Approximating Language Edit Distance Beyond
Fast Matrix Multiplication: Ultralinear Grammars
Are Where Parsing Becomes Hard!*

Rajesh Jayaram! and Barna Sahaf?

1 Brown University, Providence, RI, USA
rajesh_jayaram@brown.edu

2 University of Massachusetts Amherst, Amherst, MA, USA
barna@cs.umass.edu

—— Abstract

In 1975, a breakthrough result of L. Valiant showed that parsing context free grammars can
be reduced to Boolean matrix multiplication, resulting in a running time of O(n®) for parsing
where w < 2.373 is the exponent of fast matrix multiplication, and n is the string length. Re-
cently, Abboud, Backurs and V. Williams (FOCS 2015) demonstrated that this is likely optimal;
moreover, a combinatorial o(n3) algorithm is unlikely to exist for the general parsing problem®.
The language edit distance problem is a significant generalization of the parsing problem, which
computes the minimum edit distance of a given string (using insertions, deletions, and substitu-
tions) to any valid string in the language, and has received significant attention both in theory
and practice since the seminal work of Aho and Peterson in 1972. Clearly, the lower bound for
parsing rules out any algorithm running in o(n*) time that can return a nontrivial multiplicative
approximation of the language edit distance problem. Furthermore, combinatorial algorithms
with cubic running time or algorithms that use fast matrix multiplication are often not desirable
in practice.

To break this n“ hardness barrier, in this paper we study additive approximation algorithms
for language edit distance. We provide two explicit combinatorial algorithms to obtain a string
with minimum edit distance with performance dependencies on either the number of non-linear
productions, k*, or the number of nested non-linear production, k, used in the optimal derivation.
Explicitly, we give an additive O(k*v) approximation in time O(|G|(n? + %)) and an additive
O(k~) approximation in time O(|G|(n? + :—z)), where |G| is the grammar size and n is the string
length. In particular, we obtain tight approximations for an important subclass of context free
grammars known as wultralinear grammars, for which k and k* are naturally bounded. Interest-
ingly, we show that the same conditional lower bound for parsing context free grammars holds for
the class of ultralinear grammars as well, clearly marking the boundary where parsing becomes
hard!

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Approximation, Edit Distance, Dynamic Programming, Context Free
Grammar, Hardness

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.19

* A full version of the paper is available at https://web.cs.umass.edu/publication/docs/2017/
UM-CS-2017-008.pdf.

T Research supported by NSF CRII 1464310, NSF CAREER 1652303, a Google Faculty Research Award,
and a Yahoo ACE Award.

with any polynomial dependency on the grammar size

© Rajesh Jayaram and Barna Saha;

oY licensed under Creative Commons License CC-BY
44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl; Article No. 19; pp. 18

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

1

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.19
https://web.cs.umass.edu/publication/docs/2017/UM-CS-2017-008.pdf
https://web.cs.umass.edu/publication/docs/2017/UM-CS-2017-008.pdf
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

19:2

Approximating Language Edit Distance Beyond Fast Matrix Multiplication

1 Introduction

Introduced by Chomsky in 1956 [11], context-free grammars (CFG) play a fundamental
role in the development of formal language theory [2, 22], compiler optimization [16, 42],
natural language processing [27, 31], with diverse applications in areas such as computational
biology [39], machine learning [33, 20, 41] and databases [23, 14, 34]. Parsing CFG is a
basic computer science question, that given a CFG G over an alphabet 3, and a string
x € ¥*, || = n, determines if = belongs to the language £(G) generated by G. The canonical
parsing algorithms such as Cocke-Younger-Kasimi (CYK) [2], Earley parser, [12] etc. are
based on a natural dynamic programming, and run in O(n?) time?. In 1975, in a theoretical
breakthrough, Valiant gave a reduction from parsing to Boolean matrix multiplication,
showing that the parsing problem can be solved in O(n*) time [38]. Despite decades of
efforts, these running times have remain completely unchanged.

Nearly three decades after Valiant’s result, Lee came up with an ingenious reduction from
Boolean matrix multiplication to CFG parsing, showing for the first time why known parsing
algorithms may be optimal [25]. A remarkable recent result of Abboud, Backurs and V.
Williams made her claims concrete [1]. Based on a conjecture of the hardness of computing
large cliques in graphs, they ruled out any improvement beyond Valiant’s algorithm; moreover
they showed that there can be no combinatorial algorithm for CFG parsing that runs in truly
subcubic O(n?*~¢) time for € > 0 [1]. However combinatorial algorithms with cubic running
time or algorithms that use fast matrix multiplication are often impractical. Therefore, a
long-line of research in the parsing community has been to discover subclasses of context
free grammars that are sufficiently expressive yet admit efficient parsing time [26, 24, 17].
Unfortunately, there still exist important subclasses of the CFG’s for which neither better
parsing algorithms are known, nor have conditional lower bounds been proven to rule out
the possibility of such algorithms.

Language Edit Distance

A generalization of CFG parsing, introduced by Aho and Peterson in 1972 [3], is language
edit distance (LED) which can be defined as follows.

» Definition 1 (Language Edit Distance (LED)). Given a formal language £(G) generated by
a grammar G over alphabet X, and a string T € ¥*, compute the minimum number of edits
(insertion, deletion and substitution) needed on T to convert it to a valid string in £(G).

LED is among the most fundamental and best studied problems related to strings and
grammars [3, 30, 34, 35, 8, 1, 32, 6, 21], and generalizes two basic problems in computer
science: parsing and string edit distance computation. Aho and Peterson presented a
dynamic programming algorithm for LED that runs in O(|G|?n3) time [3], which was
improved to O(|G|n?®) by Myers in 1985 [30]. Only recently these bounds have been improved
by Bringmann, Grandoni, Saha, and V. Williams to give the first truly subcubic O(n?-8244)
algorithm for LED [8]. When considering approximate answers, a multiplicative (1 + ¢€)-
approximation for LED has been presented by Saha in [35], that runs in O(porfi;(é)) time.
These subcubic algorithms for LED crucially use fast matrix multiplication, and hence
are not practical. Due to the hardness of parsing [25, 1], LED cannot be approximated

2 Dependency on the grammar size if not specified is either |G| as in most combinatorial algorithms, or
|G)? as in most algebraic algorithms. In this paper the algorithms will depend on |P|, the number of
productions in the grammar. In general we assume |P| € ©(|G|).

