
Decremental Data Structures for Connectivity and
Dominators in Directed Graphs∗†

Loukas Georgiadis1, Thomas Dueholm Hansen2,
Giuseppe F. Italiano3, Sebastian Krinninger4, and Nikos Parotsidis5

1 University of Ioannina, Ioannina, Greece
loukas@cs.uoi.gr

2 Aarhus University, Aarhus, Denmark
tdh@cs.au.dk

3 University of Rome Tor Vergata, Rome, Italy
giuseppe.italiano@uniroma2.it

4 University of Vienna, Faculty of Computer Science, Vienna, Austria
sebastian.krinninger@univie.ac.at

5 University of Rome Tor Vergata, Rome, Italy
nikos.parotsidis@uniroma2.it

Abstract
We introduce a new dynamic data structure for maintaining the strongly connected components
(SCCs) of a directed graph (digraph) under edge deletions, so as to answer a rich repertoire
of connectivity queries. Our main technical contribution is a decremental data structure that
supports sensitivity queries of the form “are u and v strongly connected in the graph G\w?”, for
any triple of vertices u, v, w, while G undergoes deletions of edges. Our data structure processes a
sequence of edge deletions in a digraph with n vertices in O(mn logn) total time and O(n2 logn)
space, where m is the number of edges before any deletion, and answers the above queries in
constant time. We can leverage our data structure to obtain decremental data structures for
many more types of queries within the same time and space complexity. For instance for edge-
related queries, such as testing whether two query vertices u and v are strongly connected in
G \ e, for some query edge e.

As another important application of our decremental data structure, we provide the first
nontrivial algorithm for maintaining the dominator tree of a flow graph under edge deletions. We
present an algorithm that processes a sequence of edge deletions in a flow graph in O(mn logn)
total time and O(n2 logn) space. For reducible flow graphs we provide an O(mn)-time and
O(m+ n)-space algorithm. We give a conditional lower bound that provides evidence that these
running times may be tight up to subpolynomial factors.

1998 ACM Subject Classification E.1 [Graphs and Networks] Trees, F.2.2 Computations on
Discrete Structures, G.2.2 [Graph Algorithms] Trees

Keywords and phrases dynamic graph algorithms, decremental algorithms, dominator tree,
strong connectivity under failures

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.42

∗ Full version of this paper available at https://arxiv.org/abs/1704.08235.
† The work of L. Georgiadis and T. D. Hansen was partially done while visiting University of Rome Tor

Vergata. T. D. Hansen was supported by the Carlsberg Foundation, grant no. CF14-0617. G. F. Italiano
was partially supported by the Italian Ministry of Education, University and Research, under Project
AMANDA. The work of S. Krinninger was partially done while visiting University of Rome Tor Vergata
and while at Max Planck Institute for Informatics, Saarland Informatics Campus, Germany.

EA
T

C
S

© Loukas Georgiadis, Thomas Dueholm Hansen, Giuseppe F. Italiano,
Sebastian Krinninger, and Nikos Parotsidis;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 42; pp. 42:1–42:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.42
https://arxiv.org/abs/1704.08235
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

42:2 Decremental Data Structures for Connectivity and Dominators

1 Introduction

Dynamic graph algorithms have been extensively studied for several decades, and many
important results have been achieved for dynamic versions of fundamental problems, including
connectivity, 2-edge and 2-vertex connectivity, minimum spanning tree, transitive closure,
and shortest paths (see, e.g., the survey in [14]). We recall that a dynamic graph problem is
said to be fully dynamic if it involves both insertions and deletions of edges, incremental if it
only involves edge insertions, and decremental if it only involves edge deletions.

The decremental strongly connected components (SCCs) problem asks us to maintain,
under edge deletions in a directed graph G, a data structure that given two vertices u and v
answers whether u and v are strongly connected in G. We extend this problem to sensitvity
queries of the form “are u and v strongly connected in the graph G \ w?”, for any triple of
vertices u, v, w, i.e., we additionally allow the query to temporarily remove a third vertex w.
We show that this extended decremental SCC problem can be used to answer fast a rich
repertoire of connectivity queries, and we present a new and efficient data structure for the
problem. In particular, our data structure for the extended decremental SCC problem can
be used to support edge-related queries, such as maintaining the strong bridges of a digraph,
testing whether two query vertices u and v are strongly connected in G \ e, reporting the
SCCs of G \ e, or the largest and smallest SCCs in G \ e, for any query edge e. Furthermore,
using our framework, it is possible to maintain the 2-vertex-and 2-edge-connected components
of a digraph under edge deletions. All of these extensions can be handled with the same time
and space bounds as for the extended decremental SCC problem. (Most of these reductions
have been deferred to the full version of the paper.)

A naive approach to solving the extended decremental SCC problem is to maintain
separately the SCCs in every subgraph G \ w of G, for all vertices w. After an edge deletion
we then update the SCCs of all these n subgraphs, where n is the number of vertices in
G. If we simply perform a static recompution after each deletion, then we, for example,
obtain decremental algorithms with O(m2n) total time and O(n2) space by recomputing the
SCCs in each G \ w [37] or O(m2 +mn) total time and O(m+ n) space by constructing a
more suitable static connectivity data structure [22], respectively. Here m denotes the initial
number of edges. The current fastest (randomized) decremental SCC algorithm by Chechik
et al. [10] trivially gives O(mn3/2 logn) total update time and O(mn) space for our extended
decremental SCC problem.

The main technical contribution of this paper is a data structure for the extended
decremental SCC problem with O(mn logn) total update time that uses O(n2 logn) space,
and that answers queries in constant time. We obtain this data structure by extending
Łącki’s decremental SCC algorithm [30]. His algorithm maintains the SCCs of a graph under
edge deletions by recursively decomposing the SCCs into smaller and smaller subgraphs.
We therefore refer to his data structure as an SCC-decomposition. His total update time
is O(mn) and the space used is O(m+ n). We observe that the naive algorithm based on
SCC-decompositions can be implemented in such a way that most of the work performed is
redundant. We obtain our data structure by merging n SCC-decompositions into one joint
data structure, which we refer to as a joint SCC-decomposition. Our data structure, like
that of Łącki, is deterministic. Using completely different techniques, Georgiadis et al. [21]
showed how to answer the same sensitivity queries in O(mn) total time in the incremental
setting, i.e., when the input digraph undergoes edge insertions only.

The extended SCC problem is related to the so-called fault-tolerant model. Here, one
wishes to preprocess a graph G into a data structure that is able to answer fast certain

L. Georgiadis, T. D. Hansen, G. F. Italiano, S. Krinninger, and N. Parotsidis 42:3

sensitivity queries, i.e., given a failed vertex w (resp., failed edge e), compute a specific
property of the subgraph G \ w (resp., G \ e) of G. Our data structure supports sensitivity
queries when a digraph G undergoes edge deletions, which gives an aspect of decremental
fault-tolerance. This may be useful in scenarios where we wish to find the best edge whose
deletion optimizes certain properties (fault-tolerant aspect) and then actually perform this
deletion (decremental aspect). This is, e.g., done in the computational biology applications
considered by Mihalák et al. [32]. Their recursive deletion-contraction algorithm repeatedly
finds the edge of a strongly connected digraph whose deletion maximizes quantities such as
the number of resulting SCCs or minimizes their maximum size.

As another important application of our joint SCCs data structure, we provide the first
nontrivial algorithm for maintaining the dominator tree of a flow graph under edge deletions.
A flow graph G = (V,E, s) is a directed graph with a distinguished start vertex s ∈ V , w.l.o.g.
containing only vertices reachable from s. A vertex w dominates a vertex v (w is a dominator
of v) if every path from s to v includes w. The immediate dominator of a vertex v, denoted
by d(v), is the unique vertex that dominates v and is dominated by all dominators of v. The
dominator tree D is a tree with root s in which each vertex v has d(v) as its parent. Dominator
trees can be computed in linear time [2, 7, 8, 23]. The problem of finding dominators has been
extensively studied, as it occurs in several applications, including program optimization and
code generation [12], constraint programming [34], circuit testing [4], theoretical biology [1],
memory profiling [31], fault-tolerant computing [5, 6], connectivity and path-determination
problems [16, 17, 19, 18, 25, 27, 28, 29], and the analysis of diffusion networks [24].

In particular, the dynamic dominator problem arises in various applications, such as data
flow analysis and compilation [11, 15]. Moreover, the results of Italiano et al. [27] imply
that dynamic dominators can be used for dynamically testing 2-vertex connectivity, and for
maintaining the strong bridges and strong articulation points of digraphs. The decremen-
tal dominator problem appears in the computation of maximal 2-connected subgraphs in
digraphs [25, 29, 13]. The problem of updating the dominator relation has been studied for
a few decades (see, e.g., [3, 9, 11, 20, 33, 35, 36]). For the incremental dominator problem,
there are algorithms that achieve total O(mn) running time for processing a sequence of
edge insertion in a flow graph with n vertices, where m is the number of edges after all
insertions [3, 11, 20]. Moreover, they can answer dominance queries, i.e., whether a query
vertex w dominates another query vertex v, in constant time. Prior to our work, to the
best of our knowledge, no decremental algorithm with total running time better than O(m2)
was known for general flow graphs. In the special case of reducible flow graphs (a class that
includes acyclic flow graphs), Cicerone et al. [11] achieved an O(mn) update bound for the
decremental dominator problem. Both the incremental and the decremental algorithms of
[11] require O(n2) space, as they maintain the transitive closure of the digraph.

Our algorithm is the first to improve the trivial O(m2) bound for the decremental
dominator problem in general flow graphs. Specifically, our algorithm can process a sequence
of edge deletions in a flow graph with n vertices and initially m edges in O(mn logn) time
and O(n2 logn) space, and after processing each deletion can answer dominance queries in
constant time. For the special case of reducible flow graphs, we give an algorithm that matches
the O(mn) running time of Cicerone et al. while improving the space usage to O(m+n). We
remark that the reducible case is interesting for applications in program optimization since
one notion of a “structured” program is that its flow graph is reducible. (The details about
this result appear in the full paper.) Finally, we complement our results with a conditional
lower bound, which suggests that it will be hard to substantially improve our update bounds.
In particular, we prove that there is no incremental nor decremental algorithm for maintaining

ICALP 2017

42:4 Decremental Data Structures for Connectivity and Dominators

the dominator tree (or more generally, a dominance data structure) that has total update
time O((mn)1−ε) (for some constant ε > 0) unless the OMv Conjecture [26] fails. The same
lower bound applies to the extended decremental SCC problem. Unlike the update time, it
is not clear that the O(n2 logn) space used by our joint SCC-decomposition is near-optimal.
We leave it as an open problem to improve this bound.

Further Notation and Terminology. For a given digraph G = (V,E), we denote the set of
vertices by V (G) = V and the set of edges by E(G) = E. We let |E| = m and |V | = n. Two
vertices u and v are strongly connected in G if there is a path from u to v and a path from
v to u. G is strongly connected if every vertex is reachable from every other vertex. The
strongly connected components (SCCs) of G are its maximal strongly connected subgraphs.
We denote by G \S (resp., G \ e)) the graph obtained after deleting a set S of vertices (resp.,
an edge e) from G. For a strongly connected graph H, we say that deleting an edge e breaks
H, if H \ e is not strongly connected.

An edge (resp., a vertex) of G is a strong bridge (resp., a strong articulation point) if its
removal increases the number of SCCs. An edge e (resp., a vertex v) is a separating edge
(resp., a separating vertex) for two vertices u and v if u and v are not strongly connected
in G \ e (resp., in G \ v). Two vertices u and v are 2-edge connected (2-vertex connected)
if there are two edge-disjoint paths (internally vertex-disjoint paths) between u and v. We
denote by GR the reverse graph of G, i.e., the graph which has the same vertices as G and
contains an edge eR = (v, u) for every edge e = (u, v) of G.

2 A Data Structure for Maintaining Joint SCC-Decompositions

For a given initial graph G, the decremental SCC problem asks us to maintain a data structure
that allows edge deletions and can answer whether (arbitrary) pairs (u, v) of vertices are
in the same SCC. The goal is to update the data structure as quickly as possible while
answering queries in constant time. In this paper we present a data structure for the extended
decremental SCC problem in which a query provides an additional vertex w and asks whether
u and v are in the same SCC when w is deleted from G. We maintain this information under
edge deletions, and our data structure relies on Łącki’s SCC-decomposition [30] for doing so.

2.1 Review of Łącki’s SCC Decomposition

An SCC-decomposition recursively partitions the graph G into smaller strongly connected
subgraphs. This generates a rooted tree T , whose root r represents the entire graph, and
where the subtree rooted at each node φ represents some vertex-induced strongly connected
subgraph Gφ (we refer to vertices of T as nodes to distinguish T from G). Every non-leaf
node φ is a vertex of Gφ, and the children of φ correspond to SCCs of Gφ \ φ. The concept
was introduced by Łącki [30] and slightly extended by Chechik et al. [10]. We adopt the
notation from [10].

I Definition 1 (SCC-decomposition). Let G = (V,E) be a strongly connected graph. An
SCC-decomposition of G is a rooted tree T , whose nodes form a partition of V . For a node
φ of T we define Gφ to be the subgraph of G induced by the union of all descendants of φ
(including φ). Then, the following properties hold:

Each internal node φ of T is a single-element set. (In this case, we sometimes abuse
notation and assume that φ is the vertex itself.)

L. Georgiadis, T. D. Hansen, G. F. Italiano, S. Krinninger, and N. Parotsidis 42:5

Let φ be any internal node of T , and let H1, . . . ,Ht be the SCCs of Gφ \ φ. Then the
node φ has t children φ1, . . . , φt, where Gφi

= Hi for all i ∈ {1, . . . , t}.
An SCC-decomposition of a graph G that is not strongly connected is a collection of SCC-
decompositions of the SCCs of G. We say that T is a partial SCC-decomposition when the
leaves of T are not required to be singletons.

Observe that for each node φ, the graph Gφ is strongly connected. Moreover, the subtree
of T rooted at φ is an SCC-decomposition of Gφ. Also, for a leaf φ we have that φ = V (Gφ).
To build an SCC-decomposition T of a strongly connected graph G we pick an arbitrary
vertex v, put it in the root of T , then recursively build SCC-decompositions of SCCs of
G \ {v} and make them the children of v in T . Note that since the choice of v is arbitrary,
there are many ways to build an SCC-decomposition of the same graph. Łącki [30] (and
Chechik et al. [10]) introduced a procedure Build-SCC-Decomposition(G,S) that takes
as input a set of vertices S and returns a partial SCC-decomposition whose internal nodes
are the vertices of S, i.e., these vertices are picked first and therefore appear at the top of the
constructed tree. We refer to the vertices in S as internal nodes and the remaining nodes as
external nodes. Note that all external nodes appear in the leaves of T , while internal nodes
can be both leaves and non-leaves. This distinction is helpful when describing our algorithm.

Łącki [30] showed that the total initialization and update time under edge deletions of an
SCC-decomposition is O(mγ), where γ is the depth of the decomposition.

2.2 Towards a Joint SCC-Decomposition
Recall that the extended decremental SCC problem asks us to maintain under edge deletions
a data structure for a graph G such that we can answer whether u and v are strongly
connected in G \{w} when given u, v, w ∈ V (G). A naive algorithm does this by maintaining
n SCC-decompositions, each with a distinct vertex w as its root. The children of w in an
SCC-decomposition that has w as its root are then exactly the SCCs of G \ {w}. Hence, u
and v are in the same SCC if and only if they appear in the same subtree below w. The
total update time of this data structure is however O(mn2), which is undesirable. With a
more refined approach, we improve the time bound to O(mn logn).

Observe that the external nodes of a partial SCC-decomposition T produced by the
procedure Build-SCC-Decomposition(G,S) exactly correspond to the SCCs of G \ S.
This is true regardless of the order in which vertices from S are picked by the procedure. If
two SCC-decompositions are built using the same set S, but with vertices being picked in a
different order, then the nodes below S represent the same SCCs, which means that they
can be shared by the two SCC-decompositions. Our algorithm is based on this observation.
We essentially construct the n SCC-decompositions of the naive algorithm described above
such that large parts of their subtrees are shared, and such that we do not need to maintain
multiple copies of these subtrees. The idea is to partition the set S into two subsets S1 and
S2 of equal size (we assume for simplicity that n is a power of 2), and then construct half
of the SCC-decompositions with S1 at the top and the other half with S2 at the top. The
procedure is repeated recursively on the top part of both halves. We refer to the bottom part,
i.e., nodes that are not from S1 and S2, respectively, as the extension of the top part. Note
that we eventually get a distinct vertex as the root of each of the n SCC-decompositions.
The following definition formalizes the idea.

I Definition 2 (Joint SCC-decomposition). A joint SCC-decomposition J is a recursive
structure. It is either a regular SCC-decomposition T (the base case), or a pair of joint SCC-
decompositions J1, J2 with the same set of internal nodes S and a shared set of external nodes

ICALP 2017

42:6 Decremental Data Structures for Connectivity and Dominators

Input: A graph G and a set of vertices S ⊆ V (G)
Output: A balanced joint SCC-decomposition J = (J1, J2, S,Φ) of G on S.

1 if |S| = 1 then
2 return T = Build-SCC-Decomposition(G,S).
3 end
4 Let S1 and S2 be the first and second half of S, respectively, and let Φ be an empty list.
5 foreach i ∈ {1, 2} do
6 Compute Ji = Build-Joint-SCC-Decomposition(G,Si).
7 foreach external node φ of Ji do
8 Compute Tφ = Build-SCC-Decomposition(Gφ, φ ∩ S).
9 Add each external node of Tφ to Φ, if it is not already there.

10 end
11 end
12 return J = (J1, J2, S,Φ)

Figure 1 Build-Joint-SCC-Decomposition(G,S).

Φ. In the second case we refer to J as the tuple (J1, J2, S,Φ). A joint SCC-decomposition
J = (J1, J2, S,Φ) is balanced on S if it has one of the following two properties:
1. S is a singleton and J is a regular (partial) SCC-decomposition T with the vertex from

S as root and no other internal nodes (the base case).
2. S can be partitioned into two equally sized halves S1 and S2, and J consists of two

joint SCC-decompositions J1 = (J1,1, J1,2, S1,Φ1) and J2 = (J2,1, J2,2, S2,Φ2) that are
balanced on S1 and S2, respectively. Also, each external node φ in Φ1 and Φ2 is extended
with an associated SCC-decomposition Tφ for Gφ whose internal nodes are those of φ∩S.
The combined set of external nodes of Tφ for all φ ∈ Φ1 is equal to the combined set of
external nodes of Tφ′ for all φ′ ∈ Φ2, and these nodes are the external nodes Φ of J .

The procedure Build-Joint-SCC-Decomposition(G,S) describes how we build a
balanced joint SCC-decomposition. G is the graph that we wish to decompose, and S is
the set of vertices that we wish to place at the top. Initially S is the set of all vertices.
The following lemma bounds the number of SCC-decompositions that make up a joint
balanced SCC-decomposition. The lemma is proved by observing that the number of SCC-
decompositions constructed by Build-Joint-SCC-Decomposition(G,S) is given by the
recurrence g(s) = 2g(s/2) + 2 when s > 1 and g(s) = 1 otherwise, where s = |S|.

I Lemma 3. A balanced joint SCC-decomposition for a graph G with n vertices consists of
O(n) SCC-decompositions.

I Lemma 4. Let J = (J1, J2, S,Φ) be a balanced joint SCC-decomposition of a graph G such
that S = V (G). Then the total number of nodes of J is O(n logn), where n = |V (G)|.

Proof. The proof is by induction. Our induction hypothesis says that the total number of
internal nodes of a balanced joint SCC-decomposition J = (J1, J2, S,Φ), counting not only
S but also recursively the number of internal nodes of J1 and J2, is |S| · (1 + log |S|).

In the base case, J is an SCC-decomposition with a single internal node, and the induction
hypothesis is clearly satisfied. For the induction step we count separately the total number
of internal nodes of J1 = (J1,1, J1,2, S1,Φ1) and J2 = (J2,1, J2,2, S2,Φ2), and add the number
of internal nodes of the SCC-decompositions Tφ for φ ∈ Φ1 and φ ∈ Φ2, i.e., the extensions

L. Georgiadis, T. D. Hansen, G. F. Italiano, S. Krinninger, and N. Parotsidis 42:7

of J1 and J2 to S. Since |S1| = |S2| = |S|/2, it follows from the induction hypothesis that
both J1 and J2 have |S|2 · log |S| internal nodes in total. The internal nodes of Tφ for φ ∈ Φ1
are exactly S2, and the internal nodes of Tφ for φ ∈ Φ2 are exactly S1. Hence the number of
internal nodes in the extensions are |S1| + |S2| = |S|. It follows that the total number of
internal nodes of J is |S| · (1 + log |S|) as desired.

It remains to count the external nodes of J . Note that external nodes of J1 and J2
correspond to internal nodes of J , i.e., they are roots of the SCC-decompositions that extend
J1 and J2. Therefore there are at most as many external nodes inside the recursion as there
are internal nodes in total. There are O(n) external nodes in the extensions of J1 and J2 to
S, and we conclude that the total number of nodes when S = V (G) is at most O(n logn). J

Recall that an SCC-decomposition of depth γ can be initialized in time O(mγ) [30].
Since the depth of an SCC-decomposition is at most the number of internal nodes plus one,
and since Lemma 4 shows that the total number of nodes in a joint SCC-decomposition is
O(n logn), it follows that the combined depth of all the SCC-decompositions that make up
a joint SCC-decomposition is at most O(n logn), which proves the following lemma.

I Lemma 5. The procedure Build-Joint-SCC-Decomposition(G,S) constructs a joint
SCC-decomposition in time O(mn logn).

To answer queries for the extended decremental SCC problem in constant time, we also
construct and maintain an n × n matrix A such that A[u,w] is the index of the SCC of
G \ {w} that contains u. Two vertices u and v are in the same SCC of G \ {w} if and only
if A[u,w] = A[v, w]. To avoid cluttering the pseudo-code we describe separately how A is
maintained. In Build-Joint-SCC-Decomposition(G,S) we initialize A in the base case
when we compute an SCC-decomposition T for a singleton S = {w}. Indeed, in this case w
is the root of T , and the external nodes are exactly the SCCs of G \ {w}. Hence, for every
vertex u ∈ V (G) \ {w} we set A[u,w] to the index of the SCC it is part of in G \ {w}.

Note that storing the matrix A takes space O(n2). The time spent initializing A is
however dominated by the other work performed by the algorithm.

2.3 Deleting Edges from a Joint SCC-Decomposition
We next show how to maintain a joint SCC-decomposition under edge deletions. It is
again instructive to consider the work performed by the naive algorithm that maintains n
SCC-decompositions with distinct roots. If these are constructed as described in Section 2.2,
then the SCC-decompositions will share many identical subtrees, and the work performed on
these subtrees will be the same. In the joint SCC-decomposition such subtrees are shared,
but otherwise the work performed is the same as the work performed for individual SCC-
decompositions. We therefore use Łącki’s algorithm [30] to delete edges from the individual
SCC-decompositions, and we introduce a new procedure for handling the interface between
the SCC-decompositions. We next briefly sketch Łącki’s algorithm (see also [10, 30]).

Recall that each node φ of an SCC-decomposition T represents a strongly connected
subgraph Gφ induced by the vertices in the subtree rooted at φ. If φ is an internal node of
T , then the children of φ are the SCCs of Gφ \ φ. Łącki uses the following two operations to
compactly represent edges among φ and its children.

I Definition 6. Let G be a graph. The condensation of G, denoted by Condense(G), is
the graph obtained from G by contracting all its SCCs into single vertices. Let v ∈ V (G).
By Split(G, v) we denote the graph obtained from G by splitting v into two vertices: vin
and vout. The in-edges of v are connected to vin and the out-edges to vout.

ICALP 2017

42:8 Decremental Data Structures for Connectivity and Dominators

The two operations are often used together, and to simplify notation we use the shorthand
Gcon
v = Condense(Split(G, v)). The graph Gcon

φ is stored with every internal node φ of
the SCC-decomposition T . This introduces at most three copies of every vertex v of G: The
two vertices vin and vout in Gcon

v , and possibly a third vertex in the condensed graph of
the parent of v in T . Moreover, every edge (u, v) appears in exactly one condensed graph,
namely that of the lowest common ancestor of u and v in T , which we denote by LCA(u, v).
The combined space used for storing all the condensed graphs is thus O(m+ n).

To delete an edge (u, v), Łącki [30] locates φ = LCA(u, v), and deletes (u′, v′) from Gcon
φ ,

where u′ and v′ are the vertices whose subtrees contain u and v. (He uses O(m) space to
store a pointer from every edge (u, v) to LCA(u, v), enabling him to find the lowest common
ancestor in constant time.) To preserve connectivity, he then checks whether u′ and v′ have
non-zero out- and in-degrees, respectively, in Gcon

φ . If this is not the case, then he repeatedly
removes vertices with out- or in-degree zero and their adjacent edges from Gcon

φ . All such
vertices can be located, starting from u′ and v′, in time that is linear in the number of edges
adjacent to the removed vertices. The corresponding children of φ are then moved up one
level in T and are made siblings of φ. They are also inserted into Gcon

par(φ), where par(φ) is
the parent of φ, and their edges and the edges of φ in Gcon

par(φ) are updated correspondingly.
This can again be done in time linear in the number of edges in the original graph that
are adjacent to vertices in the subtrees that are moved. The procedure is then repeated in
Gcon
par(φ). Since every vertex increases its level at most γ times, where γ is the initial depth of

T , it follows that the total update time of the algorithm is at most O(mγ).
We let Delete-Edge-from-SCC-decomposition(T, u, v) be the procedure for deleting

an edge (u, v) from an SCC-decomposition T . We also denote the recursive procedure for
moving nodes φ1, . . . , φk from being children of φ to being siblings of φ in T after an edge (u, v)
is deleted by Fix-SCC-decomposition(T, u, v, φ, {φ1, . . . , φk}). Both procedures return
the resulting SCC-decomposition, or a collection of SCC-decompositions in case the graph is
not strongly connected. (The pseudo-code appears in the full version of the paper.)

In a joint SCC-decomposition, vertices and edges may appear in multiple nodes as part of
smaller SCC-decompositions. We therefore need to find every occurence of the edge that we
wish to delete. We introduce a procedure Delete-Edge(J, u, v) that does that by recursively
searching through the nested joint SCC-decompositions and deleting (u, v) from the relevant
SCC-decompositions. The procedure also handles the interface between SCC-decompositions.
Note that deleting (u, v) from an SCC-decomposition T may cause the SCC corresponding to
the root φ of T to break. The procedure Delete-Edge-from-SCC-decomposition(T, u, v)
will in this case return a collection of SCC-decompositions {T1, . . . , Tk}, one for each new
SCC. Suppose J = (J1, J2, S,Φ). If T extends J1 (resp. J2), then it is an SCC-decomposition
of the subgraph Gφ associated with some external node φ of J1 (resp. J2). φ is then itself a
leaf of an SCC-decomposition T ′ in J1 (resp. J2). Moreover, when the SCC corresponding
to φ breaks, then this leaf must be split into multiple leaves of T ′, one for each new SCC.
Note however that the levels in T ′ of the involved vertices do not change after the split. We
therefore cannot charge the work performed when splitting φ to the analysis by Łącki [30].

Let φ1, . . . , φk be the roots of the SCC-decompositions T1, . . . , Tk that are created when
the deletion of (u, v) breaks the SCC Gφ. As mentioned above, we need to replace φ in
T ′ by φ1, . . . , φk, which means that φ1, . . . , φk should replace φ in Gcon

par(φ), where par(φ) is
the parent of φ in T ′. To efficiently reconnect φ1, . . . , φk in Gcon

par(φ) we identify the vertex
φi whose associated graph Gφi

has the most vertices, and we then scan through all the
vertices in the other graphs Gφ1 , . . . , Gφi−1 , Gφi+1 , . . . , Gφk

and reconnect their adjacent
edges in Gcon

par(φ) when relevant. The work performed is exactly the same as when Łącki

L. Georgiadis, T. D. Hansen, G. F. Italiano, S. Krinninger, and N. Parotsidis 42:9

fixes an SCC-decomposition after an edge is removed. We can therefore call Fix-SCC-
decomposition(T ′,u,v,φ,{φ1, . . . , φi−1, φi+1, . . . , φk}). Note that this makes φi take over
the role of φ. Also note that we provide the procedure with the end-points u and v of the edge
that was deleted, since u and v are used as starting points for the search for disconnected
vertices when propagating the update further up the tree.

Finally, observe that splitting the leaf φ of the SCC-decomposition T ′ may propagate
all the way to the root of T ′ and break the SCC corresponding to T ′. We therefore use a
recursive procedure, Split-Leaf(J ,u,v,φ,{φ1, . . . , φk}), to perform the split. Here u and v
are again the end-points of the edge that was deleted.

I Theorem 7. The total update time spent by Delete-Edge(J, u, v) in order to maintain
a balanced joint SCC-decomposition under edge deletions is O(mn logn).

Proof. We only sketch the proof, and refer to the full paper for additional details.
The time spent by Delete-Edge(J, u, v) consists of three parts: checking whether

{u, v} ⊆ V (Gφ) for some φ ∈ Φ, the work performed while deleting edges from SCC-
decompositions, and the work performed by Split-Leaf(Ji, u, v, φ, {φ1, . . . , φk}), for i ∈
{1, 2}. To check in constant time whether {u, v} ⊆ V (Gφ), we maintain for each SCC-
decomposition T an array on the vertices of the original graph G, such that T 〈v〉 = True
if v appears in T , and T 〈v〉 = False otherwise. Storing these arrays takes up O(n2) space,
and they are updated when the SCC of the root of an SCC-decomposition breaks.

Recall that Łącki [30] showed that the total initialization and update time of an SCC-
decomposition is O(mγ), where γ is the depth of the decomposition. By Lemma 4, the
total number of nodes of the SCC-decompositions in J is O(n logn), and therefore the
combined depth of the SCC-decompositions is also O(n logn). It follows that the time spent
on Delete-Edge-from-SCC-decomposition(Tφ, u, v) is bounded by O(mn logn).

It remains to analyze the time spent on Split-Leaf(Ji, u, v, φ, {φ1, . . . , φk}). Recall that
Split-Leaf identifies the node φi that contains the most vertices from G, and then breaks
off φ1, . . . , φi−1, φi, . . . , φk from φ. This means that φ is turned into φi, and that we do
not scan through edges adjacent to vertices in φi. Since a split therefore moves vertices
to new nodes of at most half the size, each vertex v can only be moved O(logn) times in
one particular SCC-decomposition T by Split-Leaf. Each move takes time proportional
to the number of edges adjacent to v, so the total time spent splitting leaves of T is at
most O(m logn). Since, by Lemma 3, there are only O(n) SCC-decompositions in J , it
follows that the total time spent splitting leaves is O(mn logn). Furthermore, the time
spent by Split-Leaf on fixing SCC-decompositions can be charged to the depth reduction
of the vertices that are moved, and this part of the analysis is therefore the same as for
Delete-Edge-from-SCC-decomposition(Tφ, u, v). J

Recall that we also maintain a matrix A for answering queries, where A[u,w] is the index
of the SCC of G \ {w} that contains u. We again update A when we make changes to the
topmost SCC-decompositions that each only contain a single internal node, i.e., when such a
root φ gets a new child, or when Gφ breaks into multiple SCCs. The time spent updating
A is dominated by the rest of the work that is performed by our algorithm, where we scan
through all edges adjacent to vertices whose SCC is changed.

As described briefly in Section 2.3, Łącki’s SCC-decomposition can be implemented such
that is uses O(m+ n) space [30]. Since a balanced joint SCC-decomposition consists of O(n)
SCC-decompositions (Lemma 3), it follows that a naive implementation of our data structure
uses O(mn) space. In the full version of the paper we show how to obtain an alternative
bound of O(n2 logn). Doing so requires two observations:

ICALP 2017

42:10 Decremental Data Structures for Connectivity and Dominators

After an edge (u′, v′) is deleted from a condensed graph Gcon
φ , the vertex u′ has a path to

φin if and only if u′ has non-zero out-degree, and there is a path from φout to v′ if and
only if v′ has non-zero in-degree. Instead of storing the edges of the condensed graphs
we therefore store the in- and out-degrees of the vertices. To visit all neighbors of a
vertex u′ in Gcon

φ , we then collect from the original graph G all edges adjacent to vertices
in the subgraph of u′, and we check for each edge whether the other end-point is part
of Gcon

φ and which vertex of Gcon
φ it goes to. To do so we store pointers between the

vertices of G and the vertices of the condensed graphs that they are part of. Since a joint
SCC-decomposition contains O(n logn) nodes this takes O(n2 logn) space.
Since a joint SCC-decomposition contains O(n logn) nodes in total, we have time to visit
all the nodes of an SCC-decomposition T when searching for the lowest common ancestor
of two vertices u and v. This is done in a bottom-up fashion. We therefore do not need
to store a pointer from every edge (u, v) to LCA(u, v).

3 Applications

In this section we exploit the decremental joint SCC-decomposition to design decremental
algorithms for various connectivity notions defined with respect to vertex or edge failures.

Maintaining Decrementally the Dominator Tree. We show how to maintain a dominator
tree D of a flow graph G, rooted at a starting vertex s. We denote by d(v) the parent of v in
D. We first produce a flow graph Gs from G by adding an edge from each vertex v ∈ V \ s
to s. The addition of those edges has the following property. If a vertex u is not strongly
connected to s in Gs then there is no path from s to u in G. Conversely, if a vertex u is not
strongly connected to s in Gs \ v, while s and u are strongly connected in Gs, then all paths
from s to u in G contain v. That is, v is a dominator of u in G.

We maintain decrementally a joint SCC-decomposition of Gs in a total of O(mn logn)
time and O(n2 logn) space. Therefore, for each vertex v we maintain the SCCs in G \ v. Let
v 6= s: after the SCC containing s in G \ v breaks, all the vertices that are not in the new
SCC that contains s are dominated from v in G. We can report the newly dominated vertices
from v in G in time proportional to their number. Therefore, after each edge deletion we
need to process a batch N of incoming new dominance relations N(v) = {u1, . . . , uk}, where
u1, . . . , uk are dominated by v in G. We can process a batch of updates N in two phases as
follows. For each vertex u 6= s we keep a counter depth(u) of the number of vertices that
dominate u. For each dominance relation N(v) ∈ N , we increase depth(u) for each u ∈ N(v).
After this first phase ends, all vertices have updated counters. Then the new parent of each
vertex u in D is the vertex with the largest counter among d(u) (i.e., the parent of u in D
before the edge insertion) and all vertices v such that u ∈ N(v) and N(v) ∈ N .

Now we bound the total time required to maintain the dominator tree. The running time
of the above procedure, during the whole sequence of deletions, is bounded by the total size
of all the sets N(v). Note that any vertex can appear in a specific N(v) set at most once
during the deletion sequence. Hence, the total size of all the sets N(v) is O(n2).

I Lemma 8. The dominator tree of a directed graph G with start vertex s can be maintained
decrementally in O(mn logn) total update time and O(n2 logn) space, where m is the number
of edges in the initial graph and n is the number of vertices.

Maintaining Decrementally the Strong Bridges of the Graph. Let G be strongly con-
nected: its strong bridges can be computed efficiently from a dominator tree D of G and a

L. Georgiadis, T. D. Hansen, G. F. Italiano, S. Krinninger, and N. Parotsidis 42:11

dominator tree DR of GR, both rooted at the same start vertex s. We present a random-
ized algorithm that maintains such a pair of dominator trees in each SCC of a digraph in
O(mn logn) total expected time, and O(n2 logn) space. This allows us to maintain the set
of strong bridges of a digraph in the same (expected) running time and space.

Maintaining Decrementally the 2-Edge-Connected Components. In this section we show
how to maintain the 2-edge-connected components of directed graph. Two vertices w and
z are 2-edge-connected if and only if there is no edge e such that w and z are not strongly
connected in G \ e. A 2-edge-connected component is a maximal subset B ⊆ V , such that
w and z are 2-edge-connected, for all z, w ∈ B. Therefore, a simple-minded algorithm for
computing the 2-edge-connected components is the following. We start with the trivial
partition P of the vertices that is equal to the set of SCCs of the graph. For every strong
bridge e, we compute the SCCs C1, . . . , Ck of G \ e and we refine the maintained partition P
according to the partition induced by the SCCs C1, . . . , Ck. After performing all refinements
on P two vertices are in the same set if and only if we did not find an edge that separates
them, which is exactly the definition of 2-edge-connected components.

Our algorithm is a dynamic version of the aforementioned simple-minded algorithm. That
is, we maintain the SCCs of G\e, for each strong bridge e, and refine the maintained partition
P whenever we identify that P no longer contains the 2-vertex-connected components of
G. We do this as follows. Assume that a component C ∈ P contains vertices in different
SCCs of G \ e, for some e. Let C1, C2, . . . , Ck be the SCCs in G \ e. We replace C by
{C ∩ C1}, . . . , {C ∩ Ck}. These refinements can be easily performed in O(n) time, and
therefore we spend total time O(n2) for all refinements throughout the algorithm.

In order to make our algorithm efficient we need to specify how to detect whether two
2-edge-connected vertices appear in different SCCs in G \ e, for some edge e. Whenever an
SCC C in G \ e, breaks into k SCCs C1, . . . , Ck, for all SCCs Ci except the largest one we
examine whether the components C ∈ P containing subsets of vertices of Ci are entirely
contained in Ci. We develop machinery that allows us to list all vertices in the resulting
SCCs C1, . . . , Ck except the largest one, in time proportional to their number. The details
can be found in the full paper. Each vertex can appear at most logn times in an SCC of
G \ e, for some strong bridge e, that is not the largest after a big SCC breaks. This implies
that we spend O(n logn) time for each graph G \ e on testing whether an edge deletion
leaves two (previously) 2-edge-connected vertices in different SCCs in G \ e, for some edge
e. We show that at most O(n) strong bridges can appear throughout any sequence of edge
deletions. Thus we spend O(n2 logn) time in total.

I Lemma 9. The 2-edge-connected components of a digraph G can be maintained decre-
mentally in O(mn logn) total expected time against an oblivious adversary, using O(n2 logn)
space, where m is the number of edges in the initial graph and n is the number of vertices.

4 Conditional Lower Bound

In the following we give a conditional lower bound for the partially dynamic dominator tree
problem. We show that there is no incremental nor decremental algorithm for maintaining
the dominator tree that has total update time O((mn)1−ε) (for some constant ε > 0) unless
the OMv Conjecture [26] fails. This also holds for algorithms that do not explicitly maintain
the tree, but are able to answer parent-queries. Formally, we prove the following statement.

I Theorem 10. For any constant δ ∈ (0, 1/2] and any n and m = Θ(n1/(1−δ)), there is no
algorithm for maintaining a dominator tree under edge deletions/insertions allowing queries

ICALP 2017

42:12 Decremental Data Structures for Connectivity and Dominators

of the form “is x the parent of y in the dominator tree” that uses polynomial preprocessing
time, total update time u(m,n) = (mn)1−ε and query time q(m) = mδ−ε for some constant
ε > 0, unless the OMv conjecture fails.

Under this conditional lower bound, the running time of our algorithm is optimal up to
sub-polynomial factors. We give the reduction for the decremental version of the problem.
Hardness of the incremental version follows analogously.

In the online Boolean matrix-vector problem we are first given a Boolean n×n matrix M
to preprocess. After the preprocessing, we are given a sequence of n-dimensional Boolean
vectors v(1), . . . , v(n) one by one. For each 1 ≤ t ≤ n, we have to return the result of the
matrix-vector multiplication Mv(t) before we are allowed to see the next vector v(t+1). The
OMv Conjecture states that there is no algorithm that computes each matrix-vector product
correctly (with high probability) and in total spends time O(n3−ε) for some constant ε > 0.

We will not use the OMv problem directly as the starting point of our reduction. Instead
we consider the following γ-OuMv problem (for a fixed γ > 0) and parameters n1, n2, and
n3 such that n1 = bnγ2c: We are first given a Boolean n1 × n2 matrix M to preprocess.
After the preprocessing, we are given a sequence of pairs of n1-dimensional Boolean vectors
(u(1), v(1)), . . . , (u(n3), v(n3)) one by one. For each 1 ≤ t ≤ n3, we have to return the result of
the Boolean vector-matrix-vector multiplication (u(t))ᵀMv(t) before we see the next pair of
vectors (u(t+1), v(t+1)). It has been shown [26] that under the OMv Conjecture, there is no
algorithm for this problem with polynomial preprocessing time and total processing time
O(n1−ε1

1 n1−ε2
2 n1−ε3

3) such that all εi are ≥ 0 and at least one εi is a constant > 0.
We now give the reduction from the γ-OuMv problem with γ = δ/(1−δ) to the decremental

dominator tree problem. In the following we denote by vi the i-th entry of a vector i and by
Mi,j the entry at row i and column j of a matrix M .

Consider an instance of the γ-OuMv problem with parameters n1 = m1−δ, n2 = mδ,
and n3 = m1−δ. We preprocess the matrix M by constructing a graph G(0) with the set of
vertices V = {s, x1, . . . , xn3 , xn3+1, y1, . . . , yn1 , z1, . . . , zn2} and the following edges: (1) an
edge (s, x1), and, for every 1 ≤ t ≤ n3, an edge (xt, xt+1), (2) for every 1 ≤ j ≤ n2, an edge
(t, zj), (3) for every 1 ≤ t ≤ n3 and every 1 ≤ i ≤ n1, an edge (xt, yi), and (4) for every
1 ≤ i ≤ n1 and every 1 ≤ j ≤ n2, an edge (yi, zj) if and only if Mi,j = 1.

Whenever the algorithm is given the next pair of vectors (u(t), v(t)), we first create a
graph G(t) by performing the following edge deletions in G(t−1): If t ≥ 2, we first delete all
outgoing edges of xt−1, except the one to xt. Then (for any value of t), for every i such that
u

(t)
i = 0 we delete the edge from xt to yi. Thus, for every 1 ≤ i ≤ n1, there will be an edge

from xt to yi in G(t) if and only if u(t)
i = 1. Having created G(t), we now, for every j such

that v(t)
j = 1, check whether xt is the parent of zj in the dominator tree. If this is the case

for at least one j we return that (u(t))ᵀMv(t) is 1, otherwise we return 0.
The correctness of our reduction follows from the following lemma.

I Lemma 11. For every 1 ≤ t ≤ n, the j-th entry of (u(t))ᵀM is 1 if and only if xt is the
immediate dominator of zj in G(t)

Note that (u(t))ᵀMv(t) is 1 if and only if there is a j such that both the j-th entry of u(t)M

as well as the j-th entry of v(t) are 1. Furthermore, xt is the parent of zj in the dominator
tree if and only if xt is an immediate dominator of zj in the current graph. Therefore the
lemma establishes the correctness of the reduction.

The initial graph G(0) has n := Θ(n1 +n2 +n3) = Θ(mδ +m1−δ) = Θ(m1−δ) vertices and
Θ(n1n2 + n2n3) = Θ(m) edges. The total number of parent-queries is O(n1n3) = m2(1−δ).
Suppose the total update time of the decremental dominator tree algorithm is O(u(m,n)) =

L. Georgiadis, T. D. Hansen, G. F. Italiano, S. Krinninger, and N. Parotsidis 42:13

(mn)1−ε and its query time is O(q(m)) = mδ−ε. Using the reduction above, we can thus solve
the γ-OuMv problem for the parameters n1, n2, n3 with polynomial preprocessing time and
total update time O(u(m,n) +m2(1−δ)q(m)) = O(u(m,m1−δ) +m2(1−δ)q(m)) = O(m2−δ−ε).
Since n1n2n3 = m2−δ, this means we would get an algorithm for the γ-OuMv problem with
polynomial preprocessing time and total update time O(n1−ε1

1 n1−ε2
2 n1−ε3

3) where at least one
εi is a constant > 0. This contradicts the OMv Conjecture.

References

1 S. Allesina and A. Bodini. Who dominates whom in the ecosystem? Energy flow bottlenecks
and cascading extinctions. Journal of Theoretical Biology, 230(3):351–358, 2004. doi:
10.1016/j.jtbi.2004.05.009.

2 S. Alstrup, D. Harel, P.W. Lauridsen, and M. Thorup. Dominators in linear time. SIAM
Journal on Computing, 28(6):2117–21132, 1999. doi:10.1137/S0097539797317263.

3 S. Alstrup and P.W. Lauridsen. A simple dynamic algorithm for maintaining a dominator
tree. Technical Report 96-3, Department of Computer Science, University of Copenhagen,
1996.

4 M.E. Amyeen, W.K. Fuchs, I. Pomeranz, and V. Boppana. Fault equivalence identification
using redundancy information and static and dynamic extraction. In Proc. of the 19th IEEE
VLSI Test Symposium, pages 124–130, 2001. doi:10.1109/VTS.2001.923428.

5 S. Baswana, K. Choudhary, and L. Roditty. Fault tolerant reachability for directed graphs.
In Proc. of the 29th Int’l. Symposium on Distributed Computing (DISC), pages 528–543,
2015. doi:10.1007/978-3-662-48653-5_35.

6 S. Baswana, K. Choudhary, and L. Roditty. Fault tolerant reachability subgraph: Generic
and optimal. In Proc. of the 48th ACM Symposium on Theory of Computing (STOC),
pages 509–518, 2016. doi:10.1145/2897518.2897648.

7 A.L. Buchsbaum, L. Georgiadis, H. Kaplan, A. Rogers, R. E. Tarjan, and J.R. Westbrook.
Linear-time algorithms for dominators and other path-evaluation problems. SIAM Journal
on Computing, 38(4):1533–1573, 2008. doi:10.1137/070693217.

8 A.L. Buchsbaum, H. Kaplan, A. Rogers, and J.R. Westbrook. A new, simpler linear-
time dominators algorithm. ACM Transactions on Programming Languages and Systems,
20(6):1265–1296, 1998. doi:10.1145/295656.295663.

9 M.D. Carroll and B.G. Ryder. Incremental data flow analysis via dominator and attribute
update. In Proc. of the 15th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL), pages 274–284, 1988. doi:10.1145/73560.73584.

10 S. Chechik, T.D. Hansen, G. F. Italiano, J. Lacki, and N. Parotsidis. Decremental single-
source reachability and strongly connected components in Õ(m

√
n) total update time. In

Proc. of the 57th IEEE Symposium on Foundations of Computer Science(FOCS), pages
315–324, 2016. doi:10.1109/FOCS.2016.42.

11 S. Cicerone, D. Frigioni, U. Nanni, and F. Pugliese. A uniform approach to semi-dynamic
problems on digraphs. Theorical Computer Science, 203:69–90, August 1998. doi:10.1016/
S0304-3975(97)00288-0.

12 R. Cytron, J. Ferrante, B. K. Rosen, M.N. Wegman, and F.K. Zadeck. Efficiently comput-
ing static single assignment form and the control dependence graph. ACM Transactions on
Programming Languages and Systems, 13(4):451–490, 1991. doi:10.1145/115372.115320.

13 W. Di Luigi, L. Georgiadis, G. F. Italiano, L. Laura, and N. Parotsidis. 2-connectivity
in directed graphs: An experimental study. In Proc. of the 17th Workshop on Algo-
rithm Engineering and Experiments (ALENEX), pages 173–187, 2015. doi:10.1137/1.
9781611973754.15.

ICALP 2017

http://dx.doi.org/10.1016/j.jtbi.2004.05.009
http://dx.doi.org/10.1016/j.jtbi.2004.05.009
http://dx.doi.org/10.1137/S0097539797317263
http://dx.doi.org/10.1109/VTS.2001.923428
http://dx.doi.org/10.1007/978-3-662-48653-5_35
http://dx.doi.org/10.1145/2897518.2897648
http://dx.doi.org/10.1137/070693217
http://dx.doi.org/10.1145/295656.295663
http://dx.doi.org/10.1145/73560.73584
http://dx.doi.org/10.1109/FOCS.2016.42
http://dx.doi.org/10.1016/S0304-3975(97)00288-0
http://dx.doi.org/10.1016/S0304-3975(97)00288-0
http://dx.doi.org/10.1145/115372.115320
http://dx.doi.org/10.1137/1.9781611973754.15
http://dx.doi.org/10.1137/1.9781611973754.15

42:14 Decremental Data Structures for Connectivity and Dominators

14 D. Eppstein, Z. Galil, and G.F. Italiano. Dynamic graph algorithms. In M. J. Atallah
and M. Blanton, editors, Algorithms and Theory of Computation Handbook, 2nd Edition,
Vol. 1, pages 9.1–9.28. CRC Press, 2009.

15 K. Gargi. A sparse algorithm for predicated global value numbering. SIGPLAN Not.,
37(5):45–56, 2002. doi:10.1145/543552.512536.

16 L. Georgiadis. Testing 2-vertex connectivity and computing pairs of vertex-disjoint s-t paths
in digraphs. In Proc. of the 37th Int’l. Coll. on Automata, Languages, and Programming
(ICALP), pages 738–749, 2010. doi:10.1007/978-3-642-14165-2_62.

17 L. Georgiadis. Approximating the smallest 2-vertex connected spanning subgraph of a
directed graph. In Proc. of the 19th European Symposium on Algorithms (ESA), pages
13–24, 2011. doi:10.1007/978-3-642-23719-5_2.

18 L. Georgiadis, G. F. Italiano, L. Laura, and N. Parotsidis. 2-vertex connectivity in di-
rected graphs. In Proc. of the 42nd Int’l. Coll. on Automata, Languages, and Programming
(ICALP), pages 605–616, 2015. doi:10.1007/978-3-662-47672-7_49.

19 L. Georgiadis, G. F. Italiano, L. Laura, and N. Parotsidis. 2-edge connectivity in directed
graphs. ACM Transactions on Algorithms, 13(1):9:1–9:24, 2016. doi:10.1145/2968448.

20 L. Georgiadis, G. F. Italiano, L. Laura, and F. Santaroni. An experimental study of dynamic
dominators. In Proc. of the 20th European Symposium on Algorithms (ESA), pages 491–502,
2012. doi:10.1007/978-3-642-33090-2_43.

21 L. Georgiadis, G. F. Italiano, and N. Parotsidis. Incremental strong connectivity and 2-
connectivity in directed graphs. Manuscript, 2017.

22 L. Georgiadis, G. F. Italiano, and N. Parotsidis. Strong connectivity in directed graphs
under failures, with applications. In Proc. of the 28th ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1880–1899, 2017. doi:10.1137/1.9781611974782.123.

23 L. Georgiadis and R.E. Tarjan. Finding dominators revisited. In Proc. of the 15th ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 869–878, 2004.

24 M. Gomez-Rodriguez, L. Song, N. Du, H. Zha, and B. Schölkopf. Influence estimation and
maximization in continuous-time diffusion networks. ACM Transactions on Information
Systems, 34(2):9:1–9:33, 2016. doi:10.1145/2824253.

25 M. Henzinger, S. Krinninger, and V. Loitzenbauer. Finding 2-edge and 2-vertex strongly
connected components in quadratic time. In Proc. of the 42nd Int’l. Coll. on Au-
tomata, Languages, and Programming (ICALP), pages 713–724, 2015. doi:10.1007/
978-3-662-47672-7_58.

26 M. Henzinger, S. Krinninger, D. Nanongkai, and T. Saranurak. Unifying and strengthening
hardness for dynamic problems via the online matrix-vector multiplication conjecture. In
Proc. of the 47th ACM Symposium on Theory of Computing (STOC), pages 21–30, 2015.
doi:10.1145/2746539.2746609.

27 G.F. Italiano, L. Laura, and F. Santaroni. Finding strong bridges and strong articulation
points in linear time. Theoretical Computer Science, 447:74–84, 2012. doi:10.1016/j.tcs.
2011.11.011.

28 R. Jaberi. Computing the 2-blocks of directed graphs. RAIRO – Theoretical Informatics
and Applications, 49(2):93–119, 2015. doi:10.1051/ita/2015001.

29 R. Jaberi. On computing the 2-vertex-connected components of directed graphs. Discrete
Applied Mathematics, 204:164–172, 2016. doi:10.1016/j.dam.2015.10.001.

30 J. Lacki. Improved deterministic algorithms for decremental reachability and strongly
connected components. ACM Transactions on Algorithms, 9(3):27, 2013. doi:10.1145/
2483699.2483707.

31 E.K. Maxwell, G. Back, and N. Ramakrishnan. Diagnosing memory leaks using graph
mining on heap dumps. In Proc. of the 16th ACM SIGKDD Int’l. Con. on Knowledge
Discovery and Data Mining (KDD), pages 115–124, 2010. doi:10.1145/1835804.1835822.

http://dx.doi.org/10.1145/543552.512536
http://dx.doi.org/10.1007/978-3-642-14165-2_62
http://dx.doi.org/10.1007/978-3-642-23719-5_2
http://dx.doi.org/10.1007/978-3-662-47672-7_49
http://dx.doi.org/10.1145/2968448
http://dx.doi.org/10.1007/978-3-642-33090-2_43
http://dx.doi.org/10.1137/1.9781611974782.123
http://dx.doi.org/10.1145/2824253
http://dx.doi.org/10.1007/978-3-662-47672-7_58
http://dx.doi.org/10.1007/978-3-662-47672-7_58
http://dx.doi.org/10.1145/2746539.2746609
http://dx.doi.org/10.1016/j.tcs.2011.11.011
http://dx.doi.org/10.1016/j.tcs.2011.11.011
http://dx.doi.org/10.1051/ita/2015001
http://dx.doi.org/10.1016/j.dam.2015.10.001
http://dx.doi.org/10.1145/2483699.2483707
http://dx.doi.org/10.1145/2483699.2483707
http://dx.doi.org/10.1145/1835804.1835822

L. Georgiadis, T. D. Hansen, G. F. Italiano, S. Krinninger, and N. Parotsidis 42:15

32 M. Mihalák, P. Uznański, and P. Yordanov. Prime factorization of the Kirchhoff polynomial:
Compact enumeration of arborescences. In Proc. of the SIAM Analytic Algorithmics and
Combinatorics (ANALCO), pages 93–105, 2016. doi:10.1137/1.9781611974324.10.

33 K. Patakakis, L. Georgiadis, and V.A. Tatsis. Dynamic dominators in practice. In Proc.
of the 16th Panhellenic Conference on Informatics (PCI), pages 100–104, 2011. doi:10.
1109/PCI.2011.28.

34 L. Quesada, P. Van Roy, Y. Deville, and R. Collet. Using dominators for solving con-
strained path problems. In Proc. of the 8th International Conference on Practical Aspects
of Declarative Languages (PADL), pages 73–87, 2006. doi:10.1007/11603023_6.

35 G. Ramalingam and T. Reps. An incremental algorithm for maintaining the dominator
tree of a reducible flowgraph. In Proc. of the 21st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL), pages 287–296, 1994. doi:10.1145/
174675.177905.

36 V.C. Sreedhar, G.R. Gao, and Y. Lee. Incremental computation of dominator trees. ACM
Transactions on Programming Languages and Systems, 19:239–252, 1997. doi:10.1145/
202529.202531.

37 R.E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing,
1(2):146–160, 1972. doi:10.1137/0201010.

ICALP 2017

http://dx.doi.org/10.1137/1.9781611974324.10
http://dx.doi.org/10.1109/PCI.2011.28
http://dx.doi.org/10.1109/PCI.2011.28
http://dx.doi.org/10.1007/11603023_6
http://dx.doi.org/10.1145/174675.177905
http://dx.doi.org/10.1145/174675.177905
http://dx.doi.org/10.1145/202529.202531
http://dx.doi.org/10.1145/202529.202531
http://dx.doi.org/10.1137/0201010

	Introduction
	A Data Structure for Maintaining Joint SCC-Decompositions
	Review of Łacki's SCC Decomposition
	Towards a Joint SCC-Decomposition
	Deleting Edges from a Joint SCC-Decomposition

	Applications
	Conditional Lower Bound

