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Abstract
We study a dynamic market setting where an intermediary interacts with an unknown large
sequence of agents that can be either sellers or buyers: their identities, as well as the sequence
length n, are decided in an adversarial, online way. Each agent is interested in trading a single
item, and all items in the market are identical. The intermediary has some prior, incomplete
knowledge of the agents’ values for the items: all seller values are independently drawn from the
same distribution FS , and all buyer values from FB . The two distributions may differ, and we
make common regularity assumptions, namely that FB is MHR and FS is log-concave.

We focus on online, posted-price mechanisms, and analyse two objectives: that of maximizing
the intermediary’s profit and that of maximizing the social welfare, under a competitive analysis
benchmark. First, on the negative side, for general agent sequences we prove tight competitive
ratios of Θ(

√
n) and Θ(lnn), respectively for the two objectives. On the other hand, under the

extra assumption that the intermediary knows some bound α on the ratio between the number of
sellers and buyers, we design asymptotically optimal online mechanisms with competitive ratios
of 1 + o(1) and 4, respectively. Additionally, we study the model where the number of items that
can be stored in stock throughout the execution is bounded, in which case the competitive ratio
for the profit is improved to O(lnn).
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1 Introduction

The design and analysis of electronic markets is of central importance in algorithmic game
theory. Of particular interest are trading settings, where multiple parties such as buyers,
sellers, and intermediaries exchange goods and money. Typical examples are markets for
trading stocks, commodities, and derivatives: sellers and buyers where each one trades a single
item and one intermediary for facilitating the transactions. However, the well-understood
cases are comparatively quite modest. The very special case of one seller, and one buyer was
thoroughly studied by Myerson and Satterthwaite [26] in their seminal paper; they provided
a beautiful characterization of many significant properties a mechanism might have, along
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with an impossibility theorem showing that it cannot possess them all. The paper also dealt
with the case where a broker provides assistance by making two potential trades, one with
each agent, while also trying to maximize his profit. This was extended in [15] to multiple
sellers and buyers that are all immediately present in an offline manner.

Our work considers a similar setting, but with a key difference: the buyers and sellers
appear one-by-one, in a dynamic way. It is natural to study this question in the incomplete
information setting in which the intermediary, whose objective is to maximize either profit or
welfare, does not know the sequence of buyers and sellers in advance. The framework that we
employ to study the question is the standard worst-case analysis of online algorithms whose
goal is to do as well as possible in the face of a powerful adversary which tries to embarrass
them.

We are not the first to apply techniques from online algorithms to quantify uncertainty in
markets: the closest work to ours would be by Blum et al. [8] who consider buyers and sellers
trading identical items. In their setting, motivated mostly from a financial standpoint, buyers
and sellers arrived in an online manner, with their bids appearing to the trader and expiring
after some time. The trader would have to match prospective buyers and sellers to facilitate
trade. Among a plethora of interesting results, the trader’s profit maximization problem was
studied using competitive analysis and techniques from online weighted matchings. The key
difference in our setting is that buyers and sellers do not overlap: whenever a seller appears,
the intermediary has to decide whether or not to attempt to buy the item, without having a
buyer ready to go. Instead, the intermediary stores the item to sell it at a later time. We
believe this variation is able to capture “slower” markets, like online marketplaces similar
to Amazon or AliExpress (or even regular retail stores), where uncertainty stems from not
knowing how large a stock of items to buy, in expectation of the buyers to come.

1.1 Our Results
Our aim is to study this dynamic market setting, where an intermediary faces a sequence of
potential buyers and sellers in an online fashion. The goal of the intermediary is to maximize
his profit, or society’s welfare, by buying from the sellers and selling to buyers. We take a
Bayesian approach to their utilities but use competitive analysis for their arrivals: the main
difficulty stems from the unknown (and adversarially chosen) sequence of agents. Further
particulars and notation is discussed in Section 2. All the online algorithms we design are
posted price, which are simple, robust and strongly truthful.

First, in Section 4 we study the case of arbitrary sequences of buyers and sellers and show
that the competitive ratio—the ratio of the optimal offline profit over the profit obtained
by the online algorithm—is Θ(

√
n), where n is the total number of buyers and sellers. We

also study the social welfare objective, where the goal is to maximize the total utility of all
participants, including the sellers, the buyers and the intermediary The competitive ratio
here is Θ(logn). All these results are achieved via common regularity assumptions on the
distributions of the agent values (see Section 3), which we also prove to be necessary, by
providing arbitrarily bad competitive ratios in the case they are dropped (Theorem 7).