R. Jayaram and B.Saha

with any multiplicative factor in time o(n“). Moreover, there cannot be any combinatorial
multiplicative approximation algorithm that runs in O(n3~¢) time for any € > 0 [1]. LED
provides a very generic framework for modeling problems with vast applications [23, 20, 41,
28, 33, 31, 15]. A fast exact or approximate algorithm for it is likely to have tangible impact,
yet there seems to be a bottleneck in improving the running time beyond O(n®), or even in
designing a truly subcubic combinatorial approximation algorithm. Can we break this n“
barrier?

One possible approach is to allow for an additive approximation. Since the hardness of
multiplicative approximation arise from the lower bound of parsing, it is possible to break
the n“ barrier by designing a purely combinatorial algorithm for LED with an additive
approximation. Such a result will have immense theoretical and practical significance. Due to
the close connection of LED with matrix products, all-pairs shortest paths and other graph
algorithms [35, 8], this may imply new algorithms for many other fundamental problems. In
this paper, we make a significant progress in this direction by providing the first nontrivial
additive approximation for LED that runs in quadratic time. Let G = (Q, X, P, S) denote
a context free grammar, where @ is the set of nonterminals, 3 is the alphabet or set of
terminals, P is the set of productions, and S is the starting non-terminal.

» Definition 2. Given G = (Q, X%, P, S), a production A — « is said to be linear if there is
at most one non-terminal in @ where A € Q and « € (Q U X)*. Otherwise, if o contains two
or more non-terminals, then A — « is said to be non-linear.

The performance of our algorithms depends on either the total number of non-linear pro-
ductions or the maximum number of nested non-linear productions (depth of the parse tree
after condensing every consecutive sequence of linear productions, see the full version for
more details) in the derivation of string with optimal edit distance, where the latter is
often substantially smaller. Explicitly, we give an additive O(k*~) approximation in time
O(|G|(n? + :—2)) and an additive O(k~) approximation in time O(|G|(n? + :—2)), where k* is
the number of non-linear productions in the derivation of the optimal string, and k is the
maximum number of nested non-linear productions in the derivation of the optimal string
(each minimized over all possible derivations). Our algorithms will be particularly useful for
an important subclass of CFGs, known as the wltralinear grammars, for which these values
are tightly bounded for all derivations [43, 10, 26, 7, 29].

» Definition 3 (ultralinear). A grammar G = (Q, X, P, S) is said to be k-ultralinear if there
is a partition Q = @1 U Q1 U --- U @y such that for every X € @Q;, the productions of X
consist of linear productions X — aA|Aala for A € Q; with j < i and a € X, or non-linear
productions of the form X — w, where w € (Q1 UQ2U---UQ;—1)*.

The parameter k places a built-in upper bound on the number of nested non-linear productions
allowed in any derivation. Thus for simplicity we will use & both to refer to the parameter of
an ultralinear grammar, as well as the maximum number of nested non-linear productions.
Furthermore, if d is the maximum number of non-terminals on the RHS of a production,
then d* is a built-in upper bound on the total number of non-linear productions in any
derivation. In all our algorithms, without loss of generality, we use a standard normal form
where d = 2 for all non-linear productions. As we will see later, given any CFG G and
any k > 1, we can create a new grammar G’ by making k copies Q1,...,Qy of the set of
non-terminals @ of G, and forcing every nonlinear production in @); to go to non-terminals
in @Q;—1. Thus G’ has non-terminal set Q1 U Q2 U --- U Qy, and size O(k|G]). In this way
we can restrict any CFG to a k-ultralinear grammar which can produce any string in £(G)

19:3

ICALP 2017

19:4 Approximating Language Edit Distance Beyond Fast Matrix Multiplication

0(n3) & 0(n®)
Qn?) CFG

Easy to parse

SUPERLIN 0(|P|n?)/Q(n?)

[This Paper]

0(IPI*n*) & 0(|G|*n®),
Q(n®) [ThisPaper] JITRALIN

Hard to parse

METALIN 0(|P|?>n?)/Q(n?) [This Paper]

LIN O(|P|n?)/Q(n?) [This Paper]
REG o(IQI*n)

Figure 1 CFG Hierarchy: Upper bounds shown first followed by lower bounds for each class of
grammars. Here |P| is the number of productions in the grammar [38] [1] [40].

requiring no more than k nested non-linear productions. It is precisely this procedure of
creating a k-ultralinear grammar from a CFG G that we use in our proof of hardness for
parsing ultralinear languages (see the full version).

For example, if G is the well-known Dyck Languages [34, 6], the language of well-balanced
parenthesis, £(G") contains the set of all parentheses strings with at most k levels of nesting.
Note that a string consisting of n open parenthesis followed by n matching closed parenthesis
has zero levels of nesting, whereas the string "((())())" has one level. As an another example,
consider RNA-folding [8, 39, 44] which is a basic problem in computational biology and can
be modeled by grammars. The restricted language £(G’) for RNA-folding denotes the set of
all RNA strings with at most k nested folds. In typical applications, we do not expect the
number of nested non-linear productions used in the derivation of a valid string to be too
large [14, 23, 4].

Among our other results, we consider exact algorithms for several other notable sub-
classes of the CFG’s. In particular, we develop exact quadratic time language edit distance
algorithms for the linear, metalinear, and superlinear languages. Moreover, we show matching
lower bound assuming the Strong Exponential Time Hypothesis [18, 19]. The figure to the
right displays the hierarchical relationship between these grammars, where all upwards
lines denote strict containment. Interestingly, till date there exists no parsing algorithm for
the ultralinear grammars that runs in time o(n*), while a O(n?) algorithm exists for the
metalinear grammars. In addition, there is no combinatorial algorithm that runs in o(n?)
time. In this paper, we derive conditional lower bound exhibiting why a faster algorithm
has so far been elusive for the ultralinear grammars, clearly demarking the boundary where
parsing becomes hard!

