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—— Abstract

In this paper we describe an algorithm that embeds a graph metric (V,dg) on an undirected
weighted graph G = (V, E) into a distribution of tree metrics (T, D) such that for every pair
u,v € V, dg(u,v) < dr(u,v) and Ep[dr(u,v)] < O(logn) - dg(u,v). Such embeddings have
proved highly useful in designing fast approximation algorithms, as many hard problems on
graphs are easy to solve on tree instances. For a graph with n vertices and m edges, our algorithm
runs in O(mlogn) time with high probability, which improves the previous upper bound of
O(mlog®n) shown by Mendel et al.in 2009.

The key component of our algorithm is a new approximate single-source shortest-path al-
gorithm, which implements the priority queue with a new data structure, the bucket-tree struc-
ture. The algorithm has three properties: it only requires linear time in the number of edges in
the input graph; the computed distances have a distance preserving property; and when comput-
ing the shortest-paths to the k-nearest vertices from the source, it only requires to visit these
vertices and their edge lists. These properties are essential to guarantee the correctness and the
stated time bound.

Using this shortest-path algorithm, we show how to generate an intermediate structure, the
approximate dominance sequences of the input graph, in O(mlogn) time, and further propose a
simple yet efficient algorithm to converted this sequence to a tree embedding in O(nlogn) time,
both with high probability. Combining the three subroutines gives the stated time bound of the
algorithm.

We also show a new application of probabilistic tree embeddings: they can be used to accel-
erate the construction of a series of approximate distance oracles.
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Efficient Construction of Probabilistic Tree Embeddings

1 Introduction

The idea of probabilistic tree embeddings [4] is to embed a finite metric into a distribution
of tree metrics with a minimum expected distance distortion. A distribution D of trees of a
metric space (X, dx) should minimize the expected stretch ¢ so that:

1. dominating property: for each tree T € D, dx (z,y) < dr(z,y) for every x,y € X, and
2. expected stretch bound: Erpldr(z,y)] <o - dx(x,y) for every z,y € X,

where dr(-,-) is the tree metric, and Er.p draws a tree T from the distribution D. After a
sequence of results [2, 3, 4], Fakcharoenphol, Rao and Talwar [17] eventually proposed an
elegant and asymptotically optimal algorithm (FRT-embedding) with ¢» = O(logn).

Probabilistic tree embeddings facilitate many applications. They lead to practical al-
gorithms to solve a number of problems with good approximation bounds, for example, the
k-median problem, buy-at-bulk network design [8], and network congestion minimization [30].
A number of network algorithms use tree embeddings as key components, and such applica-
tions include generalized Steiner forest problem, the minimum routing cost spanning tree
problem, and the k-source shortest paths problem [22]. Also, tree embeddings are used in
solving symmetric diagonally dominant (SDD) linear systems. Classic solutions use spanning
trees as the preconditioner, but recent work by Cohen et al. [14] describes a new approach to
use trees with Steiner nodes (e.g. FRT trees).

In this paper we discuss yet another remarkable application of probabilistic tree embed-
dings: constructing of approximate distance oracles (ADOs)—a data structure with compact
storage (o(n?)) which can approximately and efficiently answer pairwise distance queries on
a metric space. We show that FRT trees can be used to accelerate the construction of some
ADOs [24, 34, 10].

Motivated by these applications, efficient algorithms to construct tree embeddings are
essential, and there are several results on the topic in recent years [12, 22, 8, 25, 21, 19, 6].
Some of these algorithms are based on different parallel settings, e.g. share-memory setting [8,
19, 6] or distributed setting [22, 21]. As with this paper, most of these algorithms [12, 22,
25, 21, 6] focus on graph metrics, which most of the applications discussed above are based
on. In the sequential setting, i.e. on a RAM model, to the best of our knowledge, the
most efficient algorithm to construct optimal FRT-embeddings was proposed by Mendel
and Schwob [25]. It constructs FRT-embeddings in O(mlog®n) expected time given an
undirected positively weighted graph with n vertices and m edges. This algorithm, as well
as the original construction in the FRT paper [17], works hierarchically by generating each
level of a tree top-down. However, such a method can be expensive in time and/or coding
complexity. The reason is that the diameter of the graph can be arbitrarily large and the
FRT trees may contain many levels, which requires complicated techniques, such as building
sub-trees based on quotient graphs.