To overcome the above pessimistic results, we next study in Section 5 the setting where
both the online and offline algorithms have a limited stock, i.e. at no point in time can they
hold more than K items. In this model, the competitive ratio is improved to Θ(K logn),
asymptotically matching that of welfare. Finally, we also propose a way to restrict the input
sequence, by introducing in Section 6 the notion of α-balanced streams, where at every prefix
of the stream the ratio of the number of sellers to buyers has to be at least α. Under this
condition we are able to bring down the competitive ratios for both objectives to constants. In
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particular, the online posted-price mechanism that we use for profit maximization, and which
is derived by a fractional relaxation of the optimal offline profit, achieves an asymptotically
optimal ratio of 1 + o(1). A similar mechanism is 4-competitive for the welfare objective.

All omitted proofs can be found in the full version of the paper [18].

1.2 Prior Work

Our work is grounded on a string of fruitful research in mechanism design. The main topics
that are close to our effort are bilateral trading, trading markets and sequential (online)
auctions.

The first step in bilateral trading and mechanism design was made by Myerson and
Satterthwaite [26] who proved their famous impossibility result, even for the case of one
buyer and one seller. The case for profit maximization was extended to many buyers and
sellers, each trading a single identical item, in [15]. Some of the assumptions in our model
are based in these two works. The impossibility result in [26], among other difficulties, slowly
vanishes for larger markets as was shown by McAffee [25]. There is still active progress
being made on this intriguing setting, concentrating on simple mechanisms that provide good
approximations either to welfare while staying budget balanced and individually rational
[9, 11] or to profit [27]. Other recent developments include a hardness result for computing
optimal prices [17] and constant efficiency approximation with strong budget balance [14].

Sequential auctions have also produced a collection of interesting results, either extending
the ideas of simple approximate mechanisms instead of more complex, theoretically optimal
ones or dealing with entirely new settings. Prominent examples that compare the revenue
(or welfare) generated by simple, posted-price sequential auctions to the optimal, proving
good approximations in certain cases, are [10] for single-item revenue, [13, 29] for matroid
constraints (and some multi-dimensional settings) and [16] for combinatorial auctions. There
have been many approaches that apply competitive (worst-case) analysis to mechanism
design. The analysis of auctions with unlimited supply is explored in [5, 7] where near
optimal algorithms are developed using techniques inspired from no-regret learning. There is
also a deep connection between secretary problems and online sequential auctions [21, 20, 3].
Hajiaghayi et al. utilized techniques such as prophet inequalities for unknown market size
with distributional assumptions in [22]. A comprehensive exposition of online mechanism
design by Parkes can be found in [28].

There are also positive results in online auctions when the valuation distribution is
unknown (but usually known to be restricted in some way, having bounded support or being
monotone hazard-rate etc). Babaioff et al. explored the case of selling a single item to
multiple i.i.d. buyers in [1]. The case of k items in a similar setting was studied in [2], while
the case of unlimited items (digital goods auctions) in [23] and [24]. Budget constraints
where also introduced in [4], where a procurement auction was the focus.

2 Preliminaries and Notation

The input is a finite string σ ∈ {S,B}∗ of buyers (B) and sellers (S). The online algorithm has
no knowledge of σ(t), i.e. whether σ(t) = S or σ(t) = B, before step t. Also, it doesn’t know
the length n(σ) of σ. Denote nS(σ), nB(σ) the number of sellers and buyers, respectively, in
σ, and let NS(σ), NB(σ) be the corresponding set of indices, i.e. NS(σ) = {t | σ(t) = S }
and NB(σ) = {t | σ(t) = B }. Let N(σ) = NS(σ) ∪NB(σ) = {1, 2, . . . , n(σ)}. In the above
notation we will often drop the σ if it is clear which input stream we are referring to.

ICALP 2017



47:4 Online Market Intermediation

The values of the sellers are drawn i.i.d. from a probability distribution (with cdf) FS and
these of buyers i.i.d. from a distribution FB, both supported over intervals of nonnegative
reals. We denote the random variable of the value of the t-th agent with Xt. We assume
that distributions FS and FB are continuous, with bounded expectations µS and µB, and
have (well-defined) density functions fS and fB , respectively. It will also be useful to denote
by XS a random variable drawn from distribution FS , and similarly XB ∼ FB , and for any
random variable Y and positive integer m use Y (m) to represent the maximum order statistic
out of m i.i.d. draws from the same distribution as Y . We will also use the shortcut notation
µ(m) = E[Y (m)].

