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Abstract
We study the fundamental problem of prediction with expert advice and develop regret lower
bounds for a large family of algorithms for this problem. We develop simple adversarial primitives,
that lend themselves to various combinations leading to sharp lower bounds for many algorithmic
families. We use these primitives to show that the classic Multiplicative Weights Algorithm
(MWA) has a regret of

√
T ln k

2 (where T is the time horizon and k is the number of experts),
there by completely closing the gap between upper and lower bounds. We further show a regret
lower bound of 2

3

√
T ln k

2 for a much more general family of algorithms than MWA, where the
learning rate can be arbitrarily varied over time, or even picked from arbitrary distributions over
time. We also use our primitives to construct adversaries in the geometric horizon setting for
MWA to precisely characterize the regret at 0.391√

δ
for the case of 2 experts and a lower bound

of 1
2

√
ln k
2δ for the case of arbitrary number of experts k (here δ is the probability that the game

ends in any given round).
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1 Introduction

In this paper we develop tight lower bounds on the regret obtainable by a broad family of
algorithms for the fundamental problem of prediction with expert advice. Predicting future
events based on past observations, a.k.a. prediction with expert advice, is a classic problem
in learning. The experts framework was the first framework proposed for online learning
and encompasses several applications as special cases. The underlying problem is an online
optimization problem: a player has to make a decision at each time step, namely, decide
which of the k experts’ advice to follow. At every time t, an adversary sets gains for each
expert: a gain of gi,t for expert i at time t. Simultaneously, the player, seeing the gains from
all previous steps except t, has to choose an action, i.e., decide on which expert to follow. If
the player follows expert j(t) at time t, he gains gj(t),t. At the end of each step t, the gains
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associated with all experts are revealed to the player, and the player’s choice is revealed
to the adversary. In the finite horizon model, this process is repeated for T steps, and the
player’s goal is to perform (achieve a cumulative gain) as close as possible to the best single
action (best expert) in hindsight, i.e., to minimize his regret RT,k:

RT,k = max
1≤i≤k

T∑
t=1

gi,t −
T∑
t=1

gj(t),t.

Apart from assuming that the gi,t’s are bounded in [0, 1], we don’t assume anything else
about the gains1. Just as natural as the finite horizon model is the model with a geometric
horizon: the stopping time is a geometric random variable with expectation 1

δ . In other
words, the process ends at any given step with probability δ, independently of the past.
Equivalently, both the player and the adversary discount the future with a 1− δ factor. In
this paper, we study both the finite horizon model and the geometric horizon model. We
begin with the discussion for finite horizon model below.

Main contribution

In this paper we develop simple adversarial primitives and demonstrate that, when applied
in various combinations, they result in remarkably sharp lower bounds for a broad family of
algorithms. We first describe the family of algorithms we study, and then discuss our main
results.

Multiplicative Weights Algorithm

We begin with the Multiplicative Weights Algorithm, which is a simple, powerful and widely
used algorithm for a variety of learning problems. In the experts problem, at each time
t, MWA computes the cumulative gain Gi,t−1 =

∑t−1
s=1 gi,s of each expert i accumulated

over the past t− 1 steps, and will follow expert i’s advice with probability proportional to
eηGi,t−1 . Namely, with probability eηGi,t−1∑k

j=1
eηGj,t−1

where η is a parameter that can be tuned.

The per-step computation of the algorithm is extremely simple and straightforward. The
intuition behind the algorithm is to increase the weight of any expert that performs well by
a multiplicative factor. Despite the simplicity and the heuristic origins of the algorithm, it
is surprisingly powerful: the pioneering work of Cesa Bianchi et al. [6] showed that MWA
obtains a sublinear regret of

√
T ln k

2 , and that this is asymptotically optimal as the number
of experts k and the number of time steps T both tend to ∞.

Families of algorithms

The MWA is a single-parameter family of algorithms, i.e., the learning rate parameter η is
the only parameter available for the player. In general one could think of η being an arbitrary
function of time t, i.e., at step t, algorithm follows expert i with probability eη(t)Gi,t−1∑k

j=1
eη(t)Gj,t−1

.

Note that this is a T -parameter family of algorithms and is quite general. The most general
family of algorithms we study is when at each time t, the quantity η(t) is drawn from an

1 As one might expect, it turns out that restricting the adversary to set gains in {0, 1} instead of [0, 1] is
without loss of generality (see [12] or [20]). Henceforth, we restrict ourselves to the binary adversary,
which just sets gains of 0 or 1.
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arbitrary distribution Ft over reals. Since Ft could be arbitrary, this is an infinite-parameter
family of algorithms. We denote the
1. single parameter MWA family by Asingle;
2. family where η(t) decreases with t by Adec;
3. family where η(t) is arbitrary function of t by Aarb;
4. family where η(t) is drawn from Ft for each t by Arand.
It is straightforward to see that Asingle ⊆ Adec ⊆ Aarb ⊆ Arand. The reason we start with
Asingle is that it is the classic MWA and precisely characterizing its regret is still open. We
study Adec because often when MWA algorithms are working with unknown T , they employ
a strategy where η decreases with time. We move on to further significantly generalize this
by studying Aarb,Arand.

