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—— Abstract

We provide a single-key functional encryption scheme for Deterministic Finite Automata (DFA).
The secret key of our scheme is associated with a DFA M, and a ciphertext is associated with an
input x of arbitrary length. The decryptor learns M (x) and nothing else. The ciphertext and key
sizes achieved by our scheme are optimal — the size of the public parameters is independent of
the size of the machine or data being encrypted, the secret key size depends only on the machine
size and the ciphertext size depends only on the input size.

Our scheme achieves full functional encryption in the “private index model”, namely the entire
input x is hidden (as against x being public and a single bit b being hidden). Our single key FE
scheme can be compiled with symmetric key encryption as in [12] to yield reusable garbled DFAs
for arbitrary size inputs, that achieves machine and input privacy along with reusability under a
strong simulation based definition of security.

We generalize this to a functional encryption scheme for Turing machines TMFE which has
short public parameters that are independent of the size of the machine or the data being en-
crypted, short function keys, and input-specific decryption time. However, the ciphertext of our
construction is large and depends on the worst case running time of the Turing machine (but not
its description size). These provide the first FE schemes that support unbounded length inputs,
allow succinct public and function keys and rely on LWE.

Our construction relies on a new and arguably natural notion of decomposable functional
encryption which may be of independent interest.
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1 Introduction

Functional encryption permits controlled disclosure of encrypted data, enabling the evaluator
to learn some authorised function of encrypted data in the clear. In functional encryption
(FE), a secret key corresponds to a function f and ciphertexts correspond to strings from
the domain of f. Given a function SK; and a ciphertext CTy, the decryptor learns f(x) and
nothing else. Functional encryption has found diverse applications, such as spam filtering on
encrypted data [12], online dating [13], delegation of computation [16] and many others.

* A full version of the paper is available at http://www.cse.iitm.ac.in/~shwetaag/papers/dfa.pdf [1].
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The function embedded within the secret key in FE is typically represented as a circuit.
While circuits are a powerful model of computation, the circuit representation has significant
drawbacks in practical scenarios. Consider the application of spam filtering on encrypted
emails, where the email gateway may be given a key to test the incoming email for spam.
Representing the computation as a circuit forces emails to be of a fixed length — a requirement
which is ill-fitting and wasteful. Another significant drawback of the circuit model is that it
incurs worst case running time on every input.

In practice, most spam filters as well as malware and intrusion detection systems are
implemented using pattern matching operations represented as deterministic finite automata
(DFA) [19, 14, 5, 10]. Note that in all these applications, the size of the input is highly variable
and instance specific, and restricting it to be of fixed length is cumbersome. Therefore a
functional encryption scheme for DFAs which supports dynamic data length would be the
“right fit” in such situations. However, although functional encryption for circuits has been
constructed based on the hardness of Learning With Errors (LWE) in the single key setting,
it is unclear how to leverage these techniques to support the arbitrary data length required
by DFAs.

1.1 Our Results

In this work, we provide a single-key functional encryption scheme for Deterministic Finite
Automata (DFA). The secret key of our scheme is associated with a DFA M, and a ciphertext
is associated with an input x of arbitrary length. The decryptor learns M (x) and nothing
else. The ciphertext and key sizes achieved by our scheme are optimal! — the public key
size is independent of the machine and input size, the secret key size depends only on the
machine size and the ciphertext size depends only on the input size.

Our scheme achieves full functional encryption in the “private index model”, namely the
entire input x is hidden (as against x being public and a single bit b being hidden). Our
single key FE scheme can be compiled with symmetric key encryption as in [12] to yield
reusable garbled DFAs for arbitrary size inputs, that achieves machine and input privacy
along with reusability under a strong simulation based definition of security.

We generalize this to a functional encryption scheme for Turing machines TMFE which
has short public parameters that are independent of the size of the machine or the data being
encrypted, short function keys, and input-specific decryption time. However, the ciphertext
of our construction is large and depends on the worst case running time of the Turing machine
(but not its description size). These provide the first FE schemes that support unbounded
length inputs, allow succinct public and function keys and rely on LWE.

Our construction relies on a new and arguably natural notion of decomposable functional
encryption which may be of independent interest.

1.2 Related Work

Functional encryption for DFAs has received some attention already. Closest to our work is
the “Attribute Based Encryption” scheme for DFAs constructed by Waters [20]. In [20], the
encrypt algorithm takes as input a pair (x,b) where x may be of arbitrary size, and b is a
bit. The key corresponds to a DFA machine M so that given a key for M and a ciphertext
for (x,b), the decryptor learns the bit b if and only if M accepts x. Note that in contrast to

1 Up to logarithmic factors.
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our work, the vector x is not hidden by the construction, neither is the machine M; only the
bit b is hidden. On the other hand, the construction [20] can support polynomially many
keys, whereas ours can only support a single key. Attrapadung [4] extended the work of
Waters [20] to achieve adaptive rather than selective security. Another work that constructs
Attribute Based Encryption for DFAs is by Boyen and Li [7]. However, in their construction,
the input size to the DFA must be bounded in advance; avoiding this restriction is the main
motivation for our work.

There are other known functional encryption systems that support unbounded size inputs,
even supporting Turing machines, achieving input specific runtime and dynamic data length
[11, 2, 6, 15, 8, 9]. However, the mildest assumption required by this line of work is the
existence of indistinguishability obfuscation.

From standard assumptions, single key functional encryption has been constructed for
all polynomial sized circuits [18, 12]. A natural approach to construct reusable garbled
DFA/TM then, is to convert the machine to a circuit and leverage the constructions of
[18, 12]. However, instantiating this compiler with the reusable garbled circuits construction
[12] leads to a construction that cannot support dynamic data lengths, which is the main
focus of this work. On the other hand, using the construction by Sahai and Seyalioglu [18]
leads to a DFA/TM FE construction with large public key and ciphertext size, since the
construction by [18] suffers from public key and ciphertext size that depend on the circuit
size.

1.3 Our Techniques

To begin, we describe our single key FE scheme for DFA. Next, we describe how this
construction may be generalized to Turing machines.

1.3.1 Single Key FE for DFA

We briefly recall how a DFA works. A DFA machine M is represented by the tuple
(Q, %, T, qst, F) where @ is a finite set of states, X is a finite alphabet, T': ¥ x @ — @Q is the
transition function, g is the start state, F' C @ is the set of accepting states. Upon input
w € XF for some arbitrary polynomial k, the machine M accepts w if and only if there exists
a sequence of states ¢i,...,qx so that g1 = gst, T(w;,q;) = qip1 for i € [k — 1], and ¢ € F.

To mimic the DFA computation, a natural starting point is to imagine a function key
that stores the transition table of a DFA, receives as input the current (symbol, state) pair
and produces as output an encryption of the next state of the computation. In more detail,
say the encryptor provides encryptions of each input symbol z;, for ¢ € [|x|], in addition to
an encryption for the first (fixed) state gs;. Now, the function key could accept 2 inputs
(21, gst), lookup the transition table and produce an encryption of the next state ga. Suppose
this encryption can only be paired with the encryption of 2 and none other, then we could

provide (z2, ¢2) as input to the function in the next step, thus propagating the computation.

We tie together encryptions of symbol with encryptions of state via the notion of
decomposable functional encryption. Intuitively, decomposability requires that the public
key PK and the ciphertext CTy of a functional encryption scheme be decomposable into
components PK; and CT; for j € [|y|], where CT; depends on a single deterministic bit y; and
the public key component PK;. All components CT; are tied together by common randomness

used for their creation, although each CT; may use additional independent randomness.

Aside from the message dependent components, a ciphertext can contain components that are
independent of the message and depend only on the common randomness. The main advantage
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offered by decomposable functional encryption is that given the common randomness, each
ciphertext component CT; can be constructed independently of the rest. These components
can then be joined together to create a complete ciphertext which can then be decrypted
successfully. Additionally, only components that were constructed using the same randomness
can be “joined”, thereby preventing mix and match attacks where an adversary tries to treat
mismatched symbol state pairs such (3, ¢2) as a single legitimate input.

Now, suppose we have a decomposable functional encryption scheme for circuits. Then, we
may proceed with the aforementioned strategy and divide the ciphertext into two components
— the first encoding the current symbol, and the second encoding the current state. We may
use the function key to generate the second component, using the same common randomness
that was used to generate the first component.

To take this approach forward we must find a suitable decomposable functional encryption
scheme for circuits — fortunately most functional encryption schemes in the literature are
decomposable. In particular, we show that the the succinct single key FE by Goldwasser et
al. [12] is decomposable. This scheme appears suitable for our purposes as the ciphertext
and public key in this scheme are independent of circuit size.

However, note that the ciphertext of [12] suffers from output-size dependence, i.e. it grows
linearly with the output length of the circuit. This implies that the function key may not
produce an output that is proportional to the length of the ciphertext. To obtain a (single
key) construction from LWE, we resolve this issue by repurposing a classic trick from Yao’s
garbled circuit construction, so that the output length of the circuit can be made independent
of the ciphertext size, at the cost of blowing up the ciphertext size somewhat. More concretely,
instead of having the circuit output a new ciphertext, the encryptor provides symmetric key
encryptions of CktFE [12] ciphertext components, encrypting all possible bit values (nesting
CktFE ciphertext inside SKE ciphertext), and the function key outputs the SKE keys to
unlock the correct CktFE ciphertext components, corresponding to the bit values chosen by
the key. This allows us to select the next state with a circuit output length independent of
the ciphertext size. For more details, we refer the reader to Section 4. This provides input
privacy and reusability but not machine privacy. We achieve machine privacy following ideas
of [12] — please see the full version [1] for details.

1.3.2 Single key FE for Turing Machines

To extend the above construction to support Turing Machines, we must address two challenges:
a) head movements should not reveal anything about the input and b) we need to write to
the tape. Below we describe how to handle each challenge in turn.

To overcome the first challenge, a natural approach is to use oblivious TMs, which fix
the head movement of a TM to be independent of the input. Moreover, there exist efficient
transformations that convert any Turing machine M that takes time T to decide an input
to an oblivious one that takes time TlogT to decide the same input [17]. It remains to
address the challenge of handling tape writes. Since the head movements of the TM are
now fixed, the only thing that the transition function must specify is the next state, and
the symbol that must be written to the current tape cell. We leverage decomposability and
have the encryptor provide a ciphertext component encoding state, and another component
encoding current work tape symbol for every step in the computation. Indeed, this forces
our ciphertext to depend (linearly) on worst-case runtime of the Turing machine. All the
ciphertext components for a given time step are tied together with common randomness as
before. To ensure that the decryptor only learns the ciphertext components corresponding to
the particular state and tape symbol that occur during computation, the encryptor encrypts
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all CktFE ciphertexts with symmetric key encryption SKE. As in the case of DFA, the
function key selects the appropriate SKE keys to reveal the CktFE ciphertext encoding next
state and symbol to be read.

The careful reader may have noticed that the above description glosses over an important
detail: the cell that is written into at step ¢ may be next accessed at any step j > i, so
the CktFE ciphertext at step ¢ must encode SKE keys for some unknown future step j.
Fortunately, the machinery of oblivious TMs comes to our aid again. Since in an oblivious
TM, there exists a function ¢ that computes the step that particular cell will be accessed next,
in step 7, in addition to selecting the state for step 7 + 1 as we did in DFAs, the function key
will also select the tape symbol to be read in step t(¢). At any step j, the appropriate SKE
keys for the state were provided in step j — 1 and for tape symbol were provided at step ¢ < j
where t(i) = j. Hence, the decryptor at step j has the SKE keys to unlock the CktFE CT
components for both state and tape symbol, which lets her proceed with the computation.
For more details, please see the full version [1].

1.4 Organization of the paper

In Section 2, we define the preliminaries we require for our constructions. In Section 3,
we define the notion of decomposable functional encryption. In Section 4, we provide our
construction for single key FE for DFAs. In the full version [1], we provide our construction
for single key functional encryption for Turing machines.

2 Definitions: FE for Deterministic Finite Automata

In this section we provide some notation and preliminaries that we require.

Functional encryption for deterministic finite automata (DFA) is defined analogously to
functional encryption for circuits, except that the public parameters may not depend on the
input length, which is unknown a priori. In this section, we will define single key functional
encryption for DFAs.

A DFA machine M is represented by the tuple (Q, 3, T, gst, F') where @ is a finite set of
states, ¥ is a finite alphabet, T': ¥ x Q — @ is the transition function (stored as a table),
st is the start state, F/ C Q is the set of accepting states. Upon input w € £* for some
arbitrary polynomial & (not known to the setup algorithm), the machine M accepts the input
if and only if there exists a sequence of states qi, ..., qx so that ¢1 = gst, T(w;,¢;) = giy1 for
i€[k—1],and ¢ € F. We say M(w) = 1 iff M accepts w and 0 otherwise.

2.1 Definition

Let M, : Qx x X — Q, be a DFA family. A functional encryption scheme DfaFE for
M consists of four algorithms DfaFE = (DfaFE.Setup, DfaFE.KeyGen, DfaFE.Enc, DfaFE.Dec)
defined as follows.
DfaFE.Setup(1¥) is a p.p.t. algorithm takes as input the unary representation of the
security parameter and outputs the master public and secret keys (PK, MSK).
DfaFE.KeyGen(MSK, M) is a p.p.t. algorithm that takes as input the master secret key
MSK and a DFA machine M and outputs a corresponding secret key SK,.
DfaFE.Enc(PK,w) is a p.p.t. algorithm that takes as input the master public key PK and
an input message w and outputs a ciphertext CTy,.
DfaFE.Dec(SKum, CTy ) is a deterministic algorithm that takes as input the secret key
SKys and a ciphertext CTy, and outputs M (w).

ICALP 2017
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» Definition 1 (Correctness). A functional encryption scheme DfaFE is correct if for all
M e M and all w € ¥,

(PK, MSK) +— DfaFE.Setup(1):
T = negl(k)
DfaFE.Dec(DfaFE.KeyGen(MSK, M), DfaFE.Enc(PK,w)) £ M(w)

where the probability is taken over the coins of DfaFE.Setup, DfaFE.KeyGen,
and DfaFE.Enc.

2.2 Security

In this section, we define simulation based security for single key FE for DFAs.

» Definition 2 (FULL-SIM- Security for DFA-FE). Let Fa be a functional encryption scheme
for a DFA family M. For every p.p.t. adversary A = (A1, As) and a p.p.t. simulator Sim,
consider the following two experiments:

real ideal

EXpraFE,A(lﬁ): EXpraFE,Sim(lﬁ):

: (PK, MSK) « DfaFE.Setup(1")
: (M, Stl) (—Al(PK)

: skas < DfaFE.KeyGen(MSK, M)
(%, 8t) «Ax(st1, PK, skas)

: CT « DfaFE.Enc(PK, x)

: Output (st,CT)

(PK, MSK) <— DfaFE.Setup(1¥)
(M, st1) <A1 (PK)

skar <— DfaFE.KeyGen(MSK, M)
(x, st) «Aa(st1,PK, skas)

CT « Sim(PK, skar, M, M (x), 1)
Output (st,CT)

DU W N e

The DFA functional encryption scheme Fa is then said to be single query FULL-SIM secure
if there exists a p.p.t. simulator Sim such that for every p.p.t. adversary A = (A1, As), the
following two distributions are computationally indistinguishable:

I c ideal
{ExprDe?aFE,A(lﬁ)} ~ {EXPID?:FE,Sim(lH)} .
reN rkEN

3 Decomposable Functional Encryption for Circuits

In this section, we define the notion of decomposable functional encryption (DFE). Decompos-
able functional encryption is analogous to the notion of decomposable randomized encodings
[3]. Intuitively, decomposability requires that the public key PK and the ciphertext CTy of a
functional encryption scheme be decomposable into components PK; and CT; for i € [|x]],
where CT; depends on a single deterministic bit x; and the public key component PK;. In
addition, the ciphertext may contain components that are independent of the message and
depend only on the randomness.

We assume that given the security parameter, the following spaces are fixed: P containing
public key components, Ry, Ro containing randomness used for encryption and C containing
the encoding of a single message bit. The length of the message |x| can be any polynomial.
Formally, let x € {0,1}*. A functional encryption scheme is said to be decomposable if there
exists a deterministic function £ : P x {0,1} x Ry X Rqa — C such that:

1. The public key may be interpreted as PK = (PKy, ..., PKg, PKingpt) where PK; € P for

i € [k]. The component PKiydpt € P’ for some j € N.
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2. The ciphertext may be interpreted as CTx = (CTy,...,CTg, CTindpt), where
CTz = 5 (PK“ Zi, T, fz) VZ S [k] and CTindpt - g (PKindphrv 7%) .

Here r € Ry is common randomness used by all components of the encryption. Apart
from the common randomness r, each CT; may additionally make use of independent
randomness 7; € Ro.
We note that if a scheme is decomposable “bit by bit”, i.e. into k components for inputs of
size k, it is also decomposable into components corresponding to any partition of the interval
[k]. Thus, we may decompose the public key and ciphertext into any ¢ < k components
of length k; each, such that > k; = k. We will sometimes use €(y) to denote the tuple of
function values obtained by applying £ to each component of a vector, i.e. £ (PK,y,r) =

(S(PKlvyla T, 7/:1)) e 75(PKk7yka T, fk))v where |Y| = k.

4 Single-Key Succinct FE for DFAs from LWE

In this section, we will construct a single key (public key) functional encryption scheme for
deterministic finite automata (DFA). Our construction makes use a decomposable single key
FE scheme for circuits, CktFE. In the full version [1], we show that:

» Lemma 3. The single key, succinct functional encryption scheme for circuits by Goldwasser
et al. [12], based on LWE is decomposable.

Conceptually, we decompose the input into two components of size ¢; and ¢5 each, where
the second component is further decomposed bit by bit. We will use the first component
to encrypt the current input symbol in the DFA computation and keys to select the next
state in the computation, and the second component to encrypt the current state in the DFA
computation. While the input symbol encoded in the first component can be treated as a
unit of size ¢1, it will be helpful for us to represent the encoded input of size ¢5 bit by bit.

Thus, we have,

CKtFE.PK = (PKy, PKa, PKinape) and CKtFE.CT = (CT1, CTa, CTindor) -
Now let
CKtFE.Enc(PK, x||y) = (CTy, CTs, CTingpr)
- (é(PKl,x,r, #1), E(PKa, y, 7, 82), &(PKindpe, 7, fg)).

We decompose

6(PK27 Y, 7, fh2) = (E(PKZ,D Y1, T, ’F2,1)7 ce. 75(PK2,€27 Yooy Ty /f;27£2)) .

Recall that £ : P x {0,1} x Ry x Ry — C and &(x) denotes the tuple of function values
obtained by applying £ to each coordinate. Then,

Let |x| =/, |y|=/¢, PKy€P4, PKyeP,
FEN, PKipgt €P?, reRy, t1€RY, FreRE, t3eR).
In what follows, we abuse notation slightly and omit mention of the independent, fresh

randomness from Ry needed for each invocation for £. For convenience, we club the message
independent component CTingpt with CT; and let

C = (CT17 CTindpt) and d = CT2 = (CT2717 AP CT27g2) .

36:7

ICALP 2017



36:8 Reusable Garbled Deterministic Finite Automata from Learning With Errors

Let M, : Q. x 3 — Q, be a DFA family. For notational convenience, we will drop the
subscript x here on. Let Q = |Q)|, the size of the state space of the DFA family. Then, the
single key functional encryption scheme for DFAs is constructed as follows.

DfaFE.Setup(1%):
Upon input the security parameter 17, do:
1. Choose a symmetric key encryption scheme SKE with key space K.
2. Define a circuit family as follows. Let F : X — ) where X = (X x K21°8% x {0,1}) x Q
and Y = K1°8Q. We set

0= 2]+ |K*8Q) +1, f=]0Q| =logQ

where || denotes size in bits. Let £ = {1 + {5.

3. Invoke CktFE.Setup(1*,1%) to obtain PK = (PKI, (PK21,...,PKa10g0), PKindpt) and
MSK.

4. Output (PK, MSK).

DfaFE.Enc(PK, w):
Let |w| = k. Note that k is arbitrary, and unknown to DfaFE.Setup. Do the following:
1. Sample randomness r;<—R4 for i € [k].
2. Sample SKE keys as follows. We define

Ki+1 = <(K8’+1,1)7 K(1i+1,1))7 L] (K?i+1,log Q) K(li-l-l,logQ)))

where K[\, ; < K for i € [k —1], j € [logQ], b € {0,1}.
3. Define message y; = (w;, K;41,0) for i € [k — 1] and yi = (wg, L, 1).
4. For i € [k], we define:

ci1=EPKy,yi, i),  €ia=EPKindpts7i), € = (Ci1,¢i2).

5. Let dy = &€ (PKa, gst,7m1). Here g5 denotes the start state of the DFA. Further, let

d?; =& (PKyj,b,m) Vi€ [2,k], j € [logQ], be{0,1}.
d, = (df’]) Vj € [log Q] where g; is the jth bit of g.

6. For i € [2,k], 7 € [logQ], b € {0,1} encrypt each df’j using the corresponding key ng
as:

d?; = SKE.Enc(K?

i,

b
d;;).

7. Choose b; j < {0,1} randomly for i € [2, k], j € [log Q] and define:

N

D;; = (&f;,&f; )7 D; = (f)i,j)a D, =d;.

8. Output CTy, = {c;, f)l} for i € [k].

DfaFE.KeyGen(MSK, M):
Let M denote a DFA machine and T denote its transition matrix. Let T; denote the
it" row of T, with format ((0, q) — q’) indicating that the machine enters state ¢’ upon
input symbol ¢ and input state gq. Let SKj; = CktFE.Keygen(MSK, f) where f is defined
below in Figure 1.
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Function f((0, K, flag), q)
1. Lookup table T for (o, q). Say that (o,q) — ¢'. If no entry is found, output L and exit.
2. If flag = 1, check if ¢’ is an accepting state. If yes, output 1, else output 0 and exit.

3. If flag = 0, parse K as {(KY, K})} for j € [logQ], b € {0,1}. Choose the log Q keys K;lj
(for j € [log Q]), corresponding to the bits of ¢" and output these.

Figure 1 Function to provide keys for next state in DFA computation.

DfaFE.Dec(SKy, CTy,):
Interpret CTyw = (ci, Dj)icx) and let dy 4, = Dy.
Initialize ¢ = 1. While ¢ < k, do the following:
Let CT; = (c;,diyg,). Recall that d;,, = (d;h]f) for j € [logQ]. If i = k, let
b < CktFE.Dec(SKy, CT},). Output b and exit.
Else let (Kit11,1,..., Kit1,1050) = CktFE.Dec(SKy, CT?).
For j € [log Q], try to decrypt each value in ]/ji+1’j using obtained key K11 ;. Exactly

b; Set

one of the two ciphertexts per bit position will be decrypted, say Eli Y1

~b; .
ditr,g, = ((SKEDec(Kiv15,dih, ;) ) Vi € log Q).

Increment <.

4.1 Correctness

In this section, we establish correctness of the above construction. Before we proceed with
the formal argument, we provide some intuition. Note that in the encryption, the first
component ¢; encrypts message y;, which contains the ith input symbol, along with the set
of all 21log @@ symmetric keys used to construct SKE encryptions of the (i + 1) state. In the
second component, the element d? ; in tuple (d?; ) for j € [logQ] and b € {0,1}, contains
an encryption of bit b, corresponding to the event that the j** bit of i*" state is b. The set
D, contains 2log @@ SKE encryptions of dfyj under keys Kfi ;» shuffled for each position j.
Decryption at step ¢ — 1 provides the level ¢ symmetric keys K f’] to unlock the dej for the
correct next state of the computation ¢’, i.e. b; = q£7 ;- Thus, the decryptor recovers exactly

the components df’J which may be combined to create the ciphertext d; 4,. Put together with
c; we get an encryption of (w;, K;11,¢;) which may again be decrypted with the function
key to obtain the appropriate keys to decrypt the correct d;j1,q,,,-

Formally, let k denote the length of input w and let q1, . . ., gx denote the states visited by
the DFA during computation. We have by correctness of decomposable functional encryption

that:

Vi € [lﬂ — 1], thFEEnc( PK, (wi,Ki+1,O,qi) ) = (ci7di,qi) where
cp = (E(PKh (wz‘,Ki+170),7"z',),E_(PKindpt,ﬁ')), dig = (5(PK2,j,q@',j,ri))je[logQ]

s.t. CKtFE.Dec(SKy, (ci,dig,)) = Koy 2 (K2 .o K959 o) where by = gipa.

Now, both elements of ]f)z‘_l,_l,j are attempted for decryption by K b

i+1,j» of which only the

ICALP 2017
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element encoding the correct bit ¢;41 ; is recovered. Formally, we have:

. a0 a1
D1, = (di+1,j7di+1,j ) and

SKE.Dec (Kibjl’j, d?,, ;) =L if b; #b, and dj'y  otherwise.

By putting together all the components, we get by decomposability:
di+1,‘Zi+1 = (dg-?:ll,; ) V] € [log Q]

Also, since each component of d;;1,4,,, uses the same common randomness ;4 as is used
by ¢iy1, we have that CT;;1 = (€i41,dit1,4,,,), hence we may repeat while i < k. Finally
for i =k,

CktFE.Enc( PK, (wg, L, 1,qx) ) = (ci, di,q,)
so that CktFE.Dec(SKy, (c,dk,q,)) = 1 iff g is an accepting state, 0 otherwise.

Efficiency. We note that the public key size of our scheme is the public key size of CktFE
[12] with message length £ = O(log @ + log |X] + log @ - log |K| which is polynomial in the
security parameter . The ciphertext size is O(|w| - log Q) and the secret key size is O(|M])
(ignoring polynomials in the security parameter).

4.2 Proof of Security

We proceed to show that our construction is secure. Formally:

» Theorem 4. Assume that the underlying CktFE scheme satisfies FULL-SIM security ac-
cording to definition (please see [1]). Then the construction for DfaFE achieves FULL-SIM
security as defined in Definition 2.

Proof. We proceed to construct a simulator DfaFE.Sim as required by Definition 2. The
simulator receives (PK,SKy, M, M(w),1™1) and does the following:
1. Assign the bit b = M(w), and construct the circuit f corresponding to M as defined in
Figure 1 in the description of DfaFE.KeyGen.
2. Let CktFE.SKf = SKy and invoke thFE.Sim( PK, f, CktFE.SKy, b) to receive CT}, where
we may express CTy = (Cx, dk,q,) and dy g, = (dg, ;) for j € [log Q.
3. For (i=k,i>1,i——), do:
a. Ifi=1, set Sim.D; = &17(11 and exit.
b. Sample key K = (K[ ,..., K]0 0) ¢ Kloe @ and let
Sim.d; ; = SKE.Enc(K} ., d; ;) Vj € [logQ].

2,79 2]

c. Sample b; ; < {0,1} and assign Sim.fl?f]’.j = Sim.d; ;.

d. Choose another log @ keys f(M, R e K'°2 @ and compute
Sim.d"/ = SKE.Enc(K; ;,0/%!) v j € log Q] .

e. Let Sim.]A)iJj = (Sim.affjij, Slm&?l]’) and Sim.D; = (Sim.]ji,j ) for j € [log Q).

f. Let (€¢;—1,di—1,4,,) = CKtFE.Sim(PK, f,SK;, K}).
4. Output the ciphertext as CTy, = (€1, €2, ..., Ck, Sim.Dy, ..., Sim.]jk).
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4.2.1 Analysis of Simulator

Correctness of the simulator DfaFE.Sim can be easily established using correctness of the
simulator CktFE.Sim and the semantic security of SKE. Let us say that the DFA M visits
states qi, ..., qr while computing on input w where |w| = k.

1. We have by correctness of CktFE.Sim that:

{CTk « CKtFE.Enc(PK, (w, L, 1,q1)) ~ CTy « CktFE.Sim(PK, fM,SKf,b)} .

By decomposability, CTy = (cg, dk,q, ) Where dy ¢, = (dej) for j € [log Q] and b; = gi ;
defined as the j* bit of state gz. Similarly, CT) = (6k,(~ik,qk) where c~lk7qk may be
decomposed as (dy ;) for j € [log@]. Let i = k.

2. We now establish that (&fg ~ Sim.d; j) where b; = ¢; ; and j € [log Q].
a. We have that in algorithm DfaFE.Enc,

K; = ((K(Oi,1)> K(li,l))> ) (K?i,log Q) K(li,logQ)))
where ng + K for j € [log Q]. We also have, for j € [log @], b € {0,1}:

d? ; = SKE.Enc(K?

4,37

b
di,j) (4.1)
b. In simulator DfaFE.Sim:

K;=(K}y,...,K]1550) ¢ K89 and

(2

Sim.d; j = SKE.Enc(K;;,d, ;) Vj € [logQ].

i,
Hence, since deJ ~ Elm- and the symmetric keys are picked using the same distribution
in each case, we have that (Aij ~ Sim.d, ;) where b; = ¢;; and j € [log Q].
3. We now establish that (Az”j ~ Sim.(:l:ffj) where j € [log Q)].
a. Construction of (Aii;’J is described in Equation 4.1.

b. For the latter, DfaFE.Sim samples l;j and sets Sim.algfj = Sim.ai,j. Next, it samples

another log @ keys f(m, o Kilog g 2@ and computes
Sim.dY’, = SKE.Enc(K;;,01%1) v j € [log Q).

By semantic security of SKE, we have that (AEJJ ~ Sim.(:lz.)fj).
4. Next, we show that D; ~ Sim.D,. For i = 1, we have by definitions of D; and Sim.Dy,
that the above holds. For ¢ > 1, in DfaFE.Enc, we have b; ; < {0,1} and

]ji,j = (&’””’ aiy ) .

2V

In DfaFE.Sim, we have b; ; < {0,1} and

2,3

. Afbiw'
Slm‘dm’) .

Since D; = (D; ;) and Sim.D; = (Sim.]A)m' ) for j € [log Q], we have that D; ~ Sim.D,.

ICALP 2017
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5. Let i =i — 1. Now, we have by correctness of CktFE.Sim,
{CTi « CKtFE.Enc(PK, (w;, Ki11,0,q;)) ~ CT;  CKtFE.Sim(PK, fM,SKf,K’{H)}.

By decomposability, CT; = (ci,d q,) where diq, = (d];’) for j € [log Q]. Also, CT; =
(€;,di,q,) where d; 4, = (d; ;) for j € [log Q]. If i > 1, go to step 2. For ¢ = 1, we have by
definitions of D; and Sim.]A)l7 that ((:1,]51) ~ (61,Sim.f)1).

6. Now, a straightforward hybrid argument yield that:
{(c1, D). (e2,D2), ... (er, Di) } = {(&1,5im.Dy), (@, Sim Da), .., (&, Sim.Dy) |

as desired.
<

Reusable Garbled DFA. In the full version [1] we show how to compile the above construc-
tion with symmetric key encryption to obtain the first construction of reusable garbled DFAs
from standard assumptions.

5 Single Key Functional Encryption for Turing Machines

In the full version [1], we provide the construction of single key functional encryption for
Turing machines. Our construction has short public parameters that are independent of
the size of the machine or the data being encrypted, short function keys, and input-specific
decryption time. However, the ciphertext of our construction is large and depends on the
worst case running time of the Turing machine (but not its description size).

While the large ciphertext size of our TMFE construction restricts its utility for practical
applications, we emphasize that the parameters obtained by our TMFE construction are not
implied by previous work to the best of our knowledge (please see the full version [1] for a
detailed discussion about previous work). To improve the ciphertext size of our construction,
while allowing succinct keys, dynamic data length and input specific run time is an interesting
open problem.
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