We study posted-price online algorithms that upon seeing the identity of the t-th agent
(whether she is a seller or a buyer), offer a price pt. We buy one unit of the item from sellers
that accept our price (i.e. if σ(t) = S and Xt ≤ pt) and pay them that price, and we sell to
buyers that accept our price (i.e. if σ(t) = B and Xt ≥ pt), given stock availability (see below),
and collect from them that price. So, a price pt+1 can only depend on σ(1), . . . , σ(t+ 1) and
the result of the comparison Xi ≤ pi in all previous steps i = 1, 2, . . . , t. Let Kt denote the
available stock at the beginning of the t-th step, i.e. K1 = 0 and

Kt+1 =


Kt + 1, if σ(t) = S ∧ Xt ≤ pt
Kt − 1, if σ(t) = B ∧ Kt 6= 0 ∧ Xt ≥ pt
Kt, otherwise.

Then, the set of sellers from whom we bought items during the algorithm’s execution is IS =
{t ∈ NS | Xt ≤ pt } and the set of buyers we sold to is IB = {t ∈ NB | Xt ≥ pt ∧Kt 6= 0}.
Notice that these are random variables, depending on the actual realizations of the agent
values Xt.

The total profit that the intermediary deploying an algorithm A makes throughout the
execution on an input stream σ, is the amount he manages to collect from the buyers via
successful sales, minus the amount he spent in order to maintain stock availability from the
sellers, that is

R(A, σ) = E

[∑
t∈IB

pt −
∑
t∈IS

pt

]
.

The social welfare of algorithm A is the sum of valuations that all participants achieve
throughout the entire execution. That is, a seller at position t of the stream has a value of
Xt if she keeps her item, or a value of pt if she sold the item to the intermediary; a buyer has
a value of Xt − pt if she managed to buy an item, since the item has a value of Xt and he
spent pt to buy it, or 0 otherwise. And the intermediary, has a value of R(A) plus the value
of the items that he didn’t manage to sell in the end and which are now left in his stock.
Putting everything together and performing the occurring cancellations, this results in the
welfare to be expressed simply as the sum of the values of the sellers that kept their items
plus the sum of the values of the buyers that bought an item, i.e.

W(A, σ) = E

 ∑
t∈NS\IS

Xt +
∑
t∈IB

Xt

 . (1)

We use competitive analysis, the standard benchmark for online algorithms (see e.g. [12]),
in order to quantify the performance of an online algorithm A: we compare it to that of
an unrealistic, offline optimal algorithm OPT has access to the entire stream σ in advance.
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Then, we say that A is ρ(n)-competitive with respect to welfare, if for any feasible input
sequence of agents σ with length n and distributions FS , FB for the agent values, it is
W(OPT, σ) ≤ ρ(n) · W(A, σ). Notice how we allow the competitive ratio ρ(n) to explicitly
depend on the input’s length, so that we can perform asymptotic analysis as W(OPT, σ) and
n tend to infinity. It is common in competitive analysis to allow for an additional constant
in the right hand side of the above expression, that does not depend in the input, and
which intuitively can capture some initial configuration disadvantage of the online algorithm.
We do that for the case of the profit objective, as this constant will have a very natural
interpretation: you can think of it as the maximum amount of deficit on which an online
algorithm can run at any point in time, since an adversary can always stop the execution at
any time he wishes. Given that interpretation, it makes sense to allow for this constant to
depend on seller distribution FS , since even when we face a single seller at the first step we
expect to spend an amount that depends on the realization of her value. Thus, we will say
that an online algorithm is ρ(n)-competitive with respect to profit, if for any input sequence
of agents σ and any probability priors FS , FB ,

R(OPT, σ) ≤ ρ(n) · R(A, σ) +O(µS). (2)

3 Distributional Assumptions

Throughout most of the paper we will make some assumptions on the distributions FB,
FS from which the buyer and seller values are drawn. In particular, we will assume that
FB has monotone hazard rate (MHR), i.e. log(1 − FB(x)) is concave, and that FS is log-
concave, i.e. logFS(x) is concave. For convenience, we will collectively refer to both the above
constraints as regularity assumptions. These conditions are rather standard in the optimal
auctions literature, and they encompass a large class of natural of distributions including
e.g. exponential, uniform and normal ones. Notice that distributions that satisfy the above
conditions also fulfil the regularity requirements introduced in the seminal paper Myerson
and Satterthwaite [26] for the single-shot, one buyer and one seller setting of bilateral trade,
namely that x + FS(x)

fS(x) and x − 1−FB(x)
fB(x) are both increasing functions. Finally, we must

mention that such regularity assumptions are necessary, in the sense that dropping them
would result in arbitrarily bad lower bounds for the competitive ratios of our objectives, as it
is demonstrated by Theorem 7.

The following two lemmas demonstrate some key properties of distributions satisfying
our regularity assumptions and which will be very useful in our subsequent analysis:

I Theorem 1. For any random variable Y drawn from an MHR distribution with bounded
expectation µ and standard deviation s,
1. Pr [Y ≥ y] ≥ 1

e for any y ≤ µ
2. Pr [Y ≥ y] < 1

e for any y > 2µ
3. E[Y (m)] ≤ Hm · µ, where Hm is the m-th harmonic number.
4. s ≤ µ

Proof. A proof of Property 1 can be found in [6, Theorem 3.8], of Property 2 in [6, Corollary
3.10], and of Property 3 in [1, Lemma 13]. For Property 4, from [19, Lemma 2] we know
that E

[
Y 2] ≤ 2µ2, so s2 = E

[
Y 2]− µ2 ≤ µ2. J

I Lemma 2. For any distribution over [0,∞) with log-concave cdf F and expectation µ,

x ≤ eµF (x) for any x ≤ µ.

ICALP 2017
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Finally, we prove the following property bounding the sum of maximum order statistics
of a distribution, that holds for general (not necessarily MHR) distributions and might be of
independent interest:

I Lemma 3. The expected average of the k-th highest out of m independent draws from a
probability distribution with expectation µ and standard deviation s can be at most µ+2

√
m
k s.

4 General Setting

We start by studying the general setting where no additional assumptions are enforced on
the structure of the input sequence. The adversary is free to arbitrarily choose the identities
of the agents.

4.1 Welfare
I Theorem 4. Under our regularity assumptions1, the online auction that posts to any seller
and buyer the median of their distribution is O(lnn)-competitive with respect to welfare. This
bound is tight.

Proof. We split the proof of the theorem in two more general lemmas below, corresponding
to upper and lower bounds. Then, the upper bound for our case follows easily from Lemma 5
by using constants c1 = c2 = 2, and taking into consideration that, from Property 3 of
Theorem 1, the ratio of the maximum order statistic for the MHR distribution FB is upper
bounded by rB(m) ≤ Hm ≤ O(lnm). For the lower bound, it is enough to observe that this
ratio is attained by an exponential distribution, which is MHR.

I Lemma 5. For any choice of constants c1, c2 > 1, the following fixed-price online auction
has a competitive ratio of at most max

{
c1
c1−1 , c1c2 · rB(nB)

}
with respect to welfare, where

nB is the number of buyers, and rB(m) = µ
(m)
B /µB is the ratio between the m-maximum-order

statistic and the expectation of the buyer value distribution.
Post to all sellers price q = F−1

S

(
1
c1

)
.

Post to all buyers price p = F−1
B

(
c2−1
c2

)
.

Proof. Let A denote our online algorithm and OPT an offline algorithm with optimal
expected welfare. Fix an input stream σ. Looking at (1), the maximum welfare that OPT
can get from the sellers is at most E

[∑
t∈NS Xt

]
= nsµS , while from the buyers at most

E
[
|IB | ·X(nB)

B

]
≤ κE

[
X

(nB)
B

]
, where κ is the maximum number of sellers that can be

matched to distinct buyers that arrive after them2 in σ: clearly, no mechanism can sell more
than κ items. Bringing all together we have that

W(OPT) ≤ nsµS + κµ
(nB)
B = nsµS + rB(nB) · κµB .

1 As matter of fact, in the proof of Theorem 4 just regularity for the buyer values would suffice, i.e. FB

being MHR.
2 You can think of that as the maximum size of a matching in the following undirected graph: the nodes

are the sellers and the buyers, and there is an edge between any seller and all the buyers that appear
after her in σ.



Y. Giannakopoulos, E. Koutsoupias, and P. Lazos 47:7

For the online algorithm now, from the sellers we get∑
i∈NS

Pr [Xi > q]E[Xi|Xi > q] ≥ ns(1− FS(q))E[XS ] = c1 − 1
c1

· nSµS

and from the buyers at least

κPr [XS ≤ q] Pr [XB ≥ p]E[Xi|Xi ≥ p] ≥ κFS(q)(1− FB(p))E[XB ] = 1
c1

1
c2
· κµB ,

just by considering one of the κ-size matchings discussed before: if we manage to buy from
one of these κ sellers, then we will definitely have stock availability for the matched buyer. J

The upper bound in Lemma 5 cannot be improved:

I Lemma 6. For any probability distribution F , even if the seller and buyer values are i.i.d.
from F , the sequence SBn forces all posted-price online mechanisms to have a competitive
ratio of Ω(r(n)), where r(n) = µ(n)/µ is the ratio of the n-maximum-order statistic of
distribution F to its expectation. J

As the following theorem demonstrates, our regularity assumption on the agent values
is necessary if we want to hope for non-trivial bounds. In particular, the lower bound in
Lemma 6 can be made arbitrarily high:

I Theorem 7. For any constant ε ∈ (0, 1), there exists a continuous probability distribution
F such that any online posted-price mechanism has a competitive ratio of Ω(n1−ε) on the
input sequence SBn, even if the values of the sellers and the buyers are i.i.d.

4.2 Profit
Now we turn our attention to our other objective of interest, that of maximizing the expected
profit of the intermediary. As it turns out, this objective has some additional challenges that
we need to address. For example, as the following theorem demonstrates, if the distribution
of seller values is bounded away from 0, the competitive ratio can be arbitrarily bad, even
for i.i.d. values from a uniform distribution. Intuitively, this follows from the impossibility of
buying a super-constant number of items within a constant budget.

I Theorem 8. For any a > 0 and ε ∈ (0, 1), if the seller and buyer values are drawn i.i.d.
from the uniform distribution over [a, b] where b > 2a, then no online posted-price mechanism
can have an approximation ratio better than a

(
1− 1

k

)4
n1−ε with respect to profit, where

k = b
a − 1. In particular, for any uniform distribution over an interval [1, h] with h ≥ 3 the

lower bound is 1
24n

1−ε = Ω
(
n1−ε).

If we consider distributions supported over intervals that include 0, under our regularity
assumptions we can do a little better than the trivial lower bound of Theorem 8:

I Theorem 9. Under our regularity assumptions, for agent values distributed over intervals
that include 0 the following online posted-price mechanism achieves a competitive ratio of
O(n 1

2 +ε) for any ε > 0:
Post to the i-th seller price qi = F−1

S

( 1
e

1
i1/2+ε

)
Post to all buyers price p = µB.

ICALP 2017
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Proof. Fix an input stream σ of length n. Let µB and sB be the expectation and standard
deviation of the buyer value distribution FB . As in the proof of Lemma 5, let κ denote the
maximum number of sellers that can be matched to distinct buyers that arrive after them in
σ. If µ(j:m)

B denotes the expectation of the j-th largest out of m independent draws from FB ,
since no algorithm can make more than κ sales over its entire execution, the optimal offline
profit is upper bounded by

κ∑
j=1

µ
(nB−j+1:nB)
B ≤

n∑
i=n−κ+1

µ
(i:n)
B ≤ κµB + 2

√
κnsB ≤ 3

√
κ
√
nµB ,

where for the second inequality we have used Lemma 3 and for the last one we have used
Property 4 from Theorem 1 and the obvious fact that κ ≤ n.

For the analysis of the online mechanism now, the expected number of items that it gets
from the first κ sellers is

∑κ
i=1 FS(qi) = 1

e

∑κ
i=1

1
i1/2+ε ≥ 1

eκ
1/2−ε. So, by considering the

FIFO matching between these first κ sellers and their corresponding buyers, the expected
income of our algorithm is at least 1

eκ
1/2−ε(1 − F (p)) = 1

eκ
1/2−ε(1 − F (µB)) ≥ 1

e2κ
1/2−ε,

where in the last step we deployed Property 1 of Theorem 1. So, it only remains to be
shown that the online algorithm does not spend more than a constant amount. Indeed, our
expected spending is at most

∞∑
i=1

qiFS(qi) ≤
∞∑
i=1

eµSFS(qi)2 = 1
e
µS

∞∑
i=1

1
i1+2ε = O(µS),

where for the first inequality we have used Lemma 2, taking into consideration that seller
prices qi are decreasing and q1 is below µS . This is true because again from Lemma 2 for
x = µS we know that µS ≤ eµSF (µS), or equivalently F (µS) ≥ 1

e = F (q1). J

The algorithm of Theorem 9 is asymptotically optimal:

I Theorem 10. If the seller and buyer values are drawn i.i.d. from the uniform distribution
over [0, 1], then no online posted-price mechanism can have an approximation ratio better
than Ω (

√
n).

Proof. We use the input sequence σ = Sn/2Bn/2 with n even. Let F (x) = x be the cdf
of the uniform distribution over [0, 1]. This time we argue that no online algorithm can
buy more than Ω(

√
n) items from the sellers, in expectation. Indeed, let qi be the price

that the online mechanism posts to the i-th seller. Then, the expected number of items
mσ bought from the sellers is

∑n/2
i=1 F (qi) =

∑n/2
i=1 qi, while the expected expenditure cσ is∑n/2

i=1 F (qi)qi =
∑n/2
i=1 q

2
i . By the convexity of the function t 7→ t2 and Jensen’s inequality it

must be that

mσ =
n/2∑
i=1

qi ≤
√
n

2

n/2∑
i=1

q2
i

 1
2

= O
(√
cσ
√
n
)
,

so given that our deficit must be cσ = O( 1
2 ), we get the desired mσ = O(

√
n). As a result,

the online profit can be at most O(
√
n) · 1 = O(

√
n).

For the offline algorithm we use prices q = 1
8 and p = 1

2 for the buyers and sellers,
respectively, and by an analogous analysis to that of the proof of Theorem 8, we get that the
expected offline profit is at least

n

2F (q)(1− F (p))p− n

2F (q)q = n

2
1
8

(
1− 1

2

)
1
2 −

n

2
1
8

1
8 = n

128 = Ω(n). J
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5 Limited Stock

If one looks carefully at the lower bound proof for the profit in Theorem 10, it becomes
clear that the source of difficulty for any online algorithm is essentially the fact that without
knowledge of the future, you cannot afford to spend a super-constant amount of money
into accumulating a large stock of items, without the guarantee that there will be enough
demand from future buyers. In particular, it may seem that the offline algorithm has an
unrealistic advantage of using a stock of infinite size. The natural way to mitigate this would
be to introduce an upper bound K on the number of items that both the online and offline
algorithms can store at any point in time. As it turns out, this has a dramatic improvement
in the competitive ratio for the profit:

I Theorem 11. Assuming stock sizes of at most K items, under our regularity assumptions
the following online mechanism is O (Kr logn)-competitive, where r = max

{
1, µSµB

}
:

If your stock is not currently full, post to sellers price q = F−1
S

( 1
r

1
2eK

)
Post to all buyers price p = µB.

Proof. The proof is similar to that of Theorem 9, but certain points need some special
care. Let κ again be the maximum number of sellers that can be matched to distinct
buyers that follow them, but this time under the added restriction of the K-size stock. This
corresponds to the maximum matching with no “temporal” cut of size greater than K. We
write “temporal” cut to mean any cut in the graph that separates the vertices (buyers and
sellers) 1 . . . i from vertices i+ 1 . . . n — that is, precisely the condition that we cannot match
more than K sellers from an initial segment to buyers later in the sequence.

In the full version of our paper we show that such a κ-size matching can be computed
not only offline, but also online using a FIFO queue of length K, adding sellers to the queue
while it is not full and matching buyers greedily: we post prices to sellers, only if we have
free space in our stock, i.e. when the matching queue is not full. We underestimate the online
profit by considering only selling an item to the buyer that is matched to the seller from
which we bought the item. Mimicking the analysis in the proof of Theorem 9 we can see
that the expected number of items bought from the κ matched sellers is κFS(q) ≥ κ 1

2eK
1
r .

Now we argue that q ≤ µB
2 . Indeed, since FS(q) ≤ 1

e we know for sure that q ≤ µS , and
so from Lemma 2 it is q ≤ eµSF (q) ≤ eµS µBµS

1
2e = µB

2 . Next, notice that whenever we make
a successful sale, the contribution to profit is p− q ≥ µB − µB

2 = 1
2µB .

The rest of the proof can be found in the full version of the paper. J

I Remark. The above upper bound in Theorem 11, although a substantial improvement
from the Θ(

√
n) one for the general case in Theorem 9, cannot be improved further: the

logarithmic lower bound is unavoidable, since a careful inspection of the welfare lower bound
in the proof of Lemma 6 reveals that the same analysis carries over to the profit.

6 Balanced Sequences

As we saw in Section 5, introducing a restriction in the size of available stock can improve
the performance of our online algorithms with respect to profit. However, the bound is
still super-constant. Thus, it is perhaps more reasonable to assume some knowledge of the
ratio α between buyers and sellers in sequences the intermediary might face. This allows us
finer control over the trade-off between high volume of trades and the hunt for greater order
statistics.
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In this section we analyse the competitive ratio for profit and welfare obtained by online
algorithms on α-balanced sequences.

I Definition 12. Let α be a positive integer. A sequence containing m buyers is called
α-balanced if it contains αm sellers and the i-th buyer is preceded by at least αi sellers.

For example, the sequence SBSSBSBB is 1-balanced, but SBBSSB is not. Note that
since n = nS

α+1
α = nB(α+ 1), we only need to know the number of buyers of a sequence.

For convenience, we will denote it by m instead of nB, as it is used quite often. This
constraint eliminates the pathological counterexamples of previous sections (such as SBm)
and introduces a much needed “recurrent” flavour to the market: items are constantly traded
and in higher quantities, leading to greater profits for both online and offline algorithms.

6.1 Profit
We first work on profit, deriving bounds for a variety of online and offline mechanisms.
Naturally, there are two types of offline mechanisms: adaptive and non-adaptive. The
non-adaptive posted-price mechanism calculates all prices in advance based on the sequence
of buyers and sellers, while the adaptive posted-price mechanism can alter the prices on the
fly, depending on the outcomes of previous trades.

We show that there is a competitive online mechanism for α-balanced sequences. To do
this, we compare the optimal adaptive and non-adaptive profit to the profit of a class of
hypothetical mechanisms, called fractional mechanisms, which are allowed to buy fractional
quantities of items: posting the price p would buy exactly FS(p) items or sell 1 − FB(p)
items. The advantage of using fractional mechanisms is that at any point we know the
exact quantity of items in the hands of the intermediary instead of the expectation; an
immediate consequence of this is that we know in advance whether there is enough quantity
to sell, which implies that the adaptive and non-adaptive versions of the optimal fractional
mechanism are identical.

We can now give an outline of the results in this section: For α-balanced sequences σ
with m buyers and αm sellers, we establish the following relations of optimal profits:

adaptive(σ) ≤ fractional(σ) ≤ fractional(SαmBm) ≈ non-adaptive(σ), (3)

the last of which will be our online algorithm. We begin by the fractional offline mechanism.

I Theorem 13. The profit gained by the optimal fractional mechanism for the sequence
SαmBm is

max m (p(1− FB(p))− α · qFS(q))
s.t. 1− FB(p) = αFS(q)

p, q ∈ [0,∞).
(4)

For other sequences containing αm sellers and m buyers in a different order, we can use
the following lemma to establish the middle part of inequality 3.

I Lemma 14. For any α-balanced σ with m buyers, fractional(σ) ≤ fractional(SαmBm)

I Theorem 15. For any sequence σ we have adaptive(σ) ≤ fractional(σ).

The intuition behind the proof of the theorem is that the optimal adaptive profit is bounded
from above by the optimal fractional adaptive profit (since fractional mechanisms is a more
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general class of mechanisms); since in fractional mechanisms optimal adaptive and non-
adaptive profits are the same, the theorem follows. For a more rigorous technical treatment,
see the full version of our paper.

At this point, we have a clear model of the adversary’s power: the fractional mechanism’s
revenue for sequence SαmBm, setting only two prices p, q for sellers and buyers. Could we
do the same online? It seems likely. After all, long sequences of buyers and sellers seem to
lead to a similar amount of trading on average by a mechanism setting the same prices.

Based on the previous discussion we propose the following online posted price algorithm:
Use prices p, q given by the optimal fractional solution for SαmBm(see Theorem 13).

This algorithm works without knowing the length of the sequence chosen by the adversary.

I Lemma 16. Let A be the online algorithm defined by the optimal fractional offline prices
of (4). Consider two α-balanced sequences σ1 and σ2 of equal length. We write σ1 � σ2
whenever every prefix of σ1 contains more sellers than the prefix of σ2 having equal length.
Then, σ1 � σ2 ⇒ R(A, σ1) ≥ R(A, σ2)

Although not all sequences are comparable (e.g. SSBBSB and SBSSBB), the sequence
(SαB)m is the bottom element among all α-balanced sequences of length (α + 1)m. This
is trivial, as any balanced sequence must have at least d i

(α+1)/(α)e sellers for any prefix of
length i and (SαB)m is tight for this bound.

To formalize our intuition of making the same number of trades in the long run, we
reformulate our algorithm in the more familiar setting of random walks. Instead of considering
agents separately, each “timestep” would be one sub-sequence SαB, giving m steps in total.
Thus, we are interested in the random variables Zi, denoting the items in stock at the end of
each step, starting with Z0 = 0. Knowing the algorithm buys αmFS(q) items in expectation,
the expected profit can be given by

R((SαB)m) = (αmFS(q)− E [Zm])(p− q)− E [Zm] q, (5)

which is the revenue of the expected number of trades minus the cost of the unsold items.

I Lemma 17. E [Zm] ≤
√

2mα2 logm
(
1− 2

m

)
+ 2

Proof. The process Zi is almost a martingale but not quite: clearly E [Zi] ≤ αm for all i
and we do have E [Zi+1|Zi ≥ 1] = Zi since the expected change in items after that step is
αFS(q)− (1− FB(p)) = 0 by Theorem 13 . However, E [Zi+1|Zi = 0] > Zi, by the no short
selling assumption.

We can define Yi in the same probability space, where Y0 = 0, and

Yi+1 = Yi +


Zi+1 if Yi > 0
−Zi+1 if Yi < 0{
Zi+1 with probability 1

2

−Zi+1 with probability 1
2

if Yi = 0
. (6)

The crucial observation is that Yi behaves similar to Zi but has no barrier at 0. Notice, that
|Yi| ≥ Zi for all i and Yi is a martingale.

Moreover, we have that |Yi+1 − Yi| ≤ α thus by the Azuma-Hoeffding inequality we can
bound the expected value E [Zm]:

Pr[Zm ≥ x] ≤ Pr[|Ym| ≥ x] = Pr[|Ym − Y0| ≥ x] ≤ 2e
−x2

2mα2 ⇒ (7)

E [Zm] ≤ x
(

1− 2e
−x2

2mα2

)
+ 2αme

−x2

2mα2 , (8)
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where we can set x =
√

2mα2 logm to obtain the simpler form:

E [Zm] ≤
√

2mα2 logm
(

1− 2
m

)
+ 2α. (9)

J

I Lemma 18. Let r = max
{

2, µSµB
}
. The optimal value of Programme (4) is at least m µB

2er .
Furthermore, at any optimal solution the buyer price has to be at most p ≤ 4 ln(4er)µB.

I Theorem 19. Under our regularity assumptions, the proposed non-adaptive online mech-
anism is (1 + o(α3/2r log r))-competitive for any balanced sequence, where r = max

{
2, µSµB

}
.

Proof. Plugging (9) into (5), we get:

R((SαB)m) ≥ αmFS(q)(p− q)− E [Zm] (p− q)− E [Zm] q

≥ αmFS(q)(p− q)−
(√

2mα2 logm
(

1− 2
m

)
+ 2α

)
p

≥ αmFS(q)(p− q)−O(α
√
m lnmp). (10)

Using Lemma 14, Theorem 15 and Theorem 13 we know that for every α-balanced sequence,
the profit of our non-adaptive online algorithm is at least R((SαB)m) and the optimal offline
is at most that of the fractional on sequence SαmBm, i.e. αmFS(q)(p− q). Thus, the second
term in (10) bounds the additive difference of the online and optimal offline profit, and its
ratio with respect to the offline profit is upper bounded by

O

(
α
√
m lnmp

αmFS(q)(p− q)

)
= O

(
α
√
m lnmµB ln(4er)

m µB
2er

)
= O

(
α3/2

√
lnn
n
r log r

)
. J

I Remark. Among all 1-balanced sequences, the sequence that gives the maximum profit is
not SmBm; intuitively, by moving buyers earlier in the sequence, we obtain more profit by
adapting the remaining buying prices to the outcome of these potential trades. For example,
the sequence Sm/2BSm/2Bm−1 has better adaptive profit than the sequence SmBm for large
m. Our work above shows that the difference is asymptotically insignificant, but it remains
an intriguing question to determine the balanced sequence with the maximum profit.

6.2 Welfare
Welfare on balanced sequences also improves the competitive ratio of Theorem 4 to a constant.
Intuitively, the reason is that the high volume of possible trades dampens the advantage the
adversary has in obtaining higher order statistics from buyers.

I Theorem 20. The online auction that posts to any seller and buyer the median of their
distribution is 4-competitive.

Notice the above theorem holds without any regularity assumption on the agent value
distributions.
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