Minimax regret, and Notation

We study the standard notion of minimax regret for each of the above family of algorithms.
Formally, let RT,k(A,D) denote the expected regret achieved by algorithm A when faced
with adversary D in the prediction with expert advice game with T steps and k experts.
We use Rk(A,D) to denote the asymptotic2, in T , value of RT,k(A,D), i.e., Rk(A,D) =√
T · limT→∞

RT,k(A,D)√
T

. The minimax regret of a family AF of algorithms against a family
DF of adversaries is given by RT,k(AF ,DF ) = minA∈AF maxD(A)∈DF RT,k(A,D). Let Duniv
denote the universe of all adversaries. We use the shorthand RT,k(AF ) for RT,k(AF ,Duniv) =
minA∈AF maxD(A)∈Duniv RT,k(A,D). We use Rk(AF ) to denote the asymptotic, in T , value
of RT,k(AF ), i.e., Rk(AF ) =

√
T · limT→∞

RT,k(AF )√
T

.

Goal

One of our goals in this paper is to compute the precise values of Rk(Asingle), Rk(Adec),
Rk(Aarb) and Rk(Arand) for each value of k, and, describe and compute the adversarial
sequences that realize these regrets. For clarity, we compute the precise values of Rk(AF ) by:
1. computing the best-response adversary in Duniv for every algorithm in AF ;
2. computing Rk(AF ) the regret of the optimal algorithm in AF (i.e., the algorithm that

gets the smallest regret w.r.t. its best-response adversary).
In many cases, the first step, namely computing the best-response adversary, is challenging.
We find the best-response adversaries for the families Asingle and Adec. For the families Aarb
and Arand, we perform the first step approximately, i.e., we compute a nearly best-response
adversary, and thus we obtain lower bounds on Rk(Aarb) and Rk(Arand).

What is known, and what to expect?

It is well known that for AF = Asingle,Adec,Aarb,Arand: RT,k(AF ) ≤
√

(T ln k)/2 for all
T, k, and in the doubly asymptotic limit, as both T and k go to ∞, the optimal regret of
Asingle is

√
(T ln k)/2, i.e., lim

T→∞,k→∞

(
RT,k(Asingle)/

√
(T ln k)/2

)
= 1. (see [6, 5]). While

there are useful applications for k →∞, there are also several interesting use-cases of the
experts problem with just a few experts (rain-or-shine (k = 2), buy-or-sell-or-hold (k = 3)).
It seems like for small k such as 2, 3, 4 etc. Rk(Asingle) could be a significant constant factor
smaller than

√
(T ln k)/2. And given that families like Adec etc. are supersets of Asingle,

2 Although Rk doesn’t have a T in the subscript, Rk is still dependent on T . We suppress T merely to
indicate asymptotics in T .
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it seems even more likely that Rk(Adec) etc. are constant factor smaller than
√

(T ln k)/2.
Surprisingly, we show that is not the case: the regret of

√
(T ln k)/2 that is obtained as

k →∞ is already obtained at k = 2. Thus our work completely closes the gap between upper
and lower bounds for all k.

1.1 Main Results
Finite horizon model

1. Rk(Asingle) = Rk(Adec) =
√

T ln k
2 for even k,

Rk(Asingle) ≥ Rk(Adec) ≥
√

T ln k
2 (1− 1

k2 ) for odd k.

2. Rk(Aarb) ≥ Rk(Arand) ≥ 2
3

√
T ln k

2 for even k,

Rk(Aarb) ≥ Rk(Arand) ≥ 2
3

√
T ln k

2 (1− 1
k2 ) for odd k.

Geometric horizon model

In the geometric horizon model, the current time t is not relevant, since the expected
remaining time for which the game lasts is the same irrespective of how many steps have
passed in the past. Thus η(t) is without loss of generality, independent of t. Nevertheless,
η could still depend on other aspects of the history of the game, like the cumulative gains
of all the experts etc. We establish some quick notation before discussing results. Let δ
denote the probability that the game stops at any given step, independently of the past
(and therefore the expected length of the game is 1

δ ). Let Rδ,k(A,D) denote the regret
achieved by algorithm A when faced with adversary D in the prediction with expert advice
game with stopping probability δ and k experts. The minimax regret for a family AF
of algorithms is given by Rδ,k(AF ) = Rδ,k(AF ,Duniv) = minA∈AF maxD∈Duniv Rδ,k(A,D).
Let3 Rk(AF ) = 1√

δ
limδ→0

√
δ ·Rδ,k(AF ).