1.1 Results & Techniques

Lower Bounds. Our first hardness result is a lower bound for the problem of linear language
edit distance. We show that a truly subquadratic time algorithm for linear language edit
distance would refute the Strong Exponential Time Hypothesis (SETH). This further builds
on a growing family of “SETH-hard” problems — those for which lower bounds can be proven
conditioned on SETH. We prove this result by reducing binary string edit distance, which
has been shown to be SETH-hard [9, 5], to linear language edit distance.

» Theorem (Linear Grammar Hardness of Parsing). There exists no algorithm to compute the
minimum edit distance between a string T, |T| = n, and a linear language L(G) in o(n?~¢)
time for any constant € > 0, unless SETH is false.

R. Jayaram and B.Saha

Our second, and primary hardness contribution is a conditional lower bound on the
recognition problem for ulralinear languages. Our result builds closely off of the work
of Abboud, Backurs and V. Williams [1], who demonstrate that finding an o(n?®)-time
combinatorial algorithm or any o(n“)-algorithm for context free language recognition would
result in faster algorithms for the k-clique problem and falsify a well-known conjecture in
graph algorithms. We modify the grammar in their construction to be ultralinear, and then
demonstrate that the same hardness result holds for our grammar. See the full version for
details.

» Theorem (Ultralinear Grammar Hardness of Parsing). There is a ultralinear grammar Gy
such that if we can solve the membership problem for a string of length n in time O(|Gy|*n°)
for any fized constant o > 0, then we can solve the 3k-clique problem on a graph with n
nodes in time O(n(k+3)+3a),

Upper Bounds. We provide the first quadratic time algorithms for linear (Theorem 7),
superlinear (in full version), and metalinear language edit distance (in full version), running
in O(|P|n?), O(|P|n?) and O(|P|?>n?) time respectively. This exhibits a large family of
grammars for which edit distance computation can be done faster than for general context
free grammars, as well as for other well known grammars such as the Dyck grammar [1]. Along
with our lower bound for the ultralinear language parsing, this demonstrates a clear division
between those grammars for which edit distance can be efficiently calculated, and those for
which the problem is likely to be fundamentally hard. Our algorithms build progressively
off the construction of a linear language edit distance graph, reducing the problem of edit

distance computation to computing shortest path on a graph with O(|P|n?) edges (Section 2).

Our main contribution is an additive approximation for language edit distance. We first
present a cubic time exact algorithm, and then show a general procedure for modifying
this algorithm, equivalent to forgetting states of the underlying dynamic programming
table, into a family of amnesic dynamic programming algorithms. This produces additive
approximations of the edit distance, and also provides a tool for proving general bounds on
any such algorithm. In particular, we provide two explicit procedures for forgetting dynamic
programming states: uniform and non-uniform grid approximations achieving the following
approximation-running time trade-off. See Section 4, and the full version for missing proofs.

» Theorem 4. If A is a vy-uniform grid approximation, then the edit distance computed by
A satisfies |OPT| < |A| < |OPT| + O(k*y) and it runs in O(|P|(n* + (%)3)) time.

» Theorem 5. Let A be any vy-non-uniform grid approximation, then the edit distance
3

computed by A satisfies |OPT| < |A| < |OPT|+ O(kvy)and it runs in O(|P|(n* + :—2)) time.

We believe that our amnesic technique can be applied to wide range of potential dynamic

programming approximate algorithms, and lends itself particularly well to randomization.

2 Linear Grammar Edit Distance in Quadratic Time

We first introduce a graph-based exact algorithm for linear grammar, that is a grammar
G = (Q,X%, P,S) where every production has one of the following forms: A — aB, A — Ba,
A — aBfS,or A — a where A, B € Q, and «, 8 € ¥. Given G and a string T = 2122 ..., €

¥*, we give an O(|P|n?) algorithm to compute edit distance between Z and G in this section.

The algorithm serves as a building block for the rest of the paper.
Note that if we only have productions of the form A — aB (or A — Ba but not both)
then the corresponding language is regular, and all regular languages can be generated in

19:5

ICALP 2017

19:6

Approximating Language Edit Distance Beyond Fast Matrix Multiplication

Figure 2 Clouds corresponding to Linear Grammar Edit Distance Graph Construction. Each
cloud contains a vertex for every nonterminal.

this manner. However, there are linear languages that are not regular. For instance, the
language {0™1" | n € N} can be produced by the linear grammar S — 051 | €, but cannot be
produced by any regular grammar [37]. Therefore, regular languages are a strict subclass
of linear languages. Being a natural extension of the regular languages, the properties and
applications of linear languages are of much interest[13, 36].

Algorithm. Given inputs G and T, we construct a weighted digraph 7 = T(G,T) with a
designated vertex S'™ as the source and t as the sink such that the weight of the shortest
path between them will be the minimum language edit distance of 7 to G.

Construction. The vertices of T consist of (g) clouds, each corresponding to a unique
substring of . We use the notation (4, j) to represent the cloud, 1 < i < j < n, corresponding
to the substring x;x;y1....x;. Each cloud will contain a vertex for every nonterminal in Q.
Label the nonterminals @ = {S = A1, As, ..., Ay} where |Q| = ¢, then we denote the vertex
corresponding to Ay in cloud (7, j) by A;’j. We will add a new sink node ¢, and use S*™ as the
source node s. Thus the vertex set of 7 is V(T) = {AZ’j |[1<i<j<mn, 1<k<q}U{t}
The edges of T will correspond to the productions in G. Each path from a nonterminal
AZ’j in (4,7) to ¢ corresponds to the production of a legal string w, that is a string that
can be derived starting from A and following the productions of P, and a sequence of
editing procedures to edit w to x;x;41 ...x;. For any cloud (i, j), edges will exist between
two nonterminals in (4, j), and from nonterminals in (¢, j) to nonterminals in (¢ + 1, j) and
(i, — 1). Our goal will be to find the shortest path from S1™, the starting nonterminal S in
cloud (1,n), to the sink ¢.

