex
l. A match that is formed cannot be revoked. The goal is to maximize the total weight of
the matching.

The algorithm for the cardinal model in [25] achieves an optimal competitive ratio of
e. However, this algorithm heavily exploits cardinal information by repeatedly computing
max-weight matchings for the edges seen so far. For the ordinal model, our Algorithm 3
below obtains a competitive ratio of 2e. While similar in spirit, the main difference is that
we rely on a greedy matching algorithm, which is based solely on ordinal information. It
deteriorates the ratio only by a factor of 2.

Here we assume to have access to ordinal preferences over all the edges in the graph. Note
that the same approach works if the vertices provide correlated (ordinal) preference lists
consistent with the edge weights, for every vertex from R and every arrived vertex from L. In
this case, the greedy algorithm can still be implemented by iteratively matching and removing
a pair that mutually prefers each other the most, and it provides an approximation guarantee
of 2 for the max-weight matching (see, e.g., [2]). In contrast, if we receive only preference
lists for vertices on one side, there are simple examples that establish super-constant lower
bounds on the competitive ratio2.

I Lemma 4. Let the random variable Av denote the contribution of the vertex v ∈ L to the
output, i.e. weight assigned to v in M . Let w(M∗) denote the value of the maximum-weight
matching in G. For l ∈ {dne e, . . . , n},

E
[
Al
]
≥
dne e
l − 1 ·

w(M∗)
2n .

1 Ties are broken arbitrarily, but consistently over the arrival process.
2 Consider a bipartite graph with two nodes on each side (named A,B and 1,2). If we only know that

both A and B prefer 1 to 2, the ratio becomes at least 2 even in the offline case. Similar examples imply
that the (offline) ratio must grow in the size of the graph.
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Algorithm 3: Bipartite Matching
Input : vertex set R and cardinality n = |L|
Output :matching M

1 Let L′ be the first bne c vertices of L, and M ← ∅;
2 for each ` ∈ L \ L′ do
3 L′ ← L′ ∪ {`};
4 M (`) ← greedy matching on G[L′ ∪R];
5 Let e(`) ← (`, r) be the edge assigned to ` in M (`);
6 if M ∪ {e(`)} is a matching then add e(`) to M ;

Proof. We first show that e(`) has a significant expected weight. Then we bound the
probability of adding e(`) to M .

In step `, |L′| = ` and the algorithm computes a greedy matching M (`) on G[L′ ∪ R].
The current vertex ` can be seen as selected uniformly at random from L′, and L′ can
be seen as selected uniformly at random from L. Therefore, E[w(M (`))] ≥ `

n ·
w(M∗)

2 and
E[w(e(`))] ≥ w(M∗)

2n . Here we use that a greedy matching approximates the optimum by at
most a factor of 2 [2].

Edge e(`) can be added to M if r has not been matched already. The vertex r can be
matched only when it is inM (k) where dn/ee ≤ k ≤ l−1. The probability of r being matched
in step k is at most 1

k and the order of the vertices in steps 1, . . . , k − 1 is irrelevant for this
event.

Pr[r unmatched in step `] = Pr
[

`−1∧
k=dn/ee

r 6∈ e(k)

]
≥

`−1∏
k=dn/ee

k − 1
k

=
dne e − 1
`− 1

We now know that Pr[M∪e(`) is a matching] ≥ bn/ec`−1 . Using this and E[w(e(`))] ≥ w(M∗)
2n ,

the lemma follows. J

I Theorem 5. Algorithm 3 for bipartite matching is 2e-competitive.

Proof. The weight of matching M can be obtained by summing over random variables A`.

E[w(M)] = E

[
n∑
`=1

A`

]
≥

n∑
`=dn/ee

bn/ec
`− 1 ·

w(M∗)
2n = bn/ec2n

n−1∑
`=bn/ec

1
`
· w(M∗)

Since bn/ecn ≥ 1
e −

1
n and

∑n−1
`=bn/ec

1
l ≥ ln n

bn/ec ≥ 1, it follows that

E[w(M)] ≥
(

1
e
− 1
n

)
· w(M∗)

2 . J

We can use the same algorithm and the same analysis in the submodular version, where
greedy gives a 3-approximation [20]. It builds the matching by greedily adding an edge that
maximizes the marginal improvement of f , which is the information delivered by the ordinal
oracle. Hence, our algorithm is 3e-competitive for the submodular version.

