
On the Fine-Grained Complexity of
One-Dimensional Dynamic Programming∗†

Marvin Künnemann1, Ramamohan Paturi2, and Stefan Schneider3

1 University of California, San Diego, CA, USA
mkuennemann@eng.ucsd.edu

2 University of California, San Diego, CA, USA
paturi)@eng.ucsd.edu

3 University of California, San Diego, CA, USA
stschnei@eng.ucsd.edu

Abstract
In this paper, we investigate the complexity of one-dimensional dynamic programming, or more
specifically, of the Least-Weight Subsequence (LWS) problem: Given a sequence of n data items
together with weights for every pair of the items, the task is to determine a subsequence S
minimizing the total weight of the pairs adjacent in S. A large number of natural problems can
be formulated as LWS problems, yielding obvious O(n2)-time solutions.

In many interesting instances, the O(n2)-many weights can be succinctly represented. Yet
except for near-linear time algorithms for some specific special cases, little is known about when
an LWS instantiation admits a subquadratic-time algorithm and when it does not. In particular,
no lower bounds for LWS instantiations have been known before. In an attempt to remedy
this situation, we provide a general approach to study the fine-grained complexity of succinct
instantiations of the LWS problem: Given an LWS instantiation we identify a highly parallel
core problem that is subquadratically equivalent. This provides either an explanation for the
apparent hardness of the problem or an avenue to find improved algorithms as the case may be.

More specifically, we prove subquadratic equivalences between the following pairs (an LWS
instantiation and the corresponding core problem) of problems: a low-rank version of LWS and
minimum inner product, finding the longest chain of nested boxes and vector domination, and a
coin change problem which is closely related to the knapsack problem and (min,+)-convolution.
Using these equivalences and known SETH-hardness results for some of the core problems,
we deduce tight conditional lower bounds for the corresponding LWS instantiations. We also
establish the (min,+)-convolution-hardness of the knapsack problem. Furthermore, we revisit
some of the LWS instantiations which are known to be solvable in near-linear time and explain
their easiness in terms of the easiness of the corresponding core problems.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Least-Weight Subsequence, SETH, Fine-Grained Complexity, Knapsack,
Subquadratic Algorithms

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.21

∗ A full version is available at [31].
† This research is supported by the Simons Foundation. This research is supported by NSF grant

CCF-1213151 from the Division of Computing and Communication Foundations. Any opinions, findings
and conclusions or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

EA
T

C
S

© Marvin Künnemann, Ramamohan Paturi, and Stefan Schneider;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 21; pp. 21:1–21:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.21
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


21:2 On the Fine-Grained Complexity of One-Dimensional Dynamic Programming

1 Introduction

Dynamic programming (DP) is one of the most fundamental paradigms for designing algo-
rithms and a standard topic in textbooks on algorithms. Scientists from various disciplines
have developed DP formulations for basic problems encountered in their applications. How-
ever, it is not clear whether the existing (often simple and straightforward) DP formulations
are in fact optimal or nearly optimal. Our lack of understanding of the optimality of the DP
formulations is particularly unsatisfactory since many of these problems are computational
primitives.

Interestingly, there have been recent developments regarding the optimality of standard
DP formulations for some specific problems, most importantly, conditional lower bounds
assuming the Strong Exponential Time Hypothesis (SETH) [26]. Let us consider the longest
common subsequence (LCS) problem as an illustrative example. It is defined as follows:
Given two strings x and y of length at most n, compute the length of the longest string z that
is a subsequence of both x and y. The standard DP formulation for the LCS problem involves
computing a two-dimensional table requiring O(n2) steps. This algorithm is slower than the
fastest known algorithm due to Masek and Paterson [33] only by a polylogarithmic factor.
However, there has been no progress in finding more efficient algorithms for this problem
since the 1980s, which prompted attempts as early as in 1976 [5] to understand the barriers
for efficient algorithms and to prove lower bounds. Unfortunately, there have not been any
nontrivial unconditional lower bounds for this or any other problem in general models of
computation. This state of affairs prompted researchers to consider conditional lower bounds
based on conjectures such as 3-Sum conjecture [18] and more recently based on ETH [27]
and SETH [26]. Researchers have found ETH and SETH to be useful to explain the exact
complexity of several NP-complete problems (see the survey paper [32]). Surprisingly, Ryan
Williams [39] has found a simple reduction from the CNF-SAT problem to the orthogonal
vectors problem which under SETH leads to a matching quadratic lower bound for the
orthogonal vectors problem. This in turn led to a number of conditional lower bound results
for problems in P (including LCS and related problems) under SETH [6, 1, 10, 2, 22]. Also
see [37] for a recent survey.

The DP formulation of the LCS problem is perhaps the conceptually simplest example
of a two-dimensional DP formulation. In the standard formulation, each entry of an n× n
table is computed in constant time. This property is typical for alignment problems which,
for example, are used to model similarity between gene or protein sequences and for which
LCS and Edit distance are the most prominent examples. Tight conditional lower bounds
have recently been proved for a number of alignment problems [8, 6, 1, 10, 3].

In contrast, there are many problems for which natural quadratic-time DP formulations
compute a one-dimensional table of length n by spending O(n)-time per entry. The ques-
tion arises: Can similar optimality results as for alignment problems be obtained for this
fundamentally different setting? In pursuit of an answer, we investigate the optimality of
one-dimensional DP formulations and obtain new (conditional) lower bounds which match
the complexity of these standard DP formulations.

1-dimensional DP: The Least-Weight Subsequence (LWS) Problem. In this paper, we
investigate the optimality of the standard DP formulation of the LWS problem. A classic
example of an LWS problem is airplane refueling [24]: Given airport locations on a line,
and a preferred distance per hop k (in miles), we define the penalty for flying k′ miles as
(k − k′)2. The goal is then to find a sequence of airports terminating at the last airport that
minimizes the sum of the penalties. We now define the LWS problem formally.



M. Künnemann, R. Paturi, and S. Schneider 21:3

I Problem 1.1 (LWS). We are given weights wi,j ∈ {−W, . . . ,W} ∪ {∞} for every pair
0 ≤ i < j ≤ n and an arbitrary function g : Z→ Z. The LWS problem is to determine F [n]
which is defined by the following DP formulation.