Adding the edges. Each edge in 7T is directed, has a weight in ZT and a label from
{x1,29, ..., 2n, €} U{e(a) | @ € I}, where e(a) corresponds to the deletion of a. If u,v are

two vertices in 7, then we use the notation u % 4 to denote the existence of an edge

w(u,v)
from u to v with weight w(u,v) and edge label £. (For any nonterminal A € @, define null(A)
to be the length of the shortest string in %* derivable from A, which can be precomputed
in O(|Q||P|log(|Q])) time for all A € @ (see full version for details). This is the minimum
cost of deleting a whole string produced by A. Given input zizs . ..x,, for all nonterminals
Ay, A, and every 1 < i < j < n, the construction is as follows:

R. Jayaram and B.Saha

Legal Productions: For ¢ # j, then if Ay — x;A, is a production, add the edge
A % At to T. If Ay — A,xj is a production, add the edge A}’ % Abi=1 to T.

Completing Productions: If A; — z; is a production, add the edge A;l %) ttoT. If

A — ;A or Ay — A,x; is a production, add the edge A;j ﬁ ttoT.
nu ”

Insertion: If Ay — x;Aj is not a production, add the edge Az’j % A?l’j to 7. If

Ay — Agx; is not a production, add AZ’j 11—7> AZ"j_l. {these are called insertion edges.}

Deletion: For every production Ay — aA, or Ay — A,a, add the edge A}’ i(fl—)> Abd,
{these are called deletion edges.}

Replacement: For every production Ay — aA,, if a # z;, then add the edge AZ’j IT>

AL to T. For every production Ay — A,q, if a # z;, add A};’j wTJ> A=l to T. For
any Ay such that Ay — x; is not a production, but Ay — « is a production with a € X3,
add the edge A" zT> t to T.{these are called substitution or replacement edges.}

» Theorem 6. For every Ay € Q and every 1 <i < j <n, the cost of the shortest path of
from Ay to the sink t € T is d if and only if d is the minimum edit distance between the
string x; ... x; and the set of strings which can be derived from Ay.

» Theorem 7. The cost of the shortest path from S“™ to t in the graph T is the minimum
edit distance which can be computed in O(|P|n?) time.

3 Context Free Language Edit Distance

In this section, we develop an exact algorithm which utilizes the graph construction presented
in Section 2 to compute the language edit distance of a string T = z; ... x, to any context
free grammar (CFG) G = (Q,%, P,S). We use a standard normal form for G, which is
Chomsky normal form except we also allow productions of the form A — AalaA, where
A€ @Q,a € 3. For us, the important property of this normal form is that every non-linear
production must be of the form A — BC, with exactly two non-terminals on the right hand
side. Any CFG can be reduced to this normal form (see full version for more details).

Let P, Pyy, C P be the subsets of (legal) linear and non-linear productions respectively.

Then for any nonterminal A € @, the grammar G = (Q, X, P, A) is linear, and we denote
the corresponding linear language edit distance graph by T(Gr,Z) = T, as constructed in
Section 2. Let L; be the set of clouds in T which correspond to substrings of length i (so
L;={(k,j) €T |j—k+1=4}). Then Lq,..., L, is a layered partition of T. Let t be the

sink of 7. We write 7 to denote the graph 7 where the direction of each edge is reversed.

Let L denote the edge reversed subgraph of L;. In other words, L is the subgraph of T
with the same vertex set as L;. Our algorithm will add some additional edges within LZ, and
some additional edges from ¢ to LI, for all 1 < i < n, resulting in an augmented subgraph
which we denote ff . We then compute single source shortest path from ¢ to Z? U {t} in
phase i. Our algorithm will maintain the property that, after phase ¢ — p + 1, if AP? is any
nonterminal in cloud (p,q) then the weight of the shortest path from ¢ to AP is precisely
the minimum edit distance between the string z,x,41 ...24 and the set of strings that are
legally derivable from A. The algorithm is as follows:

19:7

ICALP 2017

19:8

Approximating Language Edit Distance Beyond Fast Matrix Multiplication

Algorithm: Context Free-Exact

1. Base Case: strings of length 1. For every non-linear production A — BC, and every

1 < ¢ < n, add the edges A% m C%* and A%* m B% to L. Note that the

direction of the edges are reversed because we are adding edges to LT and not L;. Call
the resulting augmented graph LI,

2. Solve single source shortest path from ¢ to every vertex in fﬁu {t}. Store the value of the
shortest path from ¢ to every vertex in L¥, and an encoding of the path itself. For any
1<p<g<nand AP? € L,_p1, we write T}, ,(A) to denote the weight of the shortest
path from ¢ to AP'¢. After having computed shortest paths from t to every vertex in the
subgraphs f?, e ,fil, we now consider L%

3. Induction: strings of length i. For every edge from a vertex AP'? in L; to a vertex
BPTLa or BP4~1in L,y with cost v € {0,1}, add an edge from ¢ to A4 € LF with
cost Tpt1,4(B) + v or T, 4—1(B) + 7, respectively. These are the linear production edges
created in the linear grammar edit distance algorithm.

4. For every non-linear production A — BC and every vertex AP4 € L add an edge

from t to AP¢ in LE with cost ¢ where ¢ = miny<i<y Tp¢(B) + Ty11,4(C). The indices

p < £ < q are called splitting points, as they specify where the string x,, ..., x4 is split by

the production A — BC'. To later recover the derivation, we store the specific £ which

yields the minimum value of the above equation.

5. For every non-linear production A — BC', add the edge AP4 m CP4 and AP4 m

Br to LF.