ICALP 2017
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Algorithm 4: Packing LP

Input : capacities b, total number of requests n, probability p = e(2d)1/B

1+e(2d)1/B

Output : assignment vector y

1 Let L′ be the first p · n requests, and y← 0;
2 for each j /∈ L′ do
3 L′ ← L′ ∪ {j};
4 x(L′) ← greedy assignment on the LP for L′;
5 yj ← x(L′)

j ;
6 if ¬(A(y) ≤ b) then yj ← 0;

4.2 Packing
Our results for bipartite matching can be extended to online packing LPs of the form max cτx
s.t. Ax ≤ b and 0 ≤ x ≤ 1, which model problems with m resources and n online requests
coming in random order. Each resource i ∈ [m] has a capacity bi that is known in advance,
together with the number of requests. Every online request comes with a set of options, where
each option has its profit and resource consumption. Once a request arrives, the coefficients
of its variables are revealed and the assignment to the variables has to be determined.

Formally, request j ∈ [n] corresponds to variables xj,1, . . . , xj,K that represent K options.
Each option k ∈ [K] contributes with profit cj,k ≥ 0 and has resource consumption ai,j,k ≥ 0
for resource i. Overall, at most one option can be selected, i.e., there is a constraint∑
k∈[K] xj,k ≤ 1,∀j ∈ [n]. The objective is to maximize total profit while respecting the

resource capacities. The offline problem is captured by the following linear program:

max
∑
j∈[n]

∑
k∈[K]

cj,kxj,k s.t.
∑
j∈[n]

∑
k∈[K]

ai,j,kxj,k ≤ bi i ∈ [m]

∑
k∈[K]

xj,k ≤ 1 j ∈ [n]

As a parameter, we denote by d the maximum number of non-zero entries in any column
of the constraint matrix A, for which by definition d ≤ m. We compare the solution to the
fractional optimum, which we denote by x∗. The competitive ratio will be expressed in terms
of d and the capacity ratio B = mini∈[m]

⌊
bi

maxj∈[n],k∈[K] ai,j,k

⌋
.

Kesselheim et al. [25] propose an algorithm that heavily exploits cardinal information –
it repeatedly solves an LP-relaxation and uses the solution as a probability distribution over
the options. Instead, our Algorithm 4 for the ordinal model is based on greedy assignments
in terms of profits cj,k. More specifically, the greedy assignment considers variables xj,k
in non-increasing order of cj,k. It sets a variable to 1 if this does not violate the capacity
constraints, and to 0 otherwise.

I Theorem 6. Algorithm 4 for online packing LPs is O(d(B+1)/B)-competitive.

4.3 Matching in General Graphs
Here we study the case when vertices of a general undirected graph arrive in random order.
In the beginning, we only know the number n of vertices. Each edge in the graph has a
non-negative weight w(e) ≥ 0. Each vertex reveals the incident edges to previously arrived
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Algorithm 5: General Matching
Input : vertex set V and cardinality n = |V |
Output :matching M

1 Let R be the first bn2 c vertices of V ;
2 Let L′ be the further b n2ec vertices of V , and M ← ∅;
3 for each ` ∈ V \ L′ do
4 L′ ← L′ ∪ {`};
5 M (`) ← greedy matching on G[L′ ∪R];
6 Let e(`) ← (`, r) be the edge assigned to ` in M (`);
7 if M ∪ {e(`)} is a matching then add e(`) to M ;

vertices and their weights (cardinal model), or we receive a total order over all edges among
arrived vertices that is consistent with the weights (ordinal model). An edge can be added to
the matching only in the round in which it is revealed. The goal is to construct a matching
with maximum weight.

We can tackle this problem by prolonging the sampling phase and dividing the vertices
into “left” and “right” vertices. Algorithm 5 first samples n/2 vertices. These are assigned
to be the set R, corresponding to the static side of the graph in bipartite matching. The
remaining vertices are assigned to be the set L. The algorithm then proceeds by sampling a
fraction of the vertices of L, forming a set L′. The remaining steps are exactly the same as
in Algorithm 3.

I Theorem 7. Algorithm 5 for matching in general graphs is 12e/(e+ 1)-competitive, where
12e/(e+ 1) < 8.78.