F [0] = 0,
F [j] = min

0≤i<j
g(F [i]) + wi,j for j = 1, . . . , n. (1)

In the above definition, we did not specify the precise encoding of the problem. We
typically consider succinct instantiations of LWS, where the input has subquadratic size
(typically Õ(n)) and the weights are a function of the input. In many cases, the input is a
list of data items x0, . . . , xn and wi,j is a function of xi and xj . For example, to formulate
airplane refueling as an LWS problem, we let xi be the location of the i’th airport, g be the
identity function, and wi,j = (xj − xi − k)2.

The generality of the LWS definition captures a large variety of problems: it not only
encompasses classical problems such as the pretty printing problem due to Knuth and
Plass [30], the airplane refueling problem [24] and the longest increasing subsequence (LIS) [17],
but also the unbounded subset sum problem [36, 9], a more general coin change problem
that is effectively equivalent to the unbounded knapsack problem, 1-dimensional k-means
clustering problem [23], finding longest R-chains (for an arbitrary binary relation R), and
many others (for a more detailed overview and problem definitions, see the full version [31]).

Under mild assumptions on the encoding of the data items and weights, any instantiation
of the LWS problems can be solved in time O(n2) using (1) for determining the values
F [j], j = 1, . . . , n in time O(n) each. However, the best known algorithms for the LWS
problems differ quite significantly in their time complexity. Some problems including the
pretty printing problem, the airline refueling problem and LIS turn out to be solvable in
near-linear time, while no subquadratic algorithms are known for the unbounded knapsack
problem or for finding the longest R-chain.

The main goal of the paper is to investigate the optimality of the LWS DP formulation
for various problems by proving conditional lower bounds.

Succinct LWS instantiations. In the extremely long presentation of an LWS problem,
the weights wi,j are given explicitly. This is, however, not a very interesting case from a
computational point of view, as the standard DP formulation takes linear time (in the size
of the input) to compute F [n]. In the example of the airplane refueling problem, the size
of the input is only O(n) assuming that the values of the data items are bounded by some
polynomial in n. For such succinct representations, we ask if the quadratic-time algorithm
based on the standard LWS DP formulation is optimal. Our approach is to study several
natural succinct versions of the LWS problem (by specifying the type of data items and the
weight function1) and determine their complexity.

Our Contributions and Results. The main contributions of our paper include a general
framework for reducing succinct LWS instantiations to what we call the core problems
and proving subquadratic equivalences between them. Such subquadratic equivalences are
interesting for two reasons. First, they allow us to conclude conditional lower bounds
for certain LWS instantiations, where previously no lower bounds are known. Second,

1 In all our applications, the function g is the trivial identity function.

ICALP 2017



21:4 On the Fine-Grained Complexity of One-Dimensional Dynamic Programming

subquadratic (or more general fine-grained) equivalences are more useful since they let us
translate easiness in addition to hardness results.

Our results include tight (up to subpolynomial factors) conditional lower bounds for
several LWS instantiations with succinct representations. These instantiations include the
coin change problem, low-rank versions of the LWS problem, and the longest subchain
problems. Our results are somewhat more general. We propose a factorization of the LWS
problem into a core problem and a fine-grained reduction from the LWS problem to the core
problem. The idea is that core problems (which are often well-known problems) capture the
hardness of the LWS problem and act as a potential barrier for more efficient algorithms.
While we do not formally define the notion of a core problem, we identify several core
problems which share several interesting properties. For example, they do not admit natural
DP formulations and are easy to parallelize. In contrast, the quadratic-time DP formulation
of LWS problems requires the entries F [i] to be computed in order, suggesting that the
general problem might be inherently sequential.

The reductions between LWS problems and core problems involve a natural intermediate
problem, which we call the Static-LWS problem. We first reduce the LWS problem to the
Static-LWS problem in a general way and then reduce the Static-LWS problem to a core
problem. The first reduction is divide-and-conquer in nature and is inherently sequential.
The latter reduction is specific to the instantiation of the LWS problem. The Static-LWS
problem is easy to parallelize and does not have a natural DP formulation. However, the
problem is not necessarily a natural problem. The Static-LWS problem can be thought of
as a generic core problem, but it is output-intensive.

In the other direction, we show that many of the core problems can be reduced to the
corresponding LWS instantiations thus establishing an equivalency between LWS instantia-
tions and their core problems. This equivalence enables us to translate both the hardness
and easiness results (i.e., the subquadratic-time algorithms) for the core problems to the
corresponding LWS instantiations.

The first natural succinct representation of the LWS problem we consider is the low-rank
LWS problem, where the weight matrix W = (wi,j) is of low rank and thus representable
as W = L · R where L and RT are (n× no(1))-matrices. For this low-rank LWS problem,
we identify the minimum inner product problem (MinInnProd) as a suitable core problem.
It is only natural and not particularly surprising that MinInnProd can be reduced to the
low-rank LWS problem which shows the SETH-hardness of the low-rank LWS problem.
The other direction is more surprising: Inspired by an elegant trick of Vassilevska Williams
and Williams [40], we are able to show a subquadratic-time reduction from the (highly
sequential) low-rank LWS problem to the (highly parallel) MinInnProd problem. Thus,
the very compact problem MinInnProd problem captures exactly the complexity of the
low-rank LWS problem (under subquadratic reductions).

We also show that the coin change problem is subquadratically equivalent to the (min,+)-
convolution problem. In the coin change problem, the weight matrix W is succinctly given
as a Toeplitz matrix. At this point, the conditional hardness of the (min,+)-convolution
problem is unknown. Only very recently and independent of our work, a detailed treatment
of Cygan et al. [13] considers quadratic-complexity of (min,+)-convolution as a hardness
assumption and discusses its relation to more established assumptions. The quadratic-
time hardness of the (min,+)-convolution problem would be very interesting, since it
is known that the (min,+)-convolution problem is reducible to the 3-Sum problem and
the APSP problem (see also [13]). However, recent results give surprising subquadratic-
time algorithms for special cases of (min,+)-convolution [12]. If these subquadratic-time



M. Künnemann, R. Paturi, and S. Schneider 21:5

Table 1 Summary of our results.