Our results. The main contribution of this paper is an efficient construction of the FRT-
embeddings. Given an undirected positively weighted graph G = (V, E) with n vertices
and m edges, our algorithm builds an optimal tree embedding in O(mlogn) time. In our
algorithm, instead of generating partitions by level, we adopt an alternative view of the FRT
algorithm in [22, 8], which computes the potential ancestors for each vertex using dominance
sequences of a graph (first proposed in [12], and named as least-element lists in [12, 22]).
The original algorithm to compute the dominance sequences requires O(m logn + nlog? n)
time [12]. We then discuss a new yet simple algorithm to convert the dominance sequences
to an FRT tree only using O(nlogn) time. A similar approach was taken by Khan et al. [22]
but their output is an implicit representation (instead of an tree) and under the distributed
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setting and it is not work-efficient without using the observations and tree representations
introduced by Blelloch et al. in [8].!

Based on the algorithm to efficiently convert the dominance sequences to FRT trees, the
time complexity of FRT-embedding construction is bottlenecked by the construction of the
dominance sequences. Our efficient approach contains two subroutines:

An efficient (approximate) single-source shortest-path algorithm, introduced in Section 3.

The algorithm has three properties: linear complexity, distance preservation, and the
ordering property (full definitions given in Section 3). All three properties are required for
the correctness and efficiency of constructing FRT-embedding. Our algorithm is a variant
of Dijkstra’s algorithm with the priority queue implemented by a new data structure
called bucket-tree structure.

An algorithm to integrate the shortest-path distances into the construction of FRT trees,

discussed in Section 4. When the diameter of the graph is n®), we show that an FRT tree

can be built directly using the approximate distances computed by shortest-path algorithm.

The challenge is when the graph diameter is large, and we proposed an algorithm

that computes the approximate dominance sequences of a graph by concatenating the

distances that only use the edges within a relative range of n®1). Then we show why the
approximate dominance sequences still yield valid FRT trees.
With these new algorithmic subroutines, we show that the time complexity of computing
FRT-embedding can be reduced to O(mlogn) w.h.p. for an undirected positively weighted
graph with arbitrary edge weight.

In addition to the efficient construction of FRT trees, this paper also discuss a new
application. We show that FRT trees are intrinsically Ramsey partitions (definition given in
Section 5) with asymptotically tight bound, and can achieve even better (constant) bounds
on distance approximation. Previous construction algorithms of optimal Ramsey partitions
are based on hierarchical CKR partitions, namely, on each level, the partition is individually
generated with an independent random radius and new random priorities. In this paper, we
present a new proof to show that the randomness in each level is actually unnecessary, so
that only one single random permutation is enough and the ratio of radii in consecutive levels
can be fixed as 2. Our FRT-tree construction algorithm therefore can be directly applied to
a number of different distance oracles that are based on Ramsey partitions and accelerates
the construction of these distance oracles.

2 Preliminaries and Notations

Let G = (V, E) be a weighted graph with edge lengths [ : E — R, and d(u,v) denote the
shortest-path distance in G between nodes u and v. Throughout this paper, we assume that
mingz, d(z,y) = 1. Let A = % = max, , d(z,y), the diameter of the graph G.

In this paper, we use the single source shortest paths problem (SSSP) as a subroutine for
a number of algorithms. Consider a weighted graph with n vertices and m edges, Dijkstra’s
algorithm [15] solves the SSSP in O(m + nlogn) time if the priority queue of distances is
maintained using a Fibonacci heap [18].

A premetric (X, dx) defines on a set X and provides a function d : X x X — R satisfying
d(z,x) = 0 and d(z,y) > 0 for z,y € X. A metric (X,dx) further requires d(z,y) = 0
iff x = y, symmetry d(z,y) = d(y,z), triangle inequality d(z,y) < d(z,z) + d(z,y) for

1" A simultaneous work by Friedrichs et al. proposed an O(n log3 n) algorithm of this conversion (Lemma
7.2 in [19)).
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x,Yy,z € X. The shortest-path distances on a graph is a metric and is called the graph metric
and denoted as dg.

We assume all intermediate results of our algorithm have word size O(logn) and basic
algorithmic operations can be finished within a constant time. Then within the range of
[1,n¥], the integer part of natural logarithm of an integer and floor function of an real number
can be computed in constant time for any constant k. This can be achieved using standard
table-lookup techniques (similar approaches can be found in Thorup’s algorithm [32]). The
time complexity of the algorithms are measured using the random-access machine (RAM)
model.