We show the following:
1. R2(Asingle) = 0.391√

δ
,

2. Rk(Asingle) ≥ 1
2

√
ln k
2δ for all k.

The regret lower bound of 1
2

√
ln k
2δ we obtain is at most a factor 2 away from the regret

upper bound of
√

ln k
2δ . Further, we show that the adversarial family that we use for the

family of algorithms Asingle to obtain the precise regret for 2 experts, also obtains the optimal
regret for the universe Auniv of all algorithms. See See the full version [11] for more on this
result.

1.2 Simple adversarial primitives and families
While the optimal regret Rk(AF ) is defined by optimizing over the most general family Duniv
of all adversaries, (i.e., Rk(AF ) = Rk(AF ,Duniv)) one of our primary contributions in this
work is to develop simple and analytically easy-to-work-with adversarial primitives that we
use to construct adversarial families (call a typical such family Dsimple) such that:

3 Note that the notation Rk(·) is overloaded: it could refer to finite or geometric horizon setting depending
on the context. But since the setting is clear from the context, we drop the δ vs T .
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Figure 1 Optimal finite horizon adversary.

Figure 2 Optimal geometric horizon adversary.

Dsimple is simple to-describe and to-optimize-over, i.e., computing maxD∈DsimpleRT,k(A,D)
is much simpler than computing maxD∈Duniv RT,k(A,D).
optimizing over Dsimple is guaranteed to be as good (or approximately as good) as optim-
izing over Duniv for many algorithmic families AF , i.e., Rk(AF ,Duniv) = Rk(AF ,Dsimple)
for many AF . As Rk(AF ,Duniv) ≥ Rk(AF ,Dsimple), the non-trivial part is to prove
(approximate) equality for AF .

We demonstrate the versatility of our primitives by using simple combinations of them to
develop sharp lower bounds to algorithmic families Asingle, Adec, Aarb, and Arand. There
is a lot of room for further combinations of primitives that might be useful to construct
adversarial families tailored to other algorithmic families.

The “looping” and “straight-line” primitives

These primitives are best described by focusing on the case of k = 2 experts. In the two
experts case, the algorithm makes its decision at step t, by just looking at the difference
d of the cumulative gains of the leading and lagging experts’ cumulative gains. As such,
the adversary has to simply control how the difference d evolves over time. The “looping”
primitive simply loops the value of d between 0 and 1 indefinitely (i.e., advances4 one expert
in one step and advances the other in the next step and so on, so that d simply loops
between 0 and 1). The “straight-line” adversary simply keeps advancing the value of d by
1 at each step. Interestingly, the worst-case adversary for each of the finite and geometric
horizon settings is a composition of looping and straight-line primitives. Strikingly, despite
the apparent similarity between two settings, the optimal adversaries in the two models
turn out to be “mirror images” of each other. The optimal adversary in finite horizon loops
first and then goes in straight-line, while the geometric horizon’s optimal does the reverse.
The structure of these two families is depicted in Figures 1, 2, that shows the evolution
of the difference d between the cumulative gains of the leading and lagging experts. This
fundamental difference between the structures of the optimal adversary in these two settings
also manifests in the optimal regret values of these two settings.

The generalizations of these primitives for arbitrary k is straightforward. The looping
primitive partitions the set of experts into two teams, say A and B, and then it advances
all experts in team A in one step and in team B in the other, and so on. The straight-line
primitive picks an arbitrary expert and keeps advancing that expert by 1 in each step.

4 Advances here refers to setting the gain of that expert to 1.

ICALP 2017
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Combining the primitives

Here’s how we create effective adversarial families from these primitives. In fact the families
are often trivial, i.e., they have only one member and therefore there’s nothing to optimize.
We ignore the odd and even k distinctions here for ease of description and just focus on the
even k case. Please see the technical sections for precise descriptions, which is only slightly
different from what is here.
1. Perform T−`

2 loops and then ` straight-line steps, for ` = T 3/4. Call this adversary
Dlsdet (stands for loop-straight-deterministic). Clearly, this adversarial family is simple-
to-describe and there is nothing to optimize here as there is only one member in the
family. Most importantly, it gives the precisely optimal regret for algorithmic families
Asingle and Adec as T →∞. I.e.,

For families AF = Asingle,Adec: Rk(AF , Dlsdet) =
√
T ln k

2 = Rk(AF ,Duniv).