Name Weights Equivalent Core Reference

Coin Change Toeplitz matrix: (min,+)-convolution Theorem 5.9
wi,j = wj−i

Remark: Subquadratically equivalent to UnboundedKnapsack

LowRankLWS Low rank representation: MinInnProd Theorem 4.7
wi,j = 〈σi, µj〉

R-chains matrix induced by R: Selection(R) Theorem 6.3
wi,j = wj if R(xi, xj) and ∞ o/w Theorem 6.4
Remark: Results below are corollaries.

NestedBoxes wi,j = −1 if Bj contains Bi VectorDomination
SubsetChain wi,j = −1 if Si ⊆ Sj OrthogonalVectors

algorithms extend to the general (min,+)-convolution problem, our equivalence result
also provides a subquadratic-time algorithm for the coin change problem and the closely
related unbounded knapsack problem. Our reductions also give, as a corollary, a quadratic-
time (min,+)-convolution-based lower bound for the bounded case of knapsack. We
remark that independently of our results, [13] gave randomized subquadratic equivalences
of (min,+)-convolution to unbounded knapsack (while we give deterministic reductions)
and bounded Knapsack (where we only give a (min,+)-convolution-based lower bound).

We next consider the problem of finding longest chains: here, we search for the longest
subsequence (chain) in the input sequence such that all adjacent pairs in the subsequence
are contained in some binary relation R. We show that for any binary relation R satisfying
certain conditions the chaining problem is subquadratically equivalent to a corresponding
(highly parallel) selection problem. As corollaries, we get equivalences between finding
the longest chain of nested boxes (NestedBoxes) and VectorDomination as well as
between finding the longest subset chain (SubsetChain) and the orthogonal vectors (OV)
problem. Interestingly, these results have algorithmic implications: known algorithms for
low-dimensional vector domination and low-dimensional orthogonal vectors translate to faster
algorithms for low-dimensional NestedBoxes and SubsetChain for small universe size.

Table 1 lists the LWS succinct instantiations (as discussed above) and their corresponding
core problems. For a detailed treatment of all LWS instantiations and core problems
considered in this work, see the full version of this paper [31].

Finally, we revisit classic problems including the longest increasing subsequence problem,
the unbounded subset sum problem and the concave LWS problem and analyze the Static-
LWS instantiations to immediately infer that the corresponding core problem can be solved
in near-linear time. Table 2 gives an overview of some of the problems we look at in this
context.

Related Work. LWS has been introduced by Hirschberg and Larmore [24]. If the weight
function satisfies the quadrangle inequality formalized by Yao [41], one obtains the concave
LWS problem (ConcLWS), for which they give an O(n logn)-time algorithm. Subsequently,
improved algorithms solving ConcLWS in time O(n) were given [38, 20]. This yields a fairly
large class of weight functions (including, e.g., the pretty printing and airplane refueling
problems) for which linear-time solutions exist. To generalize this class of problems, further

ICALP 2017



21:6 On the Fine-Grained Complexity of One-Dimensional Dynamic Programming

Table 2 Near-linear time algorithms following from the proposed framework.

Name Weights Õ(n)-algorithm via Reference

Longest Increasing matrix induced by R<: Sorting [17],
Subsequence wi,j = −1 if xi < xj full version [31]
Unbounded Subset Toeplitz {0,∞} matrix: Convolution [9],
Sum wi,j = wj−i ∈ {0,∞} full version [31]
Concave 1-dim. DP concave matrix: SMAWK problem [24, 20, 38],

wi,j + wi′,j′ ≤ wi′,j + wi,j′ full version [31]
for i ≤ i′ ≤ j ≤ j′

works address convex weight functions2 [19, 35, 29] as well as certain combinations of convex
and concave weight functions [15] and provide near-linear time algorithms. For a more
comprehensive overview over these algorithms and further applications of the LWS problem,
we refer the reader to Eppstein’s PhD thesis [16].

Apart from these notions of concavity and convexity, results on succinct LWS problems
are typically more scattered and problem-specific (see, e.g., [17, 30, 9, 23]; furthermore, a
closely related recurrence to (1) pops up when solving bitonic TSP [14]). An exception to
this rule is a study of the parallel complexity of LWS [21].

Organization. After setting up notation and conventions in Section 2, Section 3 gives
a general reduction from LWS instantiations to Static-LWS that is independent of the
representation of the weight matrix. Section 4 contains the result on low-rank LWS. Section 5
proves the subquadratic equivalence of the coin change problem and (min,+)-convolution,
while Section 6 discusses chaining problems and their corresponding selection (core) problem.
Due to space constraints, most proofs and our discussion of near-linear time algorithms are
deferred to the full version of this article [31].

2 Preliminaries

In this section, we state our notational conventions and list the main problems considered in
this work.

Notation and Conventions. Problem A subquadratically reduces to problem B, denoted
A ≤2 B, if for any ε > 0 there is a δ > 0 such that the existence of a O(n2−ε)-time algorithm
for B implies a O(n2−δ)-time algorithm for A. We call the two problems subquadratically
equivalent, denoted A ≡2 B, if there are subquadratic reductions both ways.

We let [n] := {1, . . . , n}. When stating running time, we use the notation Õ(·) to hide
polylogarithmic factors. For a problem P , we write TP for its time complexity. We generally
assume the word-RAM model of computation with word size w = Θ(logn). For most
problems defined in this paper, we consider inputs to be integers in the range {−W, . . . ,W}
where W fits in a constant number of words3. For vectors, we use d for the dimension and
generally assume d = no(1).

2 A weight function is convex if it satisfies the inverse of the quadrangle inequality.
3 For the purposes of our reductions, even values up to W = 2no(1)

would be fine.



M. Künnemann, R. Paturi, and S. Schneider 21:7

Succinct LWS Instantiations. In the definition of LWS (Problem 1.1) we did not fix the
encoding of the problem (in particular the representation of the weights wi,j and the function
g). Assuming that g and the weights can be determined in Õ(1) and that W = poly(n),
this problem can naturally be solved in time Õ(n2), by evaluating the central recurrence (1)
for each j = 1, . . . , n – this takes Õ(n) time for each j, since we take the minimum over at
most n expressions that can be evaluated in time Õ(1) by accessing the previously computed
entries F [0], . . . , F [j − 1] as well as computing g. We assume from now on that g is the
identity function, as this is the case for all our applications. Thus it suffices to define the
type of data items and the corresponding weight matrix to specify an LWS instantiation.
Throughout this paper, whenever we fix a representation of the weight matrix W = (wi,j)i,j ,
we denote the corresponding problem LWS(W).

3 Static LWS

Our reductions from LWS instantiations to core problems go through intermediate problems
that share some of the characteristics of core problems, as well as some of the characteristics
of LWS. In particular, these problems are naturally parallelizable and their brute-force
algorithm is already quadratic time, similar to core problems. On the other hand their
definitions are closely related to the definition of LWS. Other than core problems, our
intermediate problems are not decision problems but ask to compute some linear sized output.
Towards making this notion more precise, we define a generic intermediate problem called
Static-LWS.

I Problem 3.1 (Static-LWS(W)). Fix an instance of LWS(W). Given intervals of indices
I := {a + 1, . . . , a + N} and J := {a + N + 1, . . . , a + 2N} with a,N such that I, J ⊆ [n],
together with the values F [a+ 1], . . . , F [a+N ], the Static Least-Weight Subsequence Problem
(Static-LWS) asks to determine

F ′[j] := min
i∈I

F [i] + wi,j for all j ∈ J.

The main purpose of this section is to give a reduction from LWS(W) to Static-LWS(W)
that is independent of the weight matrix W and therefore independent of the succinct LWS
instantiations we consider throughout this paper. This reduction is a key step in our
reductions from LWS to their corresponding core problems.

The reduction is a divide-and-conquer scheme that divides the LWS problem into two
subproblems of half the size each and Static-LWS to combine the two. Crucially, the two
subproblems have to be solved sequentially. The reduction therefore captures the sequential
nature of the LWS problem, while Static-LWS captures a parallelizable part of the problem.

In a certain sense, this reduction has appeared implicitly in previous work on LWS [24].
In particular, the reduction of ConcLWS to the SMAWK problem by Galil and Park [20]
can be thought of as a variant of this reduction specialized to the concave case to avoid
log-factors.

I Lemma 3.2 (LWS(W) ≤2 Static-LWS(W)). For any choice of W, if Static-LWS(W)
can be solved in time O(N2−ε) for some ε > 0, then LWS(W) can be solved in time Õ(n2−ε).

Proof. In what follows, we fix LWS as LWS(W) and Static-LWS as Static-LWS(W).
We define the subproblem S({i, . . . , j}, (fi, . . . , fj)) that given an interval spanned by

1 ≤ i ≤ j ≤ n and values fk = min0≤k′<i F [k′]+wk′,k for each point k ∈ {i, . . . , j}, computes
all values F [k] for k ∈ {i, . . . , j}. Note that a call to S([n], (w0,1, . . . , w0,n)) solves the LWS
problem, since F [0] = 0 and thus the values of fk, k ∈ [n] are correctly initialized.

ICALP 2017



21:8 On the Fine-Grained Complexity of One-Dimensional Dynamic Programming

Algorithm 1 Reducing LWS to Static-LWS
1: function S({i, . . . , j}, (fi, . . . , fj))
2: if i = j then
3: return F [i]← fi

4: m← d j−i2 e
5: (F [i], . . . , F [i+m− 1])← S({i, . . . , i+m− 1}, (fi, . . . , fi+m−1))
6: solve Static-LWS on the subinstance given by I := {i, . . . , i + m − 1} and J :=
{i+m, . . . , i+ 2m− 1}:

7: . obtains values F ′[k] = mini≤k′<i+m F [k′] + wk′,k for k = i+m, . . . , i+ 2m− 1.
8: f ′k ← min{fk, F ′[k]} for all k = i+m, . . . , i+ 2m− 1.
9: (F [i+m], . . . , F [i+ 2m− 1])← S({i+m, . . . , i+ 2m− 1}, (f ′i+m, . . . , f ′i+2m−1))
10: if j = i+ 2m then
11: F [j] := min{fj ,mini≤k<j F [k] + wk,j}.
12: return (F [i], . . . , F [j])

We solve S using Algorithm 1.
We briefly argue correctness, using the invariant that fk = min0≤k′<i F [k′]+wk′,k in every

call to S. If S is called with i = j, then the invariant yields fi = min0≤k′<i F [k′]+wk′,i = F [i],
thus F [i] is computed correctly. For the call in Line 5, the invariant is fulfilled by assumption,
hence the values (F [i], . . . , F [i+m− 1]) are correctly computed. For the call in Line 9, we
note that for k = i+m, . . . , i+ 2m− 1, we have that f ′k equals

min{fk, F ′[k]} = min{ min
0≤k′<i

F [k′]+wk′,k, min
i≤k′<i+m

F [k′]+wk′,k} = min
0≤k′<i+m

F [k′]+wk′,k.

Hence the invariant remains satisfied. Thus, the values (F [i + m], . . . , F [i + 2m − 1]) are
correctly computed. Finally, if j = i+ 2m, we compute the remaining value F [j] correctly,
since fj = min0≤k<i F [k] + wk,j by assumption.

To analyze the running time TS(n) of S on an interval of length n := j − i+ 1, note that
each call results in two recursive calls of interval lengths at most n/2. In each call, we need
an additional overhead that is linear in n and T Static-LWS(n/2). Solving the corresponding
recursion TS(n) ≤ 2TS(n/2) + T Static-LWS(n/2) +O(n), we obtain that an O(N2−ε)-time
algorithm Static-LWS, with 0 < ε < 1 yields TLWS(n) ≤ TS(n) = O(n2−ε). Similarly,
an O(N logcN)-time algorithm for Static-LWS would result in an O(n logc+1 n)-time
algorithm for LWS. J

4 LowRankLWS

In this section we prove the first equivalence between an instantiation of LWS and a core
problem. Specifically, we first analyze the following canonical succinct representation of a
low-rank weight matrix W = (wi,j)i,j : If W is of rank d� n, we can write it more succinctly
as W = L ·R, where L and R are (n× d)- and (d×n) matrices, respectively. We can express
the resulting natural LWS problem equivalently as follows.

I Problem 4.1 (LowRankLWS). We define the LWS instantiation LowRankLWS =
LWS(WLowRank) as follows.
Data: out-vectors µ0, . . . , µn−1 ∈ {−W, . . . ,W}d, in-vectors σ1, . . . , σn ∈ {−W, . . . ,W}d
Weights: w(i, j) = 〈µi, σj〉 for 0 ≤ i < j ≤ n



M. Künnemann, R. Paturi, and S. Schneider 21:9

In this section, we show that this problem is equivalent, under subquadratic reductions,
to the following non-sequential problem.

I Problem 4.2 (MinInnProd). Given a1, . . . , an, b1, . . . , bn ∈ {−W, . . . ,W}d and a natural
number r ∈ Z, determine if there is a pair i, j satisfying 〈ai, bj〉 ≤ r.

This is interesting for a number of reasons. For one, MinInnProd is a fairly natural
problem and, as opposed to LowRankLWS it is not inherently sequential in its definition.
We understand MinInnProd comparably well both from an upper and from a lower bound
perspective. Using ray shooting data structures [34] we can solve MinInnProd in strongly
subquadratic time if d is constant. At the same time, if d = ω(logn), the problem is
quadratic-time SETH-hard. By showing subquadratic equivalence between MinInnProd
and LowRankLWS, we can conclude both these results, as well as any future improvements,
for LowRankLWS.

There is a simple reduction from MinInnProd to LowRankLWS that along the way
proves quadratic-time SETH-hardness of LowRankLWS.

I Lemma 4.3. It holds that TMinInnProd(n, d,W ) ≤ TLowRankLWS(2n+1, d+2, dW )+O(nd).

To prove the other direction, we will use the quite general approach to compute the
sequential LWS problem by reducing to Static-LWS (Lemma 3.2). In particular, for the
special case of LowRankLWS, it is not difficult to see that its static version boils down to
the following natural reformulation.

I Problem 4.4 (AllInnProd). Given vectors a1, . . . , an ∈ {−W, . . . ,W}d and b1, . . . , bn ∈
{−W, . . . ,W}d, determine for all j ∈ [n], the value mini∈[n]〈ai, bj〉.

I Lemma 4.5 (Static-LWS(WLowRank) ≤2 AllInnProd). We have

T Static-LWS(WLowRank)(n, d,W ) ≤ TAllInnProd(n, d+ 1, nW ) +O(nd).

Finally, inspired by an elegant trick of [40], we reduce AllInnProd to MinInnProd.

I Lemma 4.6 (AllInnProd ≤2 MinInnProd). We have

TAllInnProd(n, d,W ) ≤ O(n · TMinInnProd(
√
n, d+ 3, ndW 2) · log2 nW ).

By the sequence of lemmas above and Lemma 3.2, we obtain our subquadratic equivalence
of LowRankLWS to its core problem.

I Theorem 4.7. We have LowRankLWS ≡2 MinInnProd.

5 Coin Change and Knapsack Problems

In this section, we focus on the following problem related to Knapsack: Assume we are
given coins of denominations d1, . . . , dm with corresponding weights w1, . . . , wm and a target
value n, determine a way to represent n using these coins (where each coin can be used
arbitrarily often) minimizing the total sum of weights of the coins used. Since without loss
of generality di ≤ n for all i, we can assume that m ≤ n and think of n as our problem size.
In particular, we describe the input by weights w1, . . . , wn where wi denotes the weight of
the coin of denomination i (if no coin with denomination i exists, we set wi = ∞). It is
straightforward to see that this problem is an LWS instance LWS(Wcc), where the weight
matrix Wcc is a Toeplitz matrix.

ICALP 2017



21:10 On the Fine-Grained Complexity of One-Dimensional Dynamic Programming

I Problem 5.1 (CC). We define the following LWS instantiation CC = LWS(Wcc).
Data: weight sequence w = (w1, . . . , wn) with wi ∈ {−W, . . . ,W} ∪ {∞}
Weights: wi,j = wj−i for 0 ≤ i < j ≤ n

Translated into a Knapsack-type formulation (i.e., denominations are weights, weights
are profits, and the objective becomes to maximize the profit), the problem differs from
UnboundedKnapsack only in that it searches for the most profitable multiset of items of
weight exactly n, instead of at most n.

I Problem 5.2 (UnboundedKnapsack). We are given a sequence of profits p = (p1, . . . , pn)
with pi ∈ {0, 1, . . . ,W}, that is, the item of size i has profit pi. Find the total profit of the
multiset of indices I such that

∑
i∈I i ≤ n and the total profit

∑
i∈I pi is maximized.

The purpose of this section is to show that both CC and UnboundedKnapsack are
subquadratically equivalent to the (min,+)-convolution problem. Along the way, we also
prove quadratic-time (min,+)-convolution-hardness of Knapsack. Recall the definition
of (min,+)-convolution.

I Problem 5.3 ((min,+)-convolution). Given n-dimensional vectors a = (a0, . . . , an−1),
b = (b0, . . . , bn−1) ∈ {−W, . . . ,W}n, determine its (min,+)-convolution a ∗ b defined by

(a ∗ b)k = min
0≤i,j<n:i+j=k

ai + bj for all 0 ≤ k ≤ 2n− 2.

As opposed to the classical convolution, solvable in time O(n logn) using FFT, no
strongly subquadratic algorithm for (min,+)-convolution is known. Compared to the
popular orthogonal vectors problem, we have less support for believing that no O(n2−ε)-time
algorithm for (min,+)-convolution exists. In particular, interesting special cases can be
solved in subquadratic time [12] and there are subquadratic-time co-nondeterministic and
nondeterministic algorithms [7, 11]. At the same time, breaking this long-standing quadratic-
time barrier is a prerequisite for progress on refuting the 3SUM and APSP conjectures
(see also [13]). This makes it an interesting target particularly for proving subquadratic
equivalences, since both positive and negative resolutions of this open question appear to be
reasonable possibilities.

To obtain our result, we address two issues: (1) We show an equivalence between the
problem of determining only the value F [n], i.e., the best way to give change only for
the target value n, and to determine all values F [1], . . . , F [n], which we call the output-
intensive version. (2) We show that the output-intensive version is subquadratic equivalent
to (min,+)-convolution.

I Problem 5.4 (oiCC). The output-intensive version of CC is to determine, given an input
to CC, all values F [1], . . . , F [n].

We first consider issue (2) and prove (min,+)-convolution-hardness of oiCC.

I Lemma 5.5 ((min,+)conv ≤2 oiCC). We have T (min,+)conv(n,W ) ≤ T oiCC(6n, 4(2W +
1)) +O(n).

Using the notion of Static-LWS, the other direction is straight-forward.

I Lemma 5.6. We have oiCC ≤2 Static-LWS(Wcc) ≤2 (min,+)conv.

The last two lemmas resolve issue (2). We proceed to issue (1) and show that the output-
intensive version is subquadratically equivalent to both CC and UnboundedKnapsack
that only ask to determine a single output number.



M. Künnemann, R. Paturi, and S. Schneider 21:11

It is trivial to see that UnboundedKnapsack ≤2 oiCC. Furthermore, there is a simple
reduction from CC to UnboundedKnapsack.

I Oberservation 5.7 (CC ≤2 UnboundedKnapsack ≤2 oiCC). We have TCC(n,W ) ≤
TUnboundedKnapsack(n, nW ) +O(n) and TUnboundedKnapsack(n,W ) ≤ T oiCC(n,W ) +O(n).

The remaining part is similar in spirit to Lemma 4.6: Somewhat surprisingly, the same
general approach works despite the much more sequential nature of Knapsack and CC –
this sequentiality can be taken care of by a more careful treatment of appropriate subproblems
that involves solving them in a particular order and feeding them with information gained
during the process.

I Lemma 5.8 (oiCC ≤2 CC). We have T oiCC(n,W ) ≤ O(log(nW ) ·n ·TCC(24
√
n, 3n2W )).

The lemmas above and their underlying reductions prove the following theorem.

I Theorem 5.9. We have (min,+)conv ≡2 CC ≡2 UnboundedKnapsack. Furthermore,
the bounded version of Knapsack admits no strongly subquadratic-time algorithm unless
(min,+)-convolution can be solved in strongly subquadratic time.

6 Chain LWS

In this section we consider a special case of Least-Weight Subsequence problems called the
Chain Least-Weight Subsequence (ChainLWS) problem. This captures problems in which
edge weights are given implicitly by a relation R that determines which pairs of data items
we are allowed to chain. The aim is to find the longest chain.

An example of a Chain Least-Weight Subsequence problem is the NestedBoxes problem.
Given n boxes in d dimensions, given as non-negative, d-dimensional vectors b1, . . . , bn, find
the longest chain such that each box fits into the next (without rotation). We say box that
box a fits into box b if for all dimensions 1 ≤ i ≤ d, ai ≤ bi.

NestedBoxes is not immediately a Least-Weight Subsequence problem, as for Least-
Weight subsequence problems we are given a sequence of data items, and require any sequence
to start at the first item and end at the last. However, we can easily convert NestedBoxes
into a LWS problem by sorting the vectors by the sum of the entries and introducing two
special boxes, one very small box ⊥ such that ⊥ fits into any box bi and one very large box
> such that any bi fits into >.

We define the Chain Least-Weight Subsequence problem with respect to any relation R
and consider a weighted version where data items are given weights. To make the definition
consistent with the definition of LWS the output is the weight of the sequence that minimizes
the sum of the weights.

I Problem 6.1 (ChainLWS). Fix a set of objects D and a relation R ⊆ D ×D. We define
the following LWS instantiation ChainLWS(R) = LWS(WChainLWS(R)).
Data: sequence of objects d0, . . . , dn ∈ D with weights w1, . . . , wn ∈ {−W, . . . ,W}.

Weights: wi,j =
{
wj if (xi, xj) ∈ R,
∞ otherwise,

for 0 ≤ i < j ≤ n.

The input to the (weighted) Chain Least-Weight Subsequence problem is a sequence of
data items, and not a set. Finding the longest chain in a set of data items is NP-complete
in general. For example, consider the box overlap problem: The input is a set of boxes in
two dimensions, given by the top left corner and the bottom right corner, and the relation

ICALP 2017



21:12 On the Fine-Grained Complexity of One-Dimensional Dynamic Programming

consists of all pairs such that the two boxes overlap. This problem is a generalization of the
Hamiltonian path problem on induced subgraphs of the two-dimensional grid, which is an
NP-complete problem [28].

We relate ChainLWS(R) to the class of selection problems with respect to the same
relation R.

I Problem 6.2 (Selection Problem). Let D be a set of objects, let R ⊆ D ×D be a relation
and let D1, D2 ⊆ Dn. Given two sequences of inputs (a1, . . . , an) ∈ D1 and (b1, . . . , bn) ∈ D2,
determine if there is i, j satisfying R(ai, bj). We denote this selection problem with respect to
the relation R and sets D1, D2 by Selection(RD1,D2). If D1 = D2 = Dn, we denote the
problem by Selection(R).

The class of selection problems includes several well-studied problems including MinIn-
nProd, OV [39, 4] and VectorDomination [25].

We give a subquadratic reduction from ChainLWS(R) to Selection(R), independently
of R. The proof is again based on Static-LWS and a variation on a trick of [40].

I Theorem 6.3. For all relations R such that R can be computed in time subpolynomial in
the number of data items n, ChainLWS(R) ≤2 Selection(R).

For the other direction, we do not have a reduction that is independent of the relation R.
Instead, we give sufficient conditions for the existence of such subquadratic reductions.

I Theorem 6.4. Let D be a set of objects and D1, D2 ⊆ Dn be a set of possible sequences.
Consider any relation R ⊆ D ×D satisfying the following properties.

There is a data item ⊥ such that (⊥, d) ∈ R for all d ∈ D.
There is a data item > such that (d,>) ∈ R for all d ∈ D.
For all a ∈ {1, 2} and any set of data items (d1, . . . , dn) ∈ Da there is a permutation of
indices i1, . . . , in such that for any j < k, (dij , dik ) 6∈ R. This ordering can be computed
in time O(n2−δ) for δ > 0. We call this ordering the natural ordering.

Then Selection(RD1,D2) ≤2 ChainLWS(R).

We call a relation satisfying the conditions above a topological relation. An immediate
corollary is that if we can subquadratically reduce Selection(R) to Selection(R′) for
some topological relation R′, then Selection(R) ≤2 ChainLWS(R′).

We conclude by providing interesting instantiations of the subquadratic equivalence of
Selection and ChainLWS.

I Corollary 6.5 (NestedBoxes ≡2 VectorDomination). The weighted NestedBoxes
problem on d = c logn dimensions can be solved in time n2−(1/O(c log2 c)). For d = ω(logn),
the (unweighted) NestedBoxes problem cannot be solved in time O(n2−ε) for any ε > 0
assuming SETH.

If we restrict NestedBoxes and VectorDomination to Boolean vectors, then we get
SubsetChain and SetContainment, respectively. In this case the upper bound improves
to n2−1/O(log c) [4]. Note that SetContainment ≡2 OV, hence SubsetChain ≡2 OV.

7 Open Problems

We discuss the complexity of some succinct LWS instantiations both from an upper bound
and a lower bound perspective by proving equivalences with a number of comparably well-
studied core problems. The succinct instantiations we study include natural problems



M. Künnemann, R. Paturi, and S. Schneider 21:13

such as LowRankLWS, CC, ChainLWS including NestedBoxes and SubsetChain, as
well as previously studied instantiations such as ConcLWS and LIS. A number of open
questions remain. Our results do not generalize to arbitrary instantiations of LWS. In
particular, Static-LWS does not seem to reduce subquadratically to the problem of finding
the minimum element in a succincly descibed matrix. With LowRankLWS and CC we do
provide instances for which we can identify equivalent core problems, and it will be interesting
to find further examples or even sufficient conditions for which we can reduce LWS to other
problems and vice versa.

For the case of ChainLWS, we are able to generalize the reduction from LWS to
Selection problems. However, the reduction, while preserving subquadratic algorithms,
does not preserve near-linear time algorithms. For some cases, such as LIS, we are able to
reconstruct a near-linear time algorithm, which raises the question of what conditions are
necessary to do that. Similarly, we give sufficient conditions to reduce from Selection to
ChainLWS, and other sufficient or even necessary conditions should be explored for both
black-box as well as white-box reductions.

Acknowledgments. We would like to thank Karl Bringmann and Russell Impagliazzo for
helpful discussions and comments.

References
1 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Quadratic-time hard-

ness of LCS and other sequence similarity measures. In Proc. 56th Annual IEEE Symposium
on Foundations of Computer Science (FOCS’15), pages 59–78, 2015.

2 Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and Ryan
Williams. Simulating branching programs with Edit Distance and friends or: A polylog
shaved is a lower bound made. In Proc. 48th Annual ACM Symposium on Symposium on
Theory of Computing (STOC’16), 2016. To appear.

3 Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Consequences of faster
alignment of sequences. In Proc. 41st International Colloquium on Automata, Languages,
and Programming (ICALP’14), pages 39–51, 2014.

4 Amir Abboud, Ryan Williams, and Huacheng Yu. More applications of the polynomial
method to algorithm design. In Proc. 26th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA’15), pages 218–230, 2015.

5 Alfred V. Aho, Daniel S. Hirschberg, and Jeffrey D. Ullman. Bounds on the complexity
of the longest common subsequence problem. Journal of the ACM, 23(1):1–12, 1976. doi:
10.1145/321921.321922.

6 Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly sub-
quadratic time (unless SETH is false). In Proc. 47th Annual ACM Symposium on Theory
of Computing (STOC’15), pages 51–58, 2015. doi:10.1145/2746539.2746612.

7 David Bremner, Timothy M. Chan, Erik D. Demaine, Jeff Erickson, Ferran Hurtado, John
Iacono, Stefan Langerman, Mihai Patrascu, and Perouz Taslakian. Necklaces, convolutions,
and X+Y. Algorithmica, 69(2):294–314, 2014. doi:10.1007/s00453-012-9734-3.

8 Karl Bringmann. Why walking the dog takes time: Frechet distance has no strongly
subquadratic algorithms unless SETH fails. In Proc. 55th Annual IEEE Symposium on
Foundations of Computer Science (FOCS’14), pages 661–670, 2014. doi:10.1109/FOCS.
2014.76.

9 Karl Bringmann. A near-linear pseudopolynomial time algorithm for Subset Sum. In Proc.
28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’17), pages 1073–1084,
2017. doi:10.1137/1.9781611974782.69.

ICALP 2017

http://dx.doi.org/10.1145/321921.321922
http://dx.doi.org/10.1145/321921.321922
http://dx.doi.org/10.1145/2746539.2746612
http://dx.doi.org/10.1007/s00453-012-9734-3
http://dx.doi.org/10.1109/FOCS.2014.76
http://dx.doi.org/10.1109/FOCS.2014.76
http://dx.doi.org/10.1137/1.9781611974782.69


21:14 On the Fine-Grained Complexity of One-Dimensional Dynamic Programming

10 Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for string
problems and Dynamic Time Warping. In Proc. 56th Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS’15), pages 79–97, 2015.

11 Marco L. Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin, Ramamohan Pa-
turi, and Stefan Schneider. Nondeterministic extensions of the Strong Exponential
Time Hypothesis and consequences for non-reducibility. In Proc. 7th ACM Confer-
ence on Innovations in Theoretical Computer Science (ITCS’16), pages 261–270, 2016.
doi:10.1145/2840728.2840746.

12 Timothy M. Chan and Moshe Lewenstein. Clustered integer 3SUM via additive combina-
torics. In Proc. 47th Annual ACM Symposium on Theory of Computing, (STOC’15), pages
31–40, 2015. doi:10.1145/2746539.2746568.

13 Marek Cygan, Marcin Mucha, Karol Wegrzycki, and Michal Wlodarczyk. On problems
equivalent to (min,+)-convolution. ArXiv e-prints, February 2017. arXiv:1702.07669.

14 Mark de Berg, Kevin Buchin, Bart M. P. Jansen, and Gerhard J. Woeginger. Fine-grained
complexity analysis of two classic TSP variants. In Proc. 43rd International Colloquium
on Automata, Languages, and Programming (ICALP’16), pages 5:1–5:14, 2016. doi:10.
4230/LIPIcs.ICALP.2016.5.

15 David Eppstein. Sequence comparison with mixed convex and concave costs. J. Algorithms,
11(1):85–101, 1990. doi:10.1016/0196-6774(90)90031-9.

16 David A. Eppstein. Efficient algorithms for sequence analysis with concave and convex gap
costs. PhD thesis, Columbia University, 1989.

17 Michael L. Fredman. On computing the length of longest increasing subsequences. Discrete
Mathematics, 11(1):29–35, 1975. doi:10.1016/0012-365X(75)90103-X.

18 Anka Gajentaan and Mark H Overmars. On a class of O(n2) problems in computational
geometry. Computational geometry, 5(3):165–185, 1995.

19 Zvi Galil and Raffaele Giancarlo. Speeding up dynamic programming with applications
to molecular biology. Theoretical Computer Science, 64(1):107–118, 1989. doi:10.1016/
0304-3975(89)90101-1.

20 Zvi Galil and Kunsoo Park. A linear-time algorithm for concave one-dimensional dynamic
programming. Inf. Process. Lett., 33(6):309–311, 1990. doi:10.1016/0020-0190(90)
90215-J.

21 Zvi Galil and Kunsoo Park. Parallel algorithms for dynamic programming recurrences
with more than O(1) dependency. J. Parallel Distrib. Comput., 21(2):213–222, 1994. doi:
10.1006/jpdc.1994.1053.

22 Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova, and Ryan Williams. Completeness
for first-order properties on sparse structures with algorithmic applications. In Proc. 28th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’17), pages 2162–2181, 2017.
doi:10.1137/1.9781611974782.141.

23 Allan Grønlund, Kasper Green Larsen, Alexander Mathiasen, Jesper Sindahl Nielsen, Ste-
fan Schneider, and Mingzhou Song. Fast Exact k-Means, k-Medians and Bregman Diver-
gence Clustering in 1D. ArXiv e-prints, January 2017. arXiv:1701.07204.

24 Daniel S. Hirschberg and Lawrence L. Larmore. The least weight subsequence problem.
SIAM Journal on Computing, 16(4):628–638, 1987. doi:10.1137/0216043.

25 Russell Impagliazzo, Shachar Lovett, Ramamohan Paturi, and Stefan Schneider. 0-1 Integer
Linear Programming with a linear number of constraints. ArXiv e-prints, January 2014.
arXiv:1401.5512.

26 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367–375, 2001.

27 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.

http://dx.doi.org/10.1145/2840728.2840746
http://dx.doi.org/10.1145/2746539.2746568
http://arxiv.org/abs/1702.07669
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.5
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.5
http://dx.doi.org/10.1016/0196-6774(90)90031-9
http://dx.doi.org/10.1016/0012-365X(75)90103-X
http://dx.doi.org/10.1016/0304-3975(89)90101-1
http://dx.doi.org/10.1016/0304-3975(89)90101-1
http://dx.doi.org/10.1016/0020-0190(90)90215-J
http://dx.doi.org/10.1016/0020-0190(90)90215-J
http://dx.doi.org/10.1006/jpdc.1994.1053
http://dx.doi.org/10.1006/jpdc.1994.1053
http://dx.doi.org/10.1137/1.9781611974782.141
http://arxiv.org/abs/1701.07204
http://dx.doi.org/10.1137/0216043
http://arxiv.org/abs/1401.5512


M. Künnemann, R. Paturi, and S. Schneider 21:15

28 Alon Itai, Christos H Papadimitriou, and Jayme Luiz Szwarcfiter. Hamilton paths in grid
graphs. SIAM Journal on Computing, 11(4):676–686, 1982.

29 Maria M. Klawe and Daniel J. Kleitman. An almost linear time algorithm for generalized
matrix searching. SIAM J. Discrete Math., 3(1):81–97, 1990. doi:10.1137/0403009.

30 Donald E. Knuth and Michael F. Plass. Breaking paragraphs into lines. Softw., Pract.
Exper., 11(11):1119–1184, 1981. doi:10.1002/spe.4380111102.

31 Marvin Künnemann, Ramamohan Paturi, and Stefan Schneider. On the Fine-grained
Complexity of One-Dimensional Dynamic Programming. ArXiv e-prints, March 2017.
arXiv:1703.00941.

32 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the Expo-
nential Time Hypothesis. Bulletin of the EATCS, 105:41–72, 2011.

33 William J. Masek and Mike Paterson. A faster algorithm computing string edit dis-
tances. Journal of Computer and System Sciences, 20(1):18–31, 1980. doi:10.1016/
0022-0000(80)90002-1.

34 Jiří Matoušek. Efficient partition trees. Discrete & Computational Geometry, 8(1):315–334,
1992.

35 Webb Miller and Eugene W. Myers. Sequence comparison with concave weighting functions.
Bulletin of Mathematical Biology, 50(2):97–120, 1988. doi:10.1007/BF02459948.

36 David Pisinger. Dynamic programming on the word RAM. Algorithmica, 35(2):128–145,
2003. doi:10.1007/s00453-002-0989-y.

37 Virginia Vassilevska Williams. Hardness of easy problems: Basing hardness on popular
conjectures such as the Strong Exponential Time Hypothesis (invited talk). In Proc. 10th
International Symposium on Parameterized and Exact Computation (IPEC’15), pages 17–
29, 2015. doi:10.4230/LIPIcs.IPEC.2015.17.

38 Robert E. Wilber. The concave least-weight subsequence problem revisited. J. Algorithms,
9(3):418–425, 1988. doi:10.1016/0196-6774(88)90032-6.

39 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theoretical Computer Science, 348(2):357–365, 2005.

40 Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences between path,
matrix and triangle problems. In Proc. 51st Annual IEEE Symposium on Foundations of
Computer Science (FOCS’10), pages 645–654, 2010. doi:10.1109/FOCS.2010.67.

41 F. Frances Yao. Efficient dynamic programming using quadrangle inequalities. In Proc.
12th Annual ACM Symposium on Theory of Computing (STOC’80), pages 429–435, 1980.
doi:10.1145/800141.804691.

ICALP 2017

http://dx.doi.org/10.1137/0403009
http://dx.doi.org/10.1002/spe.4380111102
http://arxiv.org/abs/1703.00941
http://dx.doi.org/10.1016/0022-0000(80)90002-1
http://dx.doi.org/10.1016/0022-0000(80)90002-1
http://dx.doi.org/10.1007/BF02459948
http://dx.doi.org/10.1007/s00453-002-0989-y
http://dx.doi.org/10.4230/LIPIcs.IPEC.2015.17
http://dx.doi.org/10.1016/0196-6774(88)90032-6
http://dx.doi.org/10.1109/FOCS.2010.67
http://dx.doi.org/10.1145/800141.804691

	Introduction
	Preliminaries
	Static LWS
	LowRankLWS
	Coin Change and Knapsack Problems
	Chain LWS
	Open Problems