A result holds with high probability (w.h.p.) for an input of size n if it holds with
probability at least 1 —n~¢ for any constant ¢ > 0, over all possible random choices made by
the algorithm.

Let [n] = {1,2,--- ,n} where n is a positive integer.

We recall a useful fact about random permutations [31]:

» Lemma 1. Let 7 : [n] — [n] be a permutation selected uniformly at random on [n]. The set
{i|i€[n],n(i) =min{n(j) |j=1,---,i}} contains O(logn) elements both in expectation
and with high probability.

3 An Approximate SSSP Algorithm

In this section we introduce a variant of Dijkstra’s algorithm. This is an efficient algorithm
for single-source shortest paths (SSSP) with linear time complexity O(m). The computed
distances are a-distance preserving:

» Definition 2 (a-distance preserving). For a weighted graph G = (V, E), the single-source
distances d(v) for v € V from the source node s is a-distance preserving, if there exists a
constant 0 < a < 1 such that adg(s,u) < d(u) < dg(s,u), and d(v) — d(u) < dg(u,v), for
every u,v € V.

a-distance preserving can be viewed as the triangle inequality on single-source distances (i.e.
d(u)+dg(u,v) > d(v) for u,v € V), and is required in many applications related to distances.
For example, in Corollary 4 we show that using Gabow’s scaling algorithm [20] we can
compute a (1+ ¢)-approximate SSSP using O(m loge~!) time. Also in many metric problems
including the contruction of optimal tree embeddings, distance preservation is necessary in
the proof of the expected stretch, and such an example is Lemma 11 in Section 4.3.

The preliminary version we discussed in Section 3.1 limits edge weights in [1,n*] for a
constant k, but with some further analysis in the full version of this paper we can extend
the range to [1,n°(™)]
construction of FRT trees, while no previous algorithms achieve them all:

. This new algorithm also has two properties that are needed in the

1. (a-distance preserving) The computed distances from the source d(-) is a-distance pre-
serving.

2. (Ordering property and linear complexity) The vertices are visited in order of distance
d(-), and the time to compute the first & distances is bounded by O(m’) where m/ is the
sum of degrees from these k vertices.

The algorithm also works on directed graphs, although this is not used in the FRT
construction.

Approximate SSSP algorithms are well-studied [32, 23, 13, 29, 26]. In the sequential
setting, Thorup’s algorithm [32] compute single-source distances on undirected graphs with
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integer weights using O(n + m) time. Nevertheless, Thorup’s algorithm does not obey the
ordering property since it uses a hierarchical bucketing structure and does not visit vertices

in an order of increasing distances, and yet we are unaware of a simple argument to fix this.

Other algorithms are either not work-efficient (i.e. super-linear complexity) in sequential
setting, and / or violating distance preservation.

» Theorem 3. For a weighted directed graph G = (V, E) with edge weights between 1 and
nPW | q (1/4)-distance preserving single-source shortest-path distances d(-) can be computed,
such that the distance to the k-nearest vertices vy to vy by d(-)requires O(Zle degree(v;))
time.

The algorithm also has the two following properties. Since they are not used in the
construction of FRT trees, we review them in the full version of this paper. We discuss how
to (1) extend the range of edge weights to n®(™) and the cost to compute the k-nearest
vertices is O(log,, d(v) + Zle degree(v;)) where vy to vy are the k nearest vertices; and (2)
compute (1 + €)-distance-preserving shortest-paths for an arbitrary € > 0:

» Corollary 4. (1 + ¢)-distance-preserving shortest-paths for all vertices can be computed by
repeatedly using Theorem 3 O(loge™1) times.

3.1 Algorithm Details

The key data structure in this algorithm is a bucket-tree structure shown in Figure 1 that
implements the priority queue in Dijkstra’s algorithm. With the bucket-tree structure, each
DECREASE-KEY or EXTRACT-MIN operation takes constant time. Given the edge range
in [1,n*], this structure has [ = [(1 + k) log, n] levels, each level containing a number of
buckets corresponding to the distances to the source node. In the lowest level (level 1) the
difference between two adjacent buckets is 2.

At anytime only one of the buckets in each level can be non-empty: there are in total
[ active buckets to hold vertices, one in each level. The active bucket in each level is the
left-most bucket whose distance is larger than that of the current vertex being visited in
our algorithm. We call these active buckets the frontier of the current distance, and they
can be computed by the path string, which is a 0/1 bit string corresponding to the path
from the current location to higher levels (until the root), and 0 or 1 is decided by whether
the node is the left or the right child of its parent. For clarity, we call the buckets on the
frontier frontier buckets, and the ancestors of the current bucket ancestor buckets (can
be traced using the path string). For example, as the figure shows, if the current distance is
4, then the available buckets in the first several levels are the buckets corresponding to the
distances 6, 5,11, 7, and so on. The ancestor bucket and the frontier bucket in the same level
may or may not be the same, depending on whether the current bucket is the left or right
subtree of this bucket. For example, the path string for the current bucket with label 4 is
0100 and so on, and ancestor buckets correspond to 4,5,3,7 and so on. It is easy to see that
given the current distance, the path string, the ancestor buckets, and the frontier buckets
can be computed in O(l) time—constant time per level.

Note that since only one bucket in each level is non-empty, the whole structure need
not to be build explicitly: we store one linked list for each level to represent the only active
bucket in the memory (I lists in total), and use the current distance and path string to
retrieve the location of the current bucket in the structure.

With the bucket-tree structure acting as the priority queue, we can run standard Dijkstra’s
algorithm. The only difference is that, to achieve linear cost for an SSSP query, the operations
of DECREASE-KEY and EXTRACT-MIN need to be redefined on the bucket-tree structure.

26:5
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Figure 1 An illustration of a bucket-tree structure with the lowest 4 levels, and the current
visiting bucket has distance 4. Notice that our algorithm does not insert vertices to the same level
as the current bucket (i.e. bucket 6).

Once the relaxation of an edge succeeds, a DECREASE-KEY operation for the corresponding
vertex will be applied. In the bucket-tree structure it is implemented by a DELETE (if the
vertex is added before) followed by an INSERT on two frontier buckets respectively. The
deletion is trivial with a constant cost, since we can maintain the pointer from each vertex
to its current location in the bucket tree. We mainly discuss how to insert a new tentative
distance into the bucket tree. When vertex u successfully relaxes vertex v with an edge e, we
first round down the edge weight w, by computing r = |logs (we + 1)|. Then we find the
appropriate frontier bucket B that the difference of the distances w!, between this bucket
B and the current bucket is the closest to (but no more than) w, = 2" — 1, and insert the
relaxed vertex into this bucket. The constant approximation for this insertion operation
holds due to the following lemma:

» Lemma 5. For an edge with length we., the approzimated length w,, which is the distance
between the inserted bucket B and the current bucket, satisfies the following inequality:
we /4 < w!, < w,.

Proof. After the rounding, w, = 2" — 1 = 2ll°82 (we+1J _ 1 fa]ls into the range of [w,/2, w.].
We now show that there always exists such a bucket B on the frontier that the approximated
length w! is in [w;/2,w,].

We use Algorithm 1 to select the appropriate bucket for a certain edge, given the current
bucket level and the path string. The first case is when b, the current level, is larger than r. In
this case all the frontier buckets on the bottom r levels form a left spine of the corresponding
subtree rooted by the right child of the current bucket, so picking bucket in the r-th level
leads to w/, = 2”1, and therefore w,/4 < w), < w, holds. The second case is when b < r,
and the selected bucket is decided based on the structure on the ancestor buckets from the
(r 4 1)-th level to (r — 1)-th level, which is one of the three following cases.

The simplest case (b < r, line 9) is when the ancestor bucket in the (r — 1)-th level is the

right child of the bucket in the r-th level. In this case when we pick the bucket in level

r since the distance between two consecutive buckets in level r is 27, and the distance

from the current bucket to the ancestor bucket in r-th level is at most Z:;ll 2i-1 < or=1,

The distance thus between the current bucket and the frontier bucket in level r is

wh>2r =217l =271 >, /4.

The second case is when either b = r and the current bucket is the left child (line 5), or

b < r and the ancestor bucket in level » — 1 is on the left spine of the subtree rooted at

the ancestor bucket in level r 4+ 1 (line 11). Similar to the first case, picking the frontier
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Algorithm 1: Finding the appropriate bucket

Input: Current bucket level b, rounded edge length 2" — 1 and path string.
Output: The bucket in the frontier (the level is returned).