The best known regret lower bound for Asingle was 1
4
√
T log2 k [13], which leaves a factor

2.35 gap between upper and lower bounds, that our work closes. We are not aware of
prior lower bounds for Adec.

2. Perform T−r
2 loops and then r straight-line steps, where r is chosen uniformly at random

from {0, 1, . . . , T 3/4}. This family is simple and there is nothing to optimize here as well.
Call this adversary Dlsrand (denoting loop, straight, uniformly random). We show that
when AF = Aarb or when AF = Arand:

For families AF = Aarb,Arand: Rk(AF , Dlsrand) ≥
2
3

√
T ln k

2 ≥ 2
3Rk(AF ,Duniv).

Note that while this lower bound doesn’t precisely match the upper bound, the upper
bound Rk(AF ,Duniv) ≤

√
(T ln k)/2 and is likely even smaller for small k (particularly

for a large family of algorithms like Aarb or Arand) — thus our result shows that the ratio
between upper and lower bounds is at most 3

2 and likely even smaller. To the best of our
knowledge our lower bound is the first for the classes Aarb and Arand.

3. In geometric horizon, even for the family Asingle and at k = 2 experts, instead of a
single adversary working for all members of Asingle, we have a single-parameter family of
adversaries to optimize over. Namely, follow the straight-line primitive for r steps and
then the looping primitive for T−r2 steps. Call this single-parameter family (parameterized
by r) as Dsl. The exact number r is determined by optimizing it as a function of the
parameter η used by the algorithm in Asingle. Specifically, for the case of 2 experts we
show that: R2(Asingle,Dsl) = 0.391√

δ
= R2(Asingle,Duniv). Note that Dsl is again simple-

to-describe and straightforward-to-optimize over. Further, it is the precisely optimal
adversary family for not just Asingle but also the universe of all algorithms Auniv (see
the full version [11] for this result), i.e., R2(Auniv,Duniv) = R2(Auniv,Dsl).

4. But in the geometric horizon setting, if we don’t shoot for the precisely optimal ad-
versary family, and aim for just approximately optimal, then we don’t need a single-
parameter family: just following one of the two looping/straight-line primitives gives a
lower bound of 1

2

√
ln k
2δ . Let D`, Ds be the looping and straight line primitives. Then:

Rk(Asingle, {D`, Ds}) ≥ 1
2

√
ln k
2δ ≥

1
2Rk(Asingle,Duniv). Note that while this lower bound

doesn’t precisely match the upper bound Rk(Asingle,Duniv), the latter is at most5
√

ln k
2δ ,

which is at most a factor 2 larger than lower bound.

5 This is a simple extension of the standard proof that MWA has a regret upper bound of
√

(T ln k)/2 in
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I Remark. To give a sense that the primitives offer enough variety in combination, here
is a simple modification over the adversary Dlsrand, that we call Dlsrand++: use Dlsrand

with probability p, and with probability 1 − p play the looping primitive Dl for all the T
steps. This increases the lower bound from 2

3
√

(T ln k)/2 to 0.68
√

(T ln k)/2 (see the full
version [11] for this result). We believe that this can be increased further by picking the
stopping time for looping from a non-uniform distribution etc.

1.3 Motivation and discussion
In this work we seek to understand the structure of worst case input sequences for a broad
family of algorithms and crisply expose their vulnerabilities. By identifying such structures,
we also get the precise regret suffered by them. Our motivation in exploring this question
includes the following.

1. After 25 years since MWA was introduced [19, 27], we do not have a sharp regret bound
for it. Asingle is known to suffer a regret of at most

√
T ln k

2 , but the best known lower
bound on regret is 1

4
√
T log2 k [13], with a factor 2.35 gap between these two bounds.

For larger families like Aarb, Arand no lower bounds were known. For an algorithm as
widely used as MWA, it is fruitful to have a sharp regret characterization.

2. The patterns in the worst-case adversarial sequences that we characterize are simple
to spot if they exist (or even if anything close exists), and make simple amends to the
algorithm that result in significant gains.

3. The problem is theoretically clean and challenging: how powerful are simple input patterns
beyond the typically used pure random sequences in inflicting regret?

Related Work

Classic works: The book by Cesa-Bianchi and Lugosi [7] is an excellent source for both
applications and references for prediction with expert advice. The prediction with experts
advice paradigm was introduced by Littlestone and Warmuth [19] and Vovk [27]. The famous
multiplicative weights update algorithm was introduced independently by these two works:
as the weighted majority algorithm by [19] and as the aggregating algorithm by [27]. The
pioneering work of Cesa-Bianchi et al. [6] considered {0, 1} outcome space for nature and
showed that for the absolute loss function `(x, y) = |x − y| (or g(x, y) = 1 − |x − y|), the
asymptotically optