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—— Abstract

An important benchmark for secure multi-party computation (MPC) protocols is their round
complezity. For several important MPC tasks, (tight) lower bounds on the round complexity
are known. However, for some of these tasks, such as broadcast, the lower bounds can be
circumvented when the termination round of every party is not a priori known, and simultaneous
termination is not guaranteed. Protocols with this property are called probabilistic-termination
(PT) protocols.

Running PT protocols in parallel affects the round complexity of the resulting protocol in
somewhat unexpected ways. For instance, an execution of m protocols with constant expected
round complexity might take O(logm) rounds to complete. In a seminal work, Ben-Or and El-
Yaniv (Distributed Computing ‘03) developed a technique for parallel execution of arbitrarily
many broadcast protocols, while preserving expected round complexity. More recently, Cohen et
al. (CRYPTO “16) devised a framework for universal composition of PT protocols, and provided
the first composable parallel-broadcast protocol with a simulation-based proof. These construc-
tions crucially rely on the fact that broadcast is “privacy free,” and do not generalize to arbitrary
protocols in a straightforward way. This raises the question of whether it is possible to execute
arbitrary PT protocols in parallel, without increasing the round complexity.

In this paper we tackle this question and provide both feasibility and infeasibility results. We
construct a round-preserving protocol compiler, secure against a minority of actively corrupted
parties, that compiles arbitrary protocols into a protocol realizing their parallel composition,
while having a black-box access to the underlying protocols. Furthermore, we prove that the same
cannot be achieved, using known techniques, given only black-box access to the functionalities
realized by the protocols, unless merely security against semi-honest corruptions is required, for
which case we provide a protocol.
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Round-Preserving Parallel Composition of Probabilistic-Termination Protocols

1 Introduction

Secure multi-party computation (MPC) [52, 30] allows a set of parties to jointly perform a
computation on their inputs, in such a way that no coalition of cheating parties can learn
any information beyond what is revealed by their outputs (privacy) or affect the outputs of
the computation in any way other than by choosing their own inputs (correctness). Since the
first seminal works on MPC [52, 30, 6, 12, 50], it has been studied in a variety of different
settings and for numerous security notions: there exist protocols secure against passively
corrupted (aka semi-honest) parties and against actively corrupted (aka malicious) parties;
the underlying network can be synchronous or asynchronous; and the required security
guarantees can be information-theoretic or computational — -to name but a few of the axes
along which the MPC task can be evaluated.

The prevalent model for the design of MPC protocols is the synchronous model, where
the protocol proceeds in rounds. In this setting, the round complexity, i.e., the number of
rounds it takes for a protocol to deliver outputs, is arguably the most important efficiency
metric. Tight lower bounds are known on the round complexity of several MPC tasks. For
example, for the well-known problems of Byzantine agreement (BA) and broadcast [48, 44],
it is known that any protocol against an active attacker corrupting a linear fraction of the
parties has linear round complexity [25, 23]. This result has quite far-reaching consequences
as, starting with the seminal MPC works mentioned above, a common assumption in the
design of secure protocols has been that the parties have access to a broadcast channel,
which they potentially invoke in every round. In reality, such a broadcast channel might
not be available and would have to be implemented by a broadcast protocol designed for
a point-to-point network. It follows that even though the round complexity of many MPC
protocols is linear in the multiplicative depth of the circuit being computed, their actual
running time depends on the number of parties, when executed over point-to-point channels.

The above lower bound on the number rounds for BA holds when all honest parties are
required to complete the protocol together, at the same round [22]. Indeed, randomized
BA protocols that circumvent this lower bound and run in expected constant number of
rounds (cf. [4, 49, 24, 26, 41, 45]) do not provide simultaneous termination, i.e., once a
party completes the protocol’s execution it cannot know whether all honest parties have
also terminated or if some honest parties are still running the protocol; in particular, the
termination round of each party is not a priori known. A protocol with this property is said
to have probabilistic termination (PT).

As pointed out by Ben-Or and El-Yaniv [5], when several such PT protocols are executed
in parallel, the expected round complexity of the combined execution might no longer be
constant (specifically, might not be equal to the maximum of the expected running times of the
individual protocols). Indeed, when m protocols, whose termination round is geometrically
distributed (and so, have constant expected round complexity), are run in parallel, the
expected number of rounds that elapse before all of them terminate is ©(logm) [14]. While
an elegant mechanism was proposed in [5] for implementing parallel calls to broadcast such
that the total expected number of rounds remains constant, it did not provide any guarantees
to remain secure under composition, raising questions about its usability in a higher-level
protocol (such as the MPC setting described above). Such a shortcoming was recently
addressed by Cohen et al. [14] who provided a framework for universal composition of PT
protocols (building upon the universal-composition framework of [8]). An application of
their result was the first composable protocol for parallel broadcast (with a simulation-based
proof) that can be used for securely replacing broadcast channels in arbitrary protocols, and
whose round complexity is constant in expectation.
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Indeed, an immediate application of the composable parallel-broadcast protocol from [14]
is plugging it into broadcast-model MPC protocols in order to obtain point-to-point protocols
with a round complexity that is independent of the number of parties. In the information-
theoretic setting, this approach yields protocols whose round complexity depends on the depth
of the circuit computing the function [6, 12, 50, 18], whereas in the computational setting,
assuming standard cryptographic assumptions, this approach yields expected-constant-round
protocols [43, 3, 20, 40, 1, 29, 31, 46]. However, the resulting point-to-point protocols have
probabilistic-termination on their own. The techniques used for composing PT broadcast
protocols in parallel crucially rely on the fact that broadcast is a privacy-free functionality,
and a naive generalization of this approach to arbitrary PT protocols fails to be secure. This
raises the question of whether it is possible to execute arbitrary PT protocols in parallel,
without increasing the round complexity.

We remark that circumventing lower bounds on round complexity is just one of the areas
where such PT protocols have been successfully used. Indeed, randomizing the termination
round has been proven to be a very useful technique in circumventing impossibilities and
improving efficiency for many cryptographic protocols. Notable examples include non-
committing encryption [21], cryptographic protocols designed for rational parties [34, 27, 47,
2, 32, 28], concurrent zero-knowledge protocols [9, 13] and parallel repetition of interactive
arguments [33, 35]. The rich literature on such protocols motivates a thorough investigation
of their security and composability. As mentioned above, in [14] the initial foundations were
laid out for such an investigation, but what was proven for arbitrary PT protocols was a
round-preserving sequential composition theorem, leaving parallel composition as an open
question.

Our contributions. In this work, we investigate the issue of parallel composition for arbitrary
protocols with probabilistic termination. In particular, we develop a compiler such that
given functionalities F7, ..., Fy and protocols 7y, ..., my, where for every i € [M], protocol
7; realizes F; (possibly using correlated randomness as setup!), then the compiled protocol
realizes the parallel composition of the functionalities, denoted (Fy || - - || Fu).

Our compiler uses the underlying protocols in a black-box manner,? is robust (i.e.,
secure without abort) and resilient against a computationally unbounded active adversary,
adaptively corrupting up to ¢t < n/2 parties (which is optimal [50]). Moreover, our compiler is
round-preserving, meaning that if the maximal (expected) round complexity of each protocol
is p, then the expected round complexity of the compiled protocol is O(i). For example, if
each protocol 7; has constant expected round complexity, then so does the compiled protocol.
Recall that this task is quite complicated even for the simple case of BA (cf. [5, 14]). For
arbitrary functionalities it is even more involved, since as we show, the approach from [5]
cannot be applied in a functionally black-box way in this case. Thus, effectively, our result is
the first round-preserving parallel composition result for arbitrary multi-party protocols/tasks
with probabilistic termination.

We now describe the ideas underlying our compiler. In [5] (see also [14]), a round-
preserving parallel-broadcast protocol was constructed by iteratively running, for a constant
number of rounds, multiple instances of BA protocols (each instance is executed multiple

LA trusted setup phase is needed for implementing broadcast in the honest-majority setting. As shown
in [17, 16] some interesting functions can be computed without such a setup phase.

2 Following [37], by a black-box access to a protocol we mean a black-box usage of a semi-honest MPC
protocol computing its next-message function.
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times in parallel, in a batch), hoping that at least one execution of every BA instance will
complete. By choosing the multiplicity suitably, this would occur with constant probability,
and the process need therefore be repeated a constant expected number of times only.

At first sight it might seem that this idea can be applied to arbitrary tasks, but this is
not the case. Intuitively, the reason is that if the tasks that we want to compose in parallel
have privacy requirements, then making the parties run them in (parallel) “batches” with
the same input might compromise privacy, since the adversary will be able to use different
inputs and learn multiple outputs of the function(s). This issue is not relevant for broadcast,
because it is a “privacy-free” functionality; the adversary may learn the result of multiple
computations using the same inputs for honest parties, without compromising security.

To cope with the above issue, our parallel-composition compiler generalizes the approach
of [5] in a privacy-preserving manner. At a high level, it wraps the batching technique by
an MPC protocol which restricts the parties to use the same input in all protocols for the
same function. In particular, the compiler is defined in the Setup-Commit-then-Prove hybrid
model [10, 39], which allows each party to commit to its input values and later execute
multiple instances of every protocol, each time proving that the same input value is used in
all executions.

The constructions in [10, 39] for realizing the Setup-Commit-then-Prove functionality are
designed for the dishonest-majority setting and therefore allow for a premature abort. Since
we assume an honest majority, we require security without abort. A possible way around
would be, as is common in the MPC literature, to restart the protocol upon discovering
some cheating or add for each abort a recovery round; this, however, would induce a linear
overhead (in the number of parties) on the round complexity of the protocol.

Instead, in order to recover from a misbehavior by corrupted parties, we modify the
Setup-Commit-then-Prove functionality and secret-share every committed random string
between all the parties, using an error-correcting secret-sharing scheme (aka robust secret
sharing [50, 19, 11]). In case a party is identified as cheating, every party broadcasts the
share of the committed randomness corresponding to that party, reconstructs the correlated
randomness for that party, and locally computes the messages corresponding to this party in
every instance of every protocol. We also prove that the modified Setup-Commit-then-Prove
functionality can be realized in a constant number of rounds, thus yielding no (asymptotic)
overhead on the round complexity of the compiler.

Next, given that using only black-box access to the protocols 7;, it is possible to compile
them into a protocol that implements the parallel composition (Fy || --- || Fu) of the
functionalities F1,..., Fy realized by protocols my,..., 7y, we investigate the question of
whether there exists a protocol that securely realizes (Fy || - - || Fu) given only black-box
access to the functionalities F1, ..., Fy,> but not to protocols realizing them. This question
is only sensible if asked for an entire class of functionalities (cf. [51]), since otherwise a
protocol may always ignore the functionalities F7, ..., Fy and implement (Fy || -+ || Fu)
from scratch.

On the one hand, we prove that against semi-honest corruptions, there indeed exists
a protocol for parallel composition of arbitrary functionalities F; in a functionally black-
box manner. On the other hand, in the case of active corruptions, we devise a class of
functionalities for which, when using a generalization of the “batching” technique from [5],

3 Loosely speaking, a functionally black-box protocol, as defined in [51], is a protocol that can compute a
function f without knowing the code of f, i.e., given an oracle access to the function f. Note that in
this model, each ideal functionality F; has an oracle access to the function f; it computes.
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such a black-box transformation is not possible in the presence of a single active corrupted
party. More precisely, (1) a naive call to each of the ideal functionalities F; until termination
will not be round-preserving, (2) it is impossible to compute the parallel composition without
calling every ideal functionality, and (3) using the same input value in more than one call to
any of the ideal functionalities will break privacy.* This negative result validates our choice
of a protocol compiler, and is evidence that such a task, if at all possible, would require
entirely new techniques.

We phrase our results using the framework for composition of protocols with probabilistic
termination [14], extending it (a side result of independent interest) to include parallel
composition, reactive functionalities (to capture the Setup-Commit-then-Prove functionality),
and the higher corruption threshold of ¢t < n/2.

Organization of the paper. The rest of the paper is organized as follows. In Section 2
we describe the network model, the basics of the probabilistic-termination framework by
Cohen et al. [14], and other tools that are used throughout the paper. We start Section 3
with the extensions to the PT framework, followed by the protocol that achieves round-
preserving parallel composition for arbitrary functionalities in a functionally black-box
manner against semi-honest adversaries. Section 4 is dedicated to active corruptions; first,
the round-preserving protocol-black-box construction, followed by the negative result on
round-preserving functionally black-box composition in the case of active corruptions. Due
to space limitations, finer details of the model and PT framework, our extension of the PT
framework to the honest-majority setting, and proofs, will only appear in the full version of
the paper.

2 Model and Preliminaries

2.1 Synchronous Protocols in UC

We consider synchronous protocols in the model of Katz et al. [42], which is designed on
top of the universal composability framework of Canetti [8]. More specifically, we consider
n parties Pi,..., P, and a computationally unbounded, adaptive t-adversary that can
dynamically corrupt up to ¢ parties during the protocol execution. Synchronous protocols
in [42] are protocols that run in a hybrid model where parties have access to a simple “clock”
functionality. This functionality keeps an indicator bit, which is switched once all honest
parties request the functionality to do so, i.e., once all honest parties have completed their
operations for the current round. In addition, all communication is done over bounded-delay
secure channels, where each party requests the channel to fetch messages that are sent to him,
such that the adversary is allowed to delay the message delivery by a bounded and a priori
known number of fetch requests. Stated differently, once the sender has sent some message,
it is guaranteed that the message will be delivered within a known number of activations of
the receiver. For simplicity, we assume that every message is delivered within a single fetch
request. A more detailed overview of [42] can be found in the full version.

4 We note that our negative result does not contradict Ishai et al. [38, 36] who constructed two-round
protocols with guaranteed output delivery for n > 4 and t = 1 without broadcast. Indeed, the protocols
in [38, 36] are non-black-box with respect to the function to be computed.
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2.2 The Probabilistic- Termination Framework

Cohen et al. [14] extended the UC framework to capture protocols with probabilistic termin-
ation, i.e., protocols without a fixed output round and without simultaneous termination.
This section outlines their techniques; additional details can be found in the full version.

Canonical synchronous functionalities. The main idea behind modeling probabilistic ter-
mination is to separate the functionality to be computed from the round complexity that is
required for the computation. The atomic building block in [14] is a functionality template
called a canonical synchronous functionality (CSF), which is a simple two-round functionality
with explicit (one-round) input and (one-round) output phases. The functionality Fcgr has
two parameters: (1) a (possibly) randomized function f that receives n + 1 inputs (n inputs
from the parties and one additional input from the adversary) and (2) a leakage function [
that determines what information about the input values is leaked to the adversary.

Fesr proceeds in two rounds: in the first (input) round, all the parties hand Fegr their
input values, and in the second (output) round, each party receives its output. Whenever
some input is submitted to Fcgp, the adversary is handed some leakage function of this
input; the adversary can use this leakage when deciding the inputs of corrupted parties.
Additionally, he is allowed to input an extra message, which — depending on the function f —
might affect the output(s).

Wrappers and traces. Computation with probabilistic termination is captured by defining
output-round randomizing wrappers. Such wrappers address the issue that while an ideal
functionality abstractly describes a protocol’s task, it does not describe its round complexity.
Each wrapper is parametrized by a distribution (more precisely, an efficient probabilistic
sampling algorithm) D that may depend on a specific protocol implementing the functionality.
The wrapper samples a round prerm <— D, by which all parties are guaranteed to receive their
outputs. Two wrappers are considered: the first, denoted Wiirict, ensures in a strict manner
that all (honest) parties terminate together in round pierm; the second, denoted Waey, is
more flexible and allows the adversary to deliver outputs to individual parties at any time
before round pierm-

As pointed out in [14], it is not sufficient to inform the simulator S about the round prerm.
In many cases, the wrapper should explain to S how this round was sampled; concretely,
the wrapper provides S with the random coins that are used to sample pierm. In particular,
S learns the entire trace of calls to ideal functionalities that are made by the protocol in
order to complete by round pierm. A trace basically records which hybrids were called by a
protocol’s execution, and in a recursive way, for each hybrid, which hybrids would have been
called by a protocol realizing that hybrid.The recursion ends when the base case is reached,
i.e., when the protocol is defined using the atomic functionalities that are “assumed” by the
model.> Formally, a trace is defined as follows:

» Definition 1 (Traces). A trace is a rooted tree of depth at least 1, in which all nodes are
labeled by functionalities and where every node’s children are ordered. The root and all
internal nodes are labeled by wrapped CSFs (by either of the two wrappers), and the leaves
are labeled by unwrapped CSFs. The trace complexity of a trace T, denoted ¢, (T), is the
number of leaves in T'. Moreover, denote by flex,,(T") the number nodes labeled by flexibly
wrapped CSFs in T

5 The atomic functionalities considered in this work are the CSFs for the point-to-point communication
functionality Fsyr and the correlated-randomness functionality for broadcast Foorr-e-
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Sequential composition of probabilistic-termination protocols. When a set of parties
execute a probabilistic-termination protocol, or equivalently, invoke a flexibly wrapped CSF,
they might get out-of-sync and start the next protocol in different rounds. The approach
in [14] for dealing with sequential composition is to start by designing simpler protocols, that
are in a so-called synchronous normal form, where the parties remain in-sync throughout the
execution, and next, compile these protocols into slack-tolerant protocols.

» Definition 2 (Synchronous normal form). Let F1,...,F,, be CSFs. A synchronous protocol
7 in the (F1, ..., Fm)-hybrid model is in synchronous normal form (SNF) if in every round
exactly one ideal functionality JF; is invoked by all honest parties, and in addition, no honest
party hands inputs to other CSFs before this instance halts.

SNF protocols are designed as an intermediate step only, since the hybrid functionalities
Fi,...,Fm are two-round CSFs, and, in general, cannot be realized by real-world protocols.
In order to obtain protocols that can be realized in the real world, [14] introduced slack-
tolerant variants of both the strict and the flexible wrappers, denoted Wsi_strict and Wsi-fiex-
These wrappers are parametrized by a slack parameter ¢ > 0 and can be used even if parties
provide inputs within ¢+ 1 consecutive rounds (i.e., they tolerate input slack of ¢ rounds);
furthermore, the wrappers ensure that all honest parties obtain output within two consecutive
rounds (i.e., they reduce the slack to ¢ = 1). Next, [14] constructed compilers to convert
any SNF protocol realizing a wrapped CSF W2, . (F) (resp., WL _(F)) into a (non SNF)
protocol realizing Wsll)_ lsfrict (F) (resp., Wsjlj_ /ﬂ’gx(]—")), using wrapped CSFs as hybrids. The
compilers maintain the security and the asymptotic (expected) round complexity of the
original SNF protocols. At the same time, the compilers take care of any potential slack that
is introduced by the protocol and ensure that the resulting protocol can be safely executed

even if the parties do not start the protocol simultaneously.

Finally, in [14], the authors also provided protocols for realizing wrapped variants of
the atomic CSF functionality for secure point-to-point communication. This suggested
the following design paradigm for realizing a wrapped functionality Wi strict (F) (resp.,
Wilfiex(F)): First, construct an SNF protocol for realizing Witrict (F) (resp., Waex(F))
using CSF hybrids Fi,...,F,,. Next, for each of the non-atomic hybrids F;, show how
to realize Wetrict (Fi) (resp., Waex(Fi)) using CSF hybrids F,...,F,

m’*

Proceed in this
manner until all CSF hybrids are atomic functionalities. Finally, repeated applications of the
composition theorems above yield a protocol for Wip_strict (F) (resp., Walfiex (F)) using only
atomic functionalities as hybrids.

2.3 A Lemma on Termination Probabilities

The following lemma, which will be used in our positive results, provides a constant lower
bound on the probability that when running simultaneously (i.e., in parallel) N copies of M
probabilistic-termination protocols 71, ..., my, at least one copy of each 7; will complete after
R rounds, for suitable choices of N and R. The proof of the lemma appears in the full version.

» Lemma 3. Let M,N,Re N. Fori € [M and j € [N, let X;; be independent random variables
over the natural numbers, such that X;1,..., X;y are identically distributed with expectation
wi, for every i € [M. Denote Y; = min{X;1,..., X;x} and p = max{p1,..., pn}.

Then, for any constant 0 < e <1, if R> u and N> llgg((g//;)) , then Pr[Vi:Y; <R > 1—e.
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3 Round-Preserving Parallel Composition: Passive Security

In this section, we show that round-preserving parallel composition is feasible, in a functionally
black-box manner, facing semi-honest adversaries. To that end we first extend, in Section 3.1,
the probabilistic-termination framework [14] to capture the notions of functionally black-box
protocols [51] and of parallel composition of canonical synchronous functionalities. The
passively secure protocol is presented in Section 3.2.

3.1 Functionally Black-Box Protocols and Parallel Composition

Functionally black-box protocols. We formalize the notion of functionally black-box pro-
tocols of Rosulek [51] in the language of canonical synchronous functionalities. As in [51],
we focus on secure function evaluation. The SFE functionality Fg, parametrized by an
n-party function g, is defined as the CSF F({ZFFE’I“E7 where fo.(z1,...,Zn,a) = g(z1,...,2,)
(i.e., computes the function g while ignoring the adversary’s input a) and the leakage function
is lyw(z1, ..., 20) = (|21],...,|zn]). The following definition explains what we mean by a
protocol that realizes the secure function evaluation functionality in a black-box way with

respect to the function g.

» Definition 4. Let C = {g: ({0,1}*)" — ({0,1}*)™} be a class of n-party functions. Denote
by F&.,, the CSF, implemented as an (uninstantiated) oracle machine that in order to compute
fC.(x1,...,2,,a), queries the oracle with (z1,...,,) and stores the response (y1,...,¥n).
The leakage function I, (x1,...,2,) = (|z1],-- -, |zx]) is unchanged.

Then, a protocol ® = (71,...,7,) is a functionally black-box (FBB) protocol for (a

wrapped version of) F<.., if for every f € C, the protocol 7/ = (7r{, ..., mh) UC-realizes Flo.

SFE?

Parallel Composition of CSFs. The parallel composition of CSFs is defined in a natural
way as the CSF that evaluates the corresponding functions in parallel.

» Definition 5. Let fi,..., fu be n-input functions. We define the (n - M)-input function
(fi |l -+ || fu) as follows. Upon input (x1,...,®,), where each x; is an M-tuple (z},...,z),
the output is the M-tuple defined as

(fl || || fM)(wl?va:ﬂ) = ((y%vvy}ll[%’(y}mvyg))a

where (yi,...,yl) = fj(zl,...,2d).

Let Fggp’ll, cee gggl” be CSFs, denote F; = é‘SFl The parallel composition of F1,. .., Fy,
denoted as (Fy || - - - || Fu), is the CSF defined by the function (fy || --- || fu) and the leakage
function (Iy || - || lu).

3.2 Passively Secure FBB Parallel-Composition Protocol

The underlying idea of our protocol is based on a simplified form of the parallel-broadcast
protocol of Ben-Or and El-Yaniv [5]. The protocol proceeds in iterations, where in each
iteration, the parties invoke, in parallel and using the same input values, sufficiently many
instances of each (oracle-aided) ideal functionality, but only for a constant number of rounds.
If some party received an output in at least one invocation of every ideal functionality, it
distributes all output values and the protocol completes; otherwise, the protocol resumes

6

with another iteration. This protocol retains privacy for deterministic functions,® since the

6 Although the result holds for deterministic functionalities, we note that using standard techniques every
functionality can be transformed to an equivalent deterministic functionality in a black-box way.
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adversary is semi-honest, and so corrupted parties will provide the same input values to all
instances of each ideal functionality.

Intuitively, during the simulation of the protocol, the simulator should imitate every call
for every ideal functionality towards the adversary. A subtle issue is that in order to do
so, the simulator must know the exact trace that is sampled by each instance of each ideal
functionality during the execution of the real protocol. Therefore, it is indeed essential for
the simulator to receive the random coins used to sample the trace for the entire protocol,
by the ideal functionality computing the parallel composition (cf. Section 2.2). By defining
the trace-distribution sampler in a way that consists of all (potential) sub-traces for every
instance of every ideal functionality, the simulator can induce the exact random coins used
to sample the correct sub-trace for every ideal functionality that is invoked.

» Theorem 6. Let Cy,...,Cy be (deterministic-)function classes, let ]-fFlm . ,.FSCF”E be oracle-
aided secure function evaluation functionalities, and let t < n/2. Let D1,..., Dy be distri-
butions, such that for every j € [M), the round complexity of Wfi;(ffﬁ,a) has expectation fi;.
Denote = max{pu1, ..., py}.

Then, Wfﬁx(ffFlE | - || F&&), for some distribution D with expectation j' = O(p), can
be UC-realized by an FBB protocol in the (Fsyr, Wé?e;(fSFIE), e Wfﬁ’)’((fSFME))—hybrid model,

with information-theoretic security, in the presence of an adaptive, semi-honest t-adversary,
assuming that all honest parties receive their inputs at the same round.
In particular, if for every j € [M, the expectation p; is constant, then p' is constant.

The proof of Theorem 6 can be found in the full version.

4 Round-Preserving Parallel Composition: Active Security

In this section, we consider security against active adversaries. First, in Section 4.1, we show
how to compute the parallel composition of probabilistic-termination functionalities, in a
round-preserving manner, using a black-box access to protocols realizing the individual func-
tionalities. In Section 4.2, we investigate the question of whether there exists a functionally
black-box round-preserving malicious protocol for the parallel composition of probabilistic
functionalities, and show that for a natural extension of protocols, following the techniques
from [5], this is not the case — i.e., there exist functions such that no such protocol with
black-box access to them can compute their parallel composition, in a round-preserving
manner, tolerating even a single adversarial party.

4.1 Feasibility of Round-Preserving Parallel Composition

In this section, we show how to compile multiple protocols, realizing probabilistic-termination
functionalities, into a single protocol that realizes the parallel composition of the functional-
ities, in a round-preserving manner, and while only using black-box access to the underlying
protocols. We start by providing a high-level description of the compiler.

The compiler receives as input protocols 71, ..., my, where each protocol 7; is defined
in the point-to-point model, in which the parties are given correlated randomness in a

corr

secure setup phase, i.e., in the (Fayr, Foorr)-hybrid model.” Tt follows that the next-message
function for each party in each protocol is a deterministic function that receives the input

7 This captures, for example, broadcast-model protocols, where the broadcast channel is realized using an
expected-constant-round protocol.
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value, correlated randomness, private randomness and history of incoming messages, and
outputs a vector of n messages to be sent in the following round (one message for each party).
In particular, we note that the entire transcript of the protocol is fixed once the input value,
correlated randomness and private randomness of each party are determined.

The underlying ideas of the compiler are inspired by the constructions in [5, 14], where a
round-preserving parallel-broadcast protocol was constructed by iteratively running, for a
constant number of rounds, multiple instances of BA protocols (each instance is executed
multiple times in parallel), until at least one execution of every BA instance is completed.
This approach is suitable for computing “privacy-free” functionalities, where the adversary
may learn the results of multiple computations using the same inputs for honest parties,
without compromising security. However, when considering the parallel composition of
arbitrary functions, running two instances of a protocol using the same inputs will violate
privacy, since the adversary can use different inputs to learn multiple outputs of the function.

The parallel-composition compiler generalizes the above approach in a privacy-preserving
manner. The compiler follows the GMW paradigm [30] and is defined in the Setup-Commit-
then-Prove hybrid model [10, 39], which generates committed correlated randomness for
the parties and ensures that all parties follow the protocol specification. This mechanism
allows each party to commit to its input values and later execute multiple instances of each
protocol, while proving that the same input value is used in all executions. For simplicity
and without loss of generality, we assume that each function is deterministic and has a public
output. In this case it is ensured that if two parties receive output values in two executions
of m;, then they receive the same output value. The private random coins that are used
in each execution only affect the termination round, but not the output value. Using this
simplification, we can remove the leader-election phase from the output-agreement technique
in [5, 14] and directly use the termination technique from Bracha [7].

Another obstacle is to recover from corruptions without increasing the round complexity.
Indeed, in case some party misbehaves, e.g., by using different input values in different
instances of the same protocol 7;, then the Setup-Commit-then-Prove functionality ensures
that all honest parties will identify the cheating party. In this case, the parties cannot recover
by, for example, backtracking and simulating the cheating party, as this will yield a round
complexity that is linear in the number of parties. Furthermore, the protocol must resume in
a way such that all instances of a specific protocol 7; will use the same input value that the
identified corrupted party used throughout the protocol’s execution until it misbehaved (since
the cheating party might have learned an output value in one of the executed protocols).

To this end, we slightly adjust the Setup-Commit-then-Prove functionality and secret-
share every committed random string r; (the correlated randomness for party P;) among
all the parties, using an error-correcting secret-sharing scheme. Note that this can be
done information theoretically as we assume an honest majority [50, 19, 11]. In case a
cheating party is identified, every party broadcasts the share of the committed randomness
corresponding to that party, reconstructs this party’s correlated randomness and from that
point onwards, locally computes the messages corresponding to this party in every instance
of every protocol. Using this approach, every round in the original protocols 7y, ...,y is
expanded by a constant number of rounds, and the overall round complexity is preserved.

» Theorem 7. Let Fi,...,Fy be CSFs, let t <n/2, and let ¢ > 1. Let m1,...,my be SNF
protocols such that for every j € [M, protocol w; UC-realizes Wﬂex(]:») with expected round
complexity p1; and information-theoretic security, in the (]"sy\n,]:@om) hybrid model (for a
distribution Dj and a distribution D3°" in NC°), in the presence of an adaptive, malicious
t-adversary, assuming that all honest parties receive their inputs at the same round. Denote
w=max{u,..., My}
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Then, WSS (Fi | -+ || Fu), for some distribution D with expectation ji' = O(y), can be
UC-realized with information-theoretic security by a protocol ™ in the (Fgyr, Foornne)-hybrid
model, in the same adversarial setting, assuming that all honest parties receive their inputs
within ¢ + 1 consecutive rounds. In addition, protocol m requires only black-box access to the
protocols ;.

In particular, if for every j € [M, p; is constant, then D has constant expectation.

The proof of Theorem 7 can be found in the full version.

4.2 An Impossibility of FBB Round-Preserving Parallel Composition

In this section, we prove that for a natural class of protocols, following and/or extending in
various ways the techniques from Ben-Or and El-Yaniv [5],® there exist functions such that no
protocol can compute their parallel composition in a round-preserving manner, while accessing
the functions in a black-box way, tolerating even a single adversarial party. Although this is
not a general impossibility result, it indicates that the batching approach of [5] is limited to
semi-honest security (cf. Section 3) and/or functionally white-box transformations.

We observe that this impossibility serves as an additional justification for the optimality
of our protocol-black-box parallel composition (cf. Section 4.1). Indeed, on the one hand, it
formally confirms the generic observation that the natural parallel composition of a set of
PT functionalities does not preserve their round complexity. On the other hand, and most
importantly, it proves that all existing techniques for composing PT functionalities in parallel
in the natural (FBB) manner fail in preserving the round complexity. Hence, the only known
existing round-preserving composition for such functionalities are the protocol-black-box
compiler presented in Section 4.1 or more inefficient non-black-box techniques. The wideness
of the class of excluded protocols by our impossibility result justifies our conjecture that
there exists no round-preserving FBB protocol for parallel composition of PT functionalities.
Proving this conjecture is in our opinion a very interesting research direction.

We first argue informally why the approach of [5], cannot be directly extended to privacy-
sensitive functions. The idea in [5] for allowing each of the n parties to broadcast its value
is to have each of the n parties participate in m = O(logn) parallel invocations (hereafter
called batches, to avoid confusion with the goal of parallel broadcast for different messages)
of broadcast as sender with the same input. Each of those batches is executed in parallel
for a fixed (constant) number of rounds (for the same broadcast message); this increases
the probability that sufficiently many parties receive output from each batch. At the end
of each batch execution, the parties check whether they jointly hold the output, and if not,
they repeat the computation of the batches. It might seem that this idea can be applied to
arbitrary tasks, but this is not the case. The reason is that this idea fails if the functionality
has any privacy requirements, is that the adversary can input different values on different
calls of the functionality within a batch and learn more information on the input.

Batched parallel composition. The above issue with privacy appears whenever a function
is invoked twice in the same round on the same inputs from honest parties. Indeed, in
this case the adversary can use different inputs to each invocation and learn information as
sketched above. The same attack can be extended to composition-protocols which invoke
the function in two different rounds p and p’; as long as the adversary knows these rounds

8 To our knowledge, the only known techniques for round-preserving parallel composition are those of
Ben-Or and El-Yaniv [5] and are only for the specific case of Byzantine agreement.
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he can still launch the above attack on privacy. Generalizing the claim even further, for
specific classes of functions, it suffices that there are two (possibly different) functions which
are evaluated on the same inputs in rounds p and p’. This excludes protocols that might
attempt to avoid using some functionality Wﬁ;(f ;) by invoking some other Wfii (Fjr).
To capture the above generalization, we define the class of batched-parallel composition
protocols: A protocol 7 implementing the PT parallel composition W _(F1 || -+ || Fu)
in the (Wit (F1), ..., W (Fu))-hybrid model (for some distributions D, Dy, ..., Dy) is a
batched-parallel composztzon protocol if it has the following structure: It proceeds in rounds,
where in each round the protocol might initiate (possibly multiple) calls to any number of the
hybrid functionalities Wfﬁ;(f ;) and/or continue calls that were initiated in previous rounds.
Furthermore, there exist two publicly known protocol rounds p and p’, and indices 7, j', £ € [M],

such that for the input vector = (z1,...,x,) that 7 gives to WL _(Fi || -+ || Fu) (where
x; = (z},...,2")) the following properties are satisfied:
1. In round p the functionality Wy (F;) is called on input @’ = (z¢,...,z%) and at least

two of its rounds are executed. b
2. Inround p’ the functionality Wy (F;) is also called on input @‘ and at least two of its
rounds are executed.

We next show that the there are classes of functions Cl, ...,Cy such and for any protocol
7 that securely computes the parallel composition WE,_(F&k, || - || F&.) while given hybrid
access to PT functionalities Wfﬁ;((}"&ﬁ) the following properties hold simultaneously:
1. 7 has to call each of the hybrids Wﬂex(}"bFE) (for at least 2 rounds each).?
2. The naive solution of 7 calling each of the Wy (F; F&i.)’s in parallel until they terminate
is not round-preserving (for an appropriate choice of D;’s.)

3. 7 cannot be a batched-parallel composition protocol.

The above shows that the classes Cq, . ..,Cy not only exclude the existence of a batched-
parallel composition protocol, but they also exclude all other known solutions. This implies
that for this classes of functions, every known approach — and generalizations thereof —
fail to compute the parallel composition of the corresponding functionality in an FBB and
round-preserving manner. In the full version we prove the following theorem.

» Theorem 8. Let M= O(k). There exist n-party function classes Cy, . ..,Cy and distributions

D+, ..., Dy, such that the following properties hold in the presence of a malicious adversary

corrupting any one of the parties:

1. The protocol that calls each Wfﬁx(]:ﬁE) in parallel (once) until termination is not round-
preserving (its round complexity is asymptotically higher than of the distributions D;).

2. Any (fsm,Wﬂex(beE) Wﬂex( s ))-hybrid protocol for computing Wﬂex( s |- ]
beFE) has to make a meamngful call (i.e., a call that executes at least two rounds) to each
PT hybrid W (F&).

3. There emsts no functzonally black-box batched-parallel composition protocol for computing
WER (FSG || -+ || FSt) in the (Fonr, Wi (FSL), - ., Wi (F&8))-hybrid model, where D
has (asymptotically) the same expectation as D, ..., DM.
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