Let v’ be the lowest ancestor bucket above level r that is a left child
if b > r then
return r

else if b = r then
if current bucket is left child then return r + 1
else return ' + 1
else
switch the branches from (r 4+ 1)-th level to (r — 1)-th level in the path string do
case left-then-right or right-then-right do

‘ return r
case left-then-left do

‘ return r + 1
case right-then-left do

‘ return v’ + 1

© 0 N O oA W N

I S O T
A W N = O

bucket in the (r 4 1)-th level (which is also an ancestor bucket) skips the right subtree of
the bucket in r-th level, which contains 2"~ — 1 > w, /4 nodes.
The last case is the same as the second case expect that the level-r ancestor bucket is the
right child of level-(r + 1) ancestor bucket. In this case we will pick the frontier bucket
that has distance 2”1 to the ancestor bucket in level r, which is the parent of the lowest
ancestor bucket that is a left child and above level r. In this case the approximated edge
distance is between 2"~ and 2" — 1.

Combining all these cases proves the lemma. |

We now explain ehe EXTRACT-MIN operation on the bucket tree. We will visit vertex
in the current buckets one by one, so each EXTRACT-MIN has a constant cost. Once the
traversal is finished, we need to find the next closest non-empty frontier.

» Lemma 6. EXTRACT-MIN and DECREASE-KEY on the bucket tree require O(1) time.

Proof. We have shown that the modification on the linked list for each operation requires
O(1) time. A naive implementation to find the bucket in DECREASE-KEY and EXTRACT-MIN
takes O(l) = O(logn) time, by checking all possible frontier buckets. We can accelerate
this look-up using the standard table-lookup technique. The available combinations of the
input of DECREASE-KEY are n**+1 (total available current distance) by I = O(klogn) (total
available edge distance after rounding), and the input combinations of EXTRACT-MIN are two
[log, nF+1] bit strings corresponding to the path to the root and the emptiness of the buckets
on the frontier. We therefor partition the bucket tree into several parts, each containing
[(1 —€¢)(logyn)/2| consecutive levels (for any 0 < ¢ < 1). We now precompute the answer
for all possible combinations of path strings and edge lengths, and (1) the sizes of look-up
tables for both operations to be O((2L(1=<)(og21)/21)2) — (p)  (2) the cost for brute-force
preprocessing to be O((210=¢)00821)/2121651) = o(n), and (3) the time of either operation
of DECREASE-KEY and EXTRACT-MIN to be O(k), since each operation requires to look up
at most /| (1 —€')(logyn)/2| = O(k) tables. Since k is a constant, each of the two operations
as well takes constant time. The update of path string can be computed similarly using this
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table-lookup approach. As a result, with o(n) preprocessing time, finding the associated
bucket for DECREASE-KEY or EXTRACT-MIN operation uses O(1) time. |

We now show the three properties of the new algorithm: linear complexity, triangle
inequality, and the ordering property.

Proof of Theorem 3. Here we show the algorithm satisfies the properties in Theorem 3.
Lemma 6 proves the linear cost of the algorithm. Lemma 5 shows that the final distances is
a-distance preserving. Lastly, since this algorithm is actually a variant of Dijkstra’s algorithm
with the priority implemented by the bucket-tree structure, the ordering property is met,
although here the k-nearest vertices are based on the approximate distances instead of real
distances. <

In the full version we discuss how to extend the range of edge weight to [1,n9(™)].

4 The Dominance Sequence

In this section we review and introduce the notion of dominance sequences for each point
of a metric space and describe the algorithm for constructing them on a graph. The basic
idea of dominance sequences was previously introduced in [12] and [8]. Here we name the
structure as the dominance sequence since the “dominance” property introduced below is
crucial and related to FRT construction. In the next section we show how they can easily be
converted into an FRT tree.

4.1 Definition

» Definition 7 (Dominance). Given a premetric (X, dx) and a permutation m, for two points
z,y € X, x dominates y if and only if

7(z) = min{r(w) | w € X,dx(w,y) < dx(z,y)}.

Namely,  dominates y iff a’s priority is greater (position in the permutation is earlier)
than any point that is closer to .

The dominance sequence for a point x € X, is the sequence of all points that dominate x
sorted by distance. More formally:

» Definition 8 (Dominance Sequence?). For each x € X in a premetric (X, dx ), the dominance
sequence of a point x with respect to a permutation 7 : X — [n] (denoted as ng)), is the
sequence (p;)¥_; such that 1 = 7(p1) < 7(p2) < --- < 7(p) = m(z), and p; is in ) iff p,
dominates x.

We use x, to refer to all dominance sequences for a premetric under permutation 7. It is
not hard to bound the size of the dominance sequence:

» Lemma 9 ([13]). Given a premetric (X,dx) and a random permutation m, for each vertex
xz € X, with w.h.p.

®

= O(logn)

2 Also called as “least-element list” in [12]. We rename it since in later sections we also consider many
other variants of it based on the dominance property.
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Algorithm 2: Efficient FRT tree construction

1 Pick a uniformly random permutation 7 : V' — [n].

2 Compute the dominance sequences X .

Pick 8 € [1,2] with the probability density function fp(z) =1/(x1n2).

4 Convert the dominance sequence xr to the compressed partition sequence o g.
5 Generate the FRT tree based on o g.

w

and hence overall, with w.h.p.

el = 3

zeX

= O(nlogn)

Since the proof is fairly straight-forward, for completeness we also provide it in the full
version of this paper.

Now consider a graph metric (V,dg) defined by an undirected positively weighted graph
G = (V,E) with n vertices and m edges, and dg(u,v) is the shortest distance between
u and v on G. The dominance sequences of this graph metric can be constructed using
O(mlogn + nlog?n) time w.h.p. [12]. This algorithm is based on Dijkstra’s algorithm.

4.2 Efficient FRT tree construction based on the dominance sequences

We now consider the construction of FRT trees based on a pre-computed dominance sequences
of a given metric space (X, dx ). We assume the weights are normalized so that 1 < dx (z,y) <
A =29 for all  # y, where § is a positive integer.

The FRT algorithm [17] generates a top-down recursive low-diameter decomposition
(LDD) of the metric, which preserves the distances up to O(logn) in expectation. It first
chooses a random 3 between 1 and 2, and generates 1+log, A levels of partitions of the graph
with radii {8A,B8A/2,8A/4,---}. This procedure produces a laminar family of clusters,
which are connected based on set-inclusion to generate the FRT tree. The weight of each
tree edge on level 4 is BA /2%

Instead of computing these partitions directly, we adopt the idea of a point-centric view
proposed in [8]. We use the intermediate data structure “dominance sequences” as introduced
in Section 4.1 to store the useful information for each point. Then, an FRT tree can be
retrieved from this sequence with very low cost:

» Lemma 10. Given 8 and the dominance sequences X of a metric space with associated
distances to all elements, an FRT tree can be constructed using O(nlogn) time w.h.p.

The difficulty in this process is that, since the FRT tree has O(log A) levels and A can be
large (i.e. A > 20(")), an explicit representation of the FRT tree can be very costly. Instead
we generate the compressed version with nodes of degree two removed and their incident
edge weights summed into a new edge. The algorithm is outlined in Algorithm 2.

Proof. We use the definition of partition sequence and compressed partition sequence from [8].

Given a permutation 7 and a parameter 3, the partition sequence of a point x € X, denoted

by O’,f:g, is the sequence o@) (1) = min{r(y) |y € X,d(z,y) < - 25_i} fori=20,...,9, ie.

7‘-7

point y has the highest priority among vertices up to level i. We note that a trie (radix
tree) built on the partition sequence is the FRT tree, but as mentioned we cannot build

this explicitly. The compressed partition sequence, denoted as 65:%, replaces consecutive

26:9
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Dominance sequence:

*® =(1,2468)
1014 16 1512 7 11 313
>’ }‘——éﬁﬁ(—)%’ >—' Partition sequence:
o) =(11,668)
Radius: 168 = BA

Level: 4 3 2 1 0 Compressed partition sequence:
530 =((1,0),(62),(84))

Figure 2 An illustration for dominance sequence, partition sequence and compressed partition
sequence for vertex 8. Here we assume that the label of each vertex corresponds to its priority. The
left part shows the distances of all vertices to vertex 8 in log-scale, and the red vertices dominate
vertex 8.

equal points in the partition sequence O'( 2) by the pair (p;,1;) where p; is the vertex and [; is
the highest level p; dominates x in the FRT tree. Figure 2 gives an example of a partition
sequence, a compressed partition sequence, and their relationship to the dominance sequence.

To convert the dominance sequences X, to the compressed partition sequences 7, 3 note

that for each point z the points in 6(% are a subsequence of XST””) Therefore, for 67(:023, we

only keep the highest priority vertex in each level from Xw ) and tag it with the appropriate
level. Since there are only O(logn) vertices in X( 2)
O(logn) w.h.p., and hence the overall construction time is O(nlogn) w.h.p.

w.h.p., the time to generate & 7(:5/)3 is

The compressed FRT tree can be easily generated from the compressed partition sequences
7. Blelloch et. al. [8] describe a parallel algorithm that runs in O(n?) time (sufficient for
their purposes) and polylogarithmic depth. Here we describe a similar version to generate
the FRT tree sequentially in O(nlogn) time w.h.p. The idea is to maintain the FRT as
a patricia trie [27] (compressed trie) and insert the compressed partition sequences one at
a time. Each insertion just needs to follow the path down the tree until it diverges, and
then either split an edge and create a new node, or create a new child for an existing node.
Note that a hash table is required to trace the tree nodes since the trie has a non-constant
alphabet. Each insertion takes time at most the sum of the depth of the tree and the length
of the sequence, giving the stated bounds. <

We note that for the same permutation 7 and radius parameter (3, it generates exactly
the same tree as the original algorithm in [17].

4.3 Expected Stretch Bound

In Section 4.2 we discussed the algorithm to convert the dominance sequences to a FRT tree.
When the dominance sequences is generated from a graph metric (G, dg), the expected stretch
is O(logn), which is optimal, and the proof is given in many previous papers [17, 8]. Here
we show that any distance function de in Lemma 11 is sufficient to preserve this expected
stretch. As a result, we can use the approximate shortest-paths computed in Section 3 to
generate the dominance sequences and further convert to optimal tree embeddings.

» Lemma 11. Given a graph metric (G,dg) and a distance function dg(u,v) such that for
w,v,w eV, |da(u,v) —dg(u,w)| < 1/a-dg(v,w) and dg(u,v) < dg(u,v) < 1/a - dg(u,v)
for some constant 0 < o < 1, then the dominance sequences based on (G,czc;) can still yield
optimal tree embeddings.
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Proof Outline. Since the overestimate distances hold the dominating property of the tree
embeddings, we show the expected stretch is also not affected. We now show the expected
stretch is also held.

Recall the proof of the expected stretch by Blelloch et al. in [8] (Lemma 3.4). By replacing
dg by dg, the rest of the proof remains unchanged except for Claim 3.5, which upper bounds
the expected cost of a common ancestor w of u,v € V in v and v’s dominance sequences. The
original claim indicates that the probability that v and v diverges in a certain level centered
at vertex w is O(|dg(w,u) — dg(w,v)|/de(u, w)) = O(dg(u,v)/dc(u,w)) and the penalty is
O(dg(u,w)), and therefore the contribution of the expected stretch caused by w is the product
of the two, which is O(dg(u,v)) (since there are at most O(logn) of such w (Lemma 9), the
expected stretch is thus O(logn)). With the distance function dg and « as a constant, the
probability now becomes O(|dg(w,u) — dg(w,v)|/da(u, w)) = O(dg(u,v)/da(u, w)), and
the penalty is O(dg(u, w)) = O(dg(u, w)). As a result, the expected stretch asymptotically
remains unchanged. <

4.4 Efficient construction of approximate dominance sequences

Assume that Jg(u,v) is computed as d,(v) by the shortest-path algorithm in Section 3
from the source node u. Notice that d,(v) does not necessarily to be the same as d,(u), so
(G, dg(u,v)) is not a metric space. Since the computed distances are distance preserving, it
is easy to check that Lemma 11 is satisfied, which indicate that we can generate optimal tree
embeddings based on the distances. This leads to the main theorem of this paper.

» Theorem 12 (Efficient optimal tree embeddings). There is a randomized algorithm that
takes an undirected positively weighted graph G = (V, E) containing n = |V| vertices and
m = |E| edges, and produces an tree embedding such that for all u,v € V, dg(u,v) < dr(u,v)
and E[dr(u,v)] < O(logn) - dg(u,v). The algorithm w.h.p. runs in O(mlogn) time.

The algorithm computes approximate dominance sequences X, by the approximate SSSP
algorithm introduced in Section 3. Then we apply Lemma 10 to convert y, to an tree
embedding. Notice that this tree embedding is an FRT-embedding based on (fg. We still call
this an FRT-embedding since the overall framework to generate hierarchical tree structure is
similar to that in the original paper [17].

The advantage of our new SSSP algorithm is that the DECREASE-KEY and EXTRACT-
MIN operation only takes constant time when the relative edge range (maximum divided by
minimum) is no more than nPM | To handle arbitrary weight edges we adopt a similar idea
to [23] to solve the subproblems on specific edge ranges, and concatenate the results to form
the final output. This requires pre-processing to restrict the edge range.