5 Independent Set and Local Independence

In this section, we study maximum independent set in graphs with bounded local independence
number. The set of elements are the vertices V of an underlying undirected graph G. Each
vertex has a weight wv ≥ 0. We denote by N(v) the set of direct neighbors of vertex v.
Vertices arrive sequentially in random order and reveal their position in the order of weights
of vertices seen so far. The goal is to construct an independent set of G with maximum
weight. The exact structure of G is unknown, but we know that G has a bounded local
independence number α1.

I Definition 8. An undirected graph G has local independence number α1 if for each node
v, the cardinality of every independent set in the neighborhood N(v) is at most α1.

We propose Algorithm 6, which is inspired by the Sample-and-Price algorithm for matching
in [28]. Note that Göbel et al. [22] construct a more general approach for graphs with bounded
inductive independence number ρ. However, they only obtain a ratio of O(ρ2 logn) for the
weighted version, where a competitive ratio of Ω(logn/ log2 logn) cannot be avoided, even
in instances with constant ρ. These algorithms rely on ρ-approximation algorithms for the
offline problem that crucially exploit cardinal information.

Similar to [28], we reformulate Algorithm 6 into an equivalent approach (Algorithm 7)
for the sake of analysis. Given the same arrival order, the same vertices are in the sample.
Algorithm 7 drops all vertices from S that have neighbors in S while Algorithm 6 keeps one
of them. Hence, E[w(SAlg6)] ≥ E[w(SSim)]. In what follows, we analyze the performance
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Algorithm 6: Independent Set in Graphs with Bounded Local Independence Number
Input :n = |G|, p =

√
α1/(α1 + 1)

Output : independent set of vertices S

1 Set k ← Binom(n, p), S ← ∅;
2 Reject first k vertices of G, denote this set by G′;
3 Build a maximal independent set of vertices from G′ greedily, denote this set by M1;
4 for each v ∈ G \G′ do
5 w∗ ← max{w | N (v) ∩M1};
6 if (v > w∗) ∧ (S ∪ {v} independent set) then add v to S;

Algorithm 7: Simulate
Input :n = |G|, p =

√
α1/(α1 + 1)

Output : independent set of vertices S

1 Sort all vertices in G in non-increasing order of value;
2 Initialize M1,M2 ← ∅;
3 for each v ∈ G in sorted order do
4 if M1 ∪ {v} independent set then
5 flip a coin with probability p of heads;
6 if heads then M1 ←M1 ∪ {v}; else M2 ←M2 ∪ {v};

7 S ←M2;
8 for each w ∈ S do
9 if w has neighbors in S then remove w and all his neighbors from S;

of Simulate. The first lemma follows directly from the definition of the local independence
number.

I Lemma 9. E[w(M1)] ≥ p · w(S∗)
α1

, where α1 ≥ 1 is the local independence number of G.

I Lemma 10. E
[
|N (v) ∩M2|

∣∣ v ∈M2
]
≤ α1(1−p)

p .

Proof. Let us denote by X1
u and X2

u the indicator variables for the events u ∈ M1 and
u ∈M2 respectively. Then,

E
[
|N (v) ∩M2|

∣∣ v ∈M2
]

= E

[ ∑
u∈N (v)

X2
u

∣∣ v ∈M2

]
=

∑
u∈N (v)

E
[
X2
u

∣∣ v ∈M2
]

= 1− p
p

∑
u∈N (v)

E
[
X1
u

∣∣ v ∈M2
]
≤ 1− p

p
· α1 . J

I Theorem 11. Algorithm 7 for weighted independent set is O(α2
1)-competitive, where α1 is

the local independence number of the graph.

Proof. By using Markov’s inequality and Lemma 10,

Pr[|N (v) ∩M2| ≥ 1
∣∣ v ∈M2] ≤ α1 · (1− p)/p

and Pr[|N (v) ∩M2| < 1
∣∣ v ∈M2] > 1− (α1(1− p)/p) .
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Thus, we can conclude that

E[w(S)] ≥
(

1− α1 ·
1− p
p

)
· E[w(M2)] ≥

(
1− α1 ·

1− p
p

)
· 1− p
α1
· w(S∗) .

The ratio is optimized for p =
√

α1
α1+1 , which proves the theorem. J

As a prominent example, α1 = 5 in the popular class of unit-disk graphs. In such graphs,
our algorithm yields a constant competitive ratio for online independent set in the ordinal
model.
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