6. After adding the edges in steps 3-5, we call the resulting graph f? . Then compute
shortest path from ¢ to every vertex in the subgraph Zf U {t}, and store the values of
the shortest paths, along with an encoding of the paths themselves.

7. Repeat for i =1,2,...,n. Return the value T3 ,,(.5).

» Theorem 8. For any nonterminal A € Q and 1 < p < q < n, the weight of the shortest
path from AP9 € L; to t is the minimum edit distance between the substring Tp...Tq and the
set of strings which can be legally produced from A, and the overall time required to compute
the language edit distance is O(|P|n®).

4 Context Free Language Edit Distance Approximation

Now this cubic time algorithm itself is not an improvement on that of Aho and Peterson [3].
However, by strategically modifying the construction of the subgraphs L; by *forgetting* to
compute some of the non-linear edge weights (and taking the minimum over fewer splitting
points for those that we do compute), we can obtain an additive approximation of the
minimum edit distance. We introduce a family of approximation algorithms which do just
this, and prove a strong general bound on their behavior. Our results give bounds for the
performance of our algorithm for any CFG. Additionally, for any k-ultralinear language, our
results also give explicit O(ky/n) and O(2¥n'/3) additive approximations from this family
which run in quadratic time. Note that, as shown in our construction in the proof of hardness
of parsing ultralinear grammars, for any k we can restrict any context free grammar G to a
k-ultralinear grammar G’ such that £(G') C L(G) contains all words that can be derived
using fewer than < k nested non-linear productions (see full version for a more formal
definition of k& and hardness proofs).

R. Jayaram and B.Saha

L, Ln—y Ln—Zy Ln—3y Ny N Ny, L.
CRRRE f nd
AN
Ny
Ly l u |
| V%

Ln—Zy. | H = ‘

| '

Uniform Grid Nonuniform Grid
Lnf3yﬁ7 N,
N3

Figure 3 Non-uniform edges are computed only for a subset of the clouds (colored black). Only
a subset of the splitting points are considered while computing the weights.

» Definition 9. For any Context Free Language edit distance approximation algorithm A,
we say that A is in the family F if it follows the same procedure as in the exact algorithm
with the following modifications:

1. Subset of non-linear productions. A constructs the non-linear production edges in step
4 for the vertices in some subset of the total set of clouds {(p,q) | 1 <p < ¢ <n}.

2. Subset of splitting points. For every cloud (p, q) that A computes non-linear production
edges for, in step 4 of the algorithm when computing the weight ¢ of any edge in this
cloud it takes minimum over only a subset of the possible splitting points p, ..., q (where
this subset is the same for every non-linear edge weight computed in (p, q)).

By forgetting to construct all non-linear production edges, and by taking a minimum
over fewer values when we do construct non-linear production edges, the time taken by our
algorithm to construct new edges can be substantially reduced. Roughly, the intuition for how
we can still obtain an additive approximation is as follows. If the shortest path to the sink in
the exact algorithm uses a non-linear edge from a vertex AP:¢ in cloud (p, ¢), then naturally
our approximation algorithm would also use such an edge if it existed. However, it is possible
that nonlinear edges were not constructed for cloud (p, ¢) by the approximation. Still, what
we can do is find the closest cloud (p', ¢'), with p < p’ < ¢’ < g, such that nonlinear edges
were constructed in (p’, ¢'), and then follow the insertion edges AP4 — APT14 — ... AP
and take the desired non-linear production edge from AP The additional incurred cost is
at most |p — p'| + |¢ — ¢’|, or the distance to the nearest cloud with non-linear edges, and
this cost is incurred at most once for every non-linear production in an optimal derivation.

We now give two explicit examples of how steps 1 and 2 can be implemented. We later
prove explicit bounds on the approximations of these examples in Theorems 4 and 5. In both
examples a sensitivity parameter, v, is first chosen. We use |OPT| to denote the optimum
language edit distance, and |.A4] to denote the edit distance computed by an approximation
algorithm A.

» Definition 10. An approximation algorithm A € F is a y-uniform grid approximation if

for i =n,(n—7v),(n—=27y),...,(n = [3]y) (see Figure 3).

1. A constructs non-linear production edges only for an evenly-spaced 1/v fraction of the
clouds in L;, and no others, where - is a specified sensitivity parameter.

2. Furthermore, for every non-linear edge constructed, A considers only an evenly-spaced
1/~ fraction of the possible break points.

Here if 4 or (n — ¢ + 1) (the number of substrings of length 4) is not evenly divisible by v, we

evenly space the clouds/breakpoints until no more will fit.

19:9

ICALP 2017

19:10

Approximating Language Edit Distance Beyond Fast Matrix Multiplication

We will later see that the running time of such a ~y-uniform grid approximation is
O(|P|(n? + (%)3))7 and in particular for any k-ultralinear grammar G it gives an additive
approximation of O(2Fy). Thus by setting v = n'/3, we get an O(2#n'/?)-approximation in
O(|P|n?) time (Theorem 4).

» Definition 11. For i = 0,1,...,log(n), set N; = {L; | 557 < j < }. Let Nj C N;
be an evenly-spaced min{%i, 1}-fraction of the L;’s in N; (subset of diagonals). Then, an
approximation algorithm A € F is a y-non-uniform grid approximation if, for every L; € N/,
A computes non-linear production edges only for a min{%, 1}-evenly-spaced fraction of the
clouds in L;. Furthermore, for any of these clouds in N for which A does compute non-linear
production edges, A considers only an evenly-spaced min{%i, 1} -fraction of all possible break
points (see Figure 3 (right)).

We will see that the running time of a y-non-uniform grid approximation is O(|P|(n? + z—;)),
and in particular for any k-ultralinear grammar, or if £ is the maximum number of nested
non-linear productions, it gives an additive approximation of O(kv). Hence setting v = \/n,
we get an additive approximation of O(k+/n) in quadratic time (Theorem 5).