The high-level idea of the algorithm is as follows. In the pre-processing, the goal is to use
O(mlogn) time to generate a list of subproblems: the i-th subproblem has edge range in the
interval [n~!, n*1] and we compute the elements in the dominance sequences with values
falling into the range from n’ to n**1. All the edge weights less than the minimum value of
this range are treated as 0. Namely, the vertices form some components in one subproblem
and the vertex distances within each component is 0.

After the subproblems are computed, we run the shortest-path algorithm on each subprob-
lem, and the i-th subproblem generates the entries in the approximate dominance sequences
in the range of [n?,n'™!). Finally, we solve an extra subproblem that only contains edges
with weight less than n to generate the elements in dominance sequences whose distances
fall in range [1,n).
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Due to page limit, the details of the algorithm, the proofs of the correctness and time
bound are given in the full version of this paper.

5 An Application of FRT-Embedding: Ramsey Partitions and
Distance Oracles

In this section we show a new application of FRT-embedding, which with our efficient
construction, accelerates the construction of some existing approximate distance oracles [34,
10]. The bridge is to show that the FRT trees are Ramsey partitions [24]. It is interesting to
point out that, the construction of FRT trees is not only much faster and simpler than the
previous best-known approach [25] to generate Ramsey partitions, but the stretch factor of
k, which is 18.5, is also smaller than the previous constants of 128 [24] and 33 [28].

We start with the definition of Ramsey partitions. Let (X, dx) be a metric space. A
hierarchical partition tree of X is a sequence of partitions {P;}72, of X such that Py = {X},
the diameter of the partitions in each level decreases by a constant ¢ > 1, and each level
Pr+1 is a refinement of the previous level P;,. A Ramsey partition [24] is a distribution of
hierarchical partition trees such that each vertex has a lower-bounded probability of being
sufficiently far from the partition boundaries in all partitions k, and this gap is called the
padded range of a vertex. More formally:

» Definition 13. An (a,7)-Ramsey partition of a metric space (X,dx) is a probability
distribution over hierarchical partition trees P of X such that for every x € X:

Pr[Vk € N, Bx (z,a- ¢ FA) C Py(a)] > |X|77.

An asymptotically tight construction of Ramsey partition where a = () is provided by
Mendel and Naor [24] using the Calinescu-Karloff-Rabani partition [9] for each level.

» Theorem 14. The probability distribution over FRT trees is an asymptotically tight Ramsey
Partition with o = Q(vy) (shown in the appendiz) with fized ¢ = 2. More precisely, for every
reX,

o

; 1
Pr [\ﬁ € N, Bx (x (1 - 2—1/%)2—%) - Pi(m)} > ZIX|”
for any positive integer a > 1.

The details of the proof are provided in the full version of this paper.

Ramsey Partitions are used in generating approximate distance oracles (ADOs), which
supports efficient approximate pairwise shortest-distance queries. ADOs are well-studied by
many researchers (e.g. [33, 5, 1, 16, 11, 24, 34, 10]), and a (P, S, Q, D)-distance oracle on a
finite metric space (X, dyx) is a data structure that takes expected time P to preprocess from
the given metric space, uses S storage space, and answers distance query between points x
and y in X in time Q satisfying dx (z,y) < do(z,y) < D -dx(x,y), where do(z,y) is the
pairwise distance provided by the distance oracle, and D is called the stretch.

» Corollary 15. With Theorem 14, we can accelerate the time to construct the Ramsey-
partitions-based Approzimate Distance Oracle in [24] to

0 (nl/k(m + nlogn)log n)

on a graph with n vertices and m edges, improving the stretch to 18.5k, while maintaining
the same storage space and constant query time.



G. E. Blelloch, Y. Gu, and Y. Sun

This can be achieved by replacing the original hierarchical partition trees in the distance
oracles by FRT trees (and some other trivial changes). The construction time can further
reduce to O(nl/ kmlog n) using the algorithm introduced in Section 4.4 while the oracle still
has a constant stretch factor. Accordingly, the complexity to construct Christian Wulff-
Nilsen’s Distance Oracles [34] and Shiri Chechik’s Distance Oracles [10] can be reduced
to

O(k:mnl/k + kn*t % logn + n'/*mlog n)

since they all use Mendel and Naor’s Distance Oracle to obtain an initial distance estimation.
The acceleration is from two places: first, the FRT tree construction is faster; second, FRT
trees provide better approximation bound, so the ¢ in the exponent becomes smaller.
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