4.1 Analysis

The rest of this section will be devoted to proving bounds on the performance of approximation
algorithms in F. We use 79F7 to denote the graph which results from adding all the edges
specified in the exact algorithm to 7. Recall that T is the graph constructed from the linear
productions in G. For A € F, we write 7 to denote the graph which results from adding the
edges specified by the approximation algorithm 4. Note that since A functions by forgetting
to construct a subset of the non-linear edges created by the exact algorithm, we have that
the edge sets satisfy E(T) C E(T4) C E(T9FT). We now introduce the primary structure
which will allow us to analyze the execution of our language edit distance algorithms.

Binary Production-Edit Trees

» Definition 12. A production-edit tree (PET) T for grammar G and input string T is a
binary tree which satisfies the following properties:

1. Each node of T stores a path in the linear grammar edit distance graph 7 = 7 (G, T)
(see Section 2 and 3). The path given by the root of T must start at the source vertex
Sbmoof T

2. For any node v € T, let AP>4, B™*® be the starting and ending vertices of the corresponding
path. If B™® is not the sink ¢ of T, then v must have two children, vy, vy, such that there
exists a production B — C'D and the starting vertices of the paths in vy and vy are C™*
and Dt1# respectively, where ¢ is some splitting point » — 1 < ¢ < s. If { =7 —1 or
¢ = s, then one of the children will be in the same cloud (r, s) as the ending cloud of the
path given by v, and the other will be called a nullified node. This corresponds to the
case where one of the null edges created in step 5 of the exact algorithm is taken.

3. If the path in v € T ends at the sink of 7, then v must be a leaf in T. If AP-? is the
starting vertex of the path, this means that the path derives the entire substring z,, ...z,
using only linear productions. Thus a node v is a leaf of T if and only if it either ends
at the sink or is a nullified node. It follows from 2. and 3. that every non-leaf node has
exactly 2 children.

R. Jayaram and B.Saha

Notation: To represent a node in T that is a path of cost ¢ from AP'? to either B™*, or t,
we will use the notation [AP4, B™* c|, or [AP9 ¢, |, respectively. If one of the arguments is
either unknown or irrelevant, we write - as a placeholder. In the case of a nullified node,
corresponding to the nullification of A € @, we write [A, t, null(A)] to denote the node. Note,
since we are now dealing with two *types* of graphs, to avoid confusion whenever we are
talking about a vertex AP in any of the edit-distance graphs (such as 7,74, TOFT ect),
we will use the term verter. When referring to the elements of a PET T we will use the term
node. Also note that all error productions are linear.

We can now represent any sequence of edits produced by a language edit distance
algorithm by such a PET, where the edit distance is given by the sum of the costs stored in
the nodes of the tree. To be precise, if [-,-, ¢1],..., [, -, cx] is the set of all nodes in T, then
the associated total cost ||T|| = Zle ¢;. Let D4 be the set of PET’s T compatible with a
fixed approximation algorithm A € F.

» Definition 13 (PET's compatible with A). For an approximation algorithm A € F, let

D4 C F be the set of PET’s T which satisfy the following constraints:

1. If [AP9,B™*] is a node in T, where A, B € @, then A must compute non-linear edges
for the cloud (r,s) € TA.

2. If[C™F, -,], [D¥F1#, -,] are the left and right children of a node [AP:?, B™*, -] respectively,
then A4 must consider the splitting point £ € [p, ¢) when computing the weights of the
non-linear edges in the cloud (r,s) € T,

The set D4 is then the set of all PET’s which utilize only the non-linear productions and
splitting points which correspond to edges that are actually constructed by the approximation
algorithm A in 7. Upon termination, any A € F will return the value ||T 4|| where T4 € D4
is the tree corresponding to the shortest path from ¢ to S in 7. The following theorem
is not difficult to show.

» Theorem 14. Fix any A € F, and let ¢ be the edit distance returned after running the
approzimation algorithm A. Then if T is any PET in D4, we have ¢ < ||T||.

Note that since the edges of T+ are a subset of the edges of TOFT considered by an
exact algorithm OPT, we also have ¢ > ||Topr||, where Topr is the PET given by the exact
algorithm. To prove an upper bound on ¢, it then suffices to construct a explicit T € D 4,
and put a bound on the size of || T||. Thus, in the remainder of our analysis our goal will be
to construct such a T € D 4. We now introduce our precision functions.

» Definition 15 (Precision Functions). For any cloud (p,q) € T, let a(p, q) be any upper
bound on the minimum distance d*((p, q), (r,s)) = (r —p) + (¢ — s) such that p <r < s < g
and A computes non-linear edge weights for the cloud (r, s) . Let 8(p, ¢) be an upper bound
on the maximum distance between any two splitting points which are considered by A in
the construction of the non-linear production edges originating in a cloud (r, s) such that
A computes non-linear edge weights for (r,s) and d*((p, q), (r,s)) < a(p,q). Furthermore,
the precision functions must satisfy a(p,q) > a(p’,q") and B(p,q) > B(p',q’) whenever
(g—p) > (¢ ~1).

While the approximation algorithms presented in this paper are deterministic, the
definitions of «(p,q) and B(p,q) allow the remaining theorems to be easily adapted to
algorithms which randomly forget to compute non-linear edges. While our paper considers only
two explicit approximation algorithms, stating our results in this full generality substantially

19:11

ICALP 2017

19:12

Approximating Language Edit Distance Beyond Fast Matrix Multiplication

easies the analysis. Both Theorems 4 and 5 will follow easily once general bounds are proven,
and without the generality two distinct proofs would be necessary.

Constructing a PET T € D4 similar to Topr

Our goal is now to construct a PET T € D 4 with bounded cost. We do this by considering
each node v of Topr and constructing a corresponding node u in T such that the path
stored in w imitates the path in v as closely as possible. A perfect imitation may not be
feasible if the path at v uses a non-linear production edge in a cloud that A does not compute
non-linear edges for. Whenever this happens, we will need to move to the closest cloud which
A does consider before making the same non-linear production that the exact algorithm did.
Afterwards, the ending cloud of our path will deviate from that of the optimal, so we will need
to bound the total deviation that can occur throughout the construction of our tree in terms
of a(p, q) and B(p, q). The following lemma will be used crucially in this regard for the proof
of our construction in Theorem 17. The lemma takes as input a node [AP?, B™*] € Topr
and a cloud (p/,¢’) such that z,,...,z, is not disjoint from x,, ..., 2z, and constructs a
path [Apl’q,, B '] of bounded cost that is compatible with a PET T € D 4.

» Lemma 16. Let [AP9, B"™*] be any non-leaf node in Topr, and let A € F be an
approximation algorithm with precision functions a(p,q), B(p,q). If v',q" satisfy p < ¢
and p' < q, then there is a path from AP7 to B where r < r' < s’ < s, of cost
d<c+(lp=pl+|d —ql)= (' —r|+|s" —s|) + 2a(r, s) such that A computes non-linear
production edges for cloud (r',s"). Furthermore, for any leaf node [AP4,t, c] € Topr, we can
construct a path from AP>7 of cost at most ¢ < ¢+ (|p' —p|+ ¢’ — q|) to the sink.

We will now iteratively apply Lemma 16 to each node v € Topr from the root down,
transforming it into a new node ¢ (v) € T. Here ¢ will be a surjective function ¢ : V(Topr) —
V(T). Lemma 16 will guarantee that the cost of ¢(v) is not too much greater than that of v.
If during the construction of T, the substrings corresponding to v and 1 (v) become disjoint,
then we will transform the entire subtree rooted at v into a single node ¥ (v) € T, thus the
function may not be injective.

Let v be any node in Topr, and w its parent node if v is not the root. Let (p, q), (r,s) € T
and (py, qu), (v, Sv) € T be the starting and ending clouds of w and v respectively. Similarly
let (p',q"), (r',s") and (p),4q.), (1), s,) be the starting and ending clouds of ¥ (u) and ¥ (v)
respectively. Furthermore, let (px,¢x) and (p'y, ¢’), where X = L for left child and X = R
for right child, be the starting clouds of the left and right children of u and (u) respectively.
Let ¢, be the cost of v, and let ¢, be the cost of v plus the cost of all the descendants of
v. Finally, let ¢, be the cost of 1)(v). An abbreviated version of Theorem 17 (see the full
version for extended statement) relates the cost of v with ¢ (v) in terms of the starting and
ending clouds by defining v inductively from the root of Topr down. The theorem uses
Lemma 16 repeatedly to construct the nodes of T.

» Theorem 17. For any approzimation algorithm A € F with precision functions «, 3, there
exists a PET T € D4 and a PET mapping ¢ : V(Topr) — V(T) such that Topr can be
partitioned into disjoint sets Uy, UU%, UUL UU? U X with the following properties. For
v € Topr, ifve Uy, UU%, then v satisfies (Non-leaf), and if v € U} UU? then v satisfies

(Leaf):

< e+ (10 = pol + gy — aol) = (I, — 7ol + 185, = s0]) + 2a(r, s0) (Non-leaf)
<+ 1Py = pol +1a, — qol + B(r, 5) (Leaf)
Furthermore (|p}, —pL|+laz —qwl) +([Pr —prl+1ar —arl) < [r'—7r[+]s"—s[+28(r,) (*)

R. Jayaram and B.Saha

Let Ty, pp C Topr be the subgraph of nodes v in the tree for which either v is the only
node mapped to ¥ (v) € T, or v is the node closest to the root that is mapped to 1 (v). In
the previous theorem, the set X corresponds to the nodes v for which ¢ (v) = ¥ (u) such that
u is an ancestor of v in Topr. So Tppr = Topr \ X. The final theorem is the result of
summing over the bounds from Theorem 17 for all v; € T(, pp, applying the appropriate
bound depending on the set v; belongs to.

» Theorem 18. For any A € F with precision functions «, 3, let Topr be the PET of
any optimal algorithm. Label the nodes of Tpr C Topr by vi...vk. For1 <i < K, let
(i, qi), (i, 8;) be the starting and ending clouds of the path v; in T, then

OPT| < |A| < |OPT|+ 3 (2a(rj,5) +36(r;.5,))

. Y
v €T pr

As an illustration of Theorem 18, consider the y-uniform grid approximation of Theorem 4.
In this case, we have the upper bound «a(rj,s;) = B(rj,s;) = 27 for all v; € Topr. Since
there are k* total vertices in Topr, we get |OPT| < |A| < |OPT|+ 10vk*. To analyze the
running time, note that we only compute non-linear production edges for (n/v)? clouds, and
in each cloud that we compute non-liner edges for we consider at most n/y break-points.
Thus the total runtime is O(| P|(2)?) to compute non-linear edges, and O(|P|n?) to a shortest
path algorithm on 7+, for a total runtime of O(|P|(n? + (%)3))

Our second illustration of Theorem 18 is the ~-non-uniform grid approximation of
Theorem 5. Here we obtain a O(kvy) additive approximation in time O(|P|(n? + Z—z)) A
detailed analysis can be found in the full version.

—— References

1 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. If the current clique
algorithms are optimal, so is valiant’s parser. In FOCS 2015, 2015.

2 Alfred V. Aho and John E. Hopcroft. The Design and Analysis of Computer Algorithms.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1974.

3 Alfred V. Aho and Thomas G. Peterson. A minimum distance error-correcting parser for
context-free languages. SIAM J. Comput., 1(4), 1972.

4 Rolf Backofen, Dekel Tsur, Shay Zakov, and Michal Ziv-Ukelson. Sparse RNA Folding:
Time and Space Efficient Algorithms. In Annual Symposium on Combinatorial Pattern
Matching, pages 249-262. Springer, 2009.

5 Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquad-
ratic time (unless SETH is false). In STOC 2015, 2015.

6 Arturs Backurs and Krzysztof Onak. Fast algorithms for parsing sequences of parentheses
with few errors. In PODS, 2016.

7 Ulrike Brandt and Ghislain Delepine. Weight-reducing grammars and ultralinear languages.
RAIRO-Theoretical Informatics and Applications, 38(1):19-25, 2004.

8 Karl Bringmann, Fabrizio Grandoni, Barna Saha, and Virginia V. Williams. Truly sub-
cubic algorithms for language edit distance and RNA folding via fast bounded-difference
min-plus product. In FOCS 2016, 2016.

9 Karl Bringmann and Marvin Kiinnemann. Quadratic conditional lower bounds for string
problems and dynamic time warping. In FOCS 2015, 2015.

10 J.A. Brzozowski. Regular-like expressions for some irregular languages. In IEEE Annual
Symposium on Switching and Automata Theory, 1968.

11 Noam Chomsky. On certain formal properties of grammars. Information and control,
2(2):137-167, 1959.

19:13

ICALP 2017

19:14

Approximating Language Edit Distance Beyond Fast Matrix Multiplication

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Jay Earley. An efficient context-free parsing algorithm. Communications of the ACM, 13,
1970.

Sheila A. Greibach. The unsolvability of the recognition of linear context-free languages.
Journal of the ACM (JACM), 13(4):582-587, 1966.

Steven Grijzenhout and Maarten Marx. The quality of the XML web. Web Semant., 19,
2013.

J.J. Gutell, R.R.and Cannone, Z. Shang, Y. Du, and M.J. Serra. A story: unpaired
adenosine bases in ribosomal RNAs. Journal of Mol Biology, 2010.

John E. Hopcroft and Jeffrey D. Ullman. Formal languages and their relation to automata.
Addison-Wesley Longman Publishing Co., Inc., 1969.

O.H. Ibarra and T. Jiang. On one-way cellular arrays,. SIAM J. Comput., 16, 1987.
Russell Impagliazzo and Ramamohan Paturi. Complexity of k-SAT. In CCC 1999, pages
237-240, 1999.

Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? In FOCS 1998, pages 653662, 1998.

Mark Johnson. PCFGs, Topic Models, Adaptor Grammars and Learning Topical Colloca-
tions and the Structure of Proper Names. In ACL 2010, pages 1148-1157, 2010.

Ik-Soon Kim and Kwang-Moo Choe. Error repair with validation in LR-based parsing.
ACM Trans. Program. Lang. Syst., 23(4), July 2001.

Donald E Knuth. Semantics of context-free languages. Mathematical systems theory,
2(2):127-145, 1968.

Flip Korn, Barna Saha, Divesh Srivastava, and Shanshan Ying. On repairing structural
problems in semi-structured data. In VLDB 2013, 2013.

Martin Kutriba and Andreas Malcher. Finite turns and the regular closure of linear context-
free languages. Discrete Applied Mathematics, 155(5), October 2007.

Lillian Lee. Fast context-free grammar parsing requires fast boolean matrix multiplication.
J. ACM, 49, 2002.

Andreas Malcher and Giovanni Pighizzini. Descriptional complexity of bounded context-
free languages. Information and Computation, 227, June 2013.

Christopher D. Manning. Foundations of statistical natural language processing, volume
999. MIT Press, 1999.

Darnell Moore and Irfan Essa. Recognizing multitasked activities from video using
stochastic context-free grammar. In NCAI 2002, pages 770-776, 2002.

E. Moriya and T. Tada. On the space complexity of turn bounded pushdown automata.
Internat. J. Comput, 80:295—-304., 2003.

Gene Myers. Approximately matching context-free languages. Information Processing
Letters, 54, 1995.

Geoffrey K. Pullum and Gerald Gazdar. Natural languages and context-free languages.
Linguistics and Philosophy, 4(4), 1982.

Sanguthevar Rajasekaran and Marius Nicolae. An error correcting parser for context free
grammars that takes less than cubic time. Manuscript, 2014.

Andrea Rosani, Nicola Conci, and Francesco G. De Natale. Human behavior recognition
using a context-free grammar. Journal of Electronic Imaging, 23(3), 2014.

Barna Saha. The Dyck language edit distance problem in near-linear time. In FOCS 2014,
pages 611-620, 2014.

Barna Saha. Language edit distance and maximum likelihood parsing of stochastic gram-
mars: Faster algorithms and connection to fundamental graph problems. In FOCS 2015,
pages 118-135, 2015.

R. Jayaram and B.Saha

36

37

38

39

40

41

42
43

44

Jose M Sempere and Pedro Garcia. A characterization of even linear languages and its
application to the learning problem. In International Colloguium on Grammatical Inference,
pages 38—44. Springer, 1994.

Jeffrey Ullman and John Hopcroft. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 2001.

Leslie G. Valiant. General context-free recognition in less than cubic time. Journal of
computer and system sciences, 10(2), 1975.

Balaji Venkatachalam, Dan Gusfield, and Yelena Frid. Faster Algorithms for RNA-Folding
Using the four-Russians Method. In WABI 2013, 2013.

Robert A. Wagner. Order-n correction for regular languages. Communications of the ACM,
17(5), 1974.

Ye-Yi Wang, Milind Mahajan, and Xuedong Huang. A unified context-free grammar and
n-gram model for spoken language processing. In ICASP 2000, pages 1639-1642, 2000.
Glynn Winskel. The formal semantics of programming languages: an introduction, 1993.
D. A. Workman. Turn-bounded grammars and their relation to ultralinear languages. In-
form. and Control, 32:188-200, 1976.

Shay Zakov, Dekel Tsur, and Michal Ziv-Ukelson. Reducing the worst case running times
of a family of RNA and CFG problems, using Valiant’s approach. In WABI 2010, 2010.

19:15

ICALP 2017

	Introduction
	Results & Techniques

	Linear Grammar Edit Distance in Quadratic Time
	Context Free Language Edit Distance
	Context Free Language Edit Distance Approximation
	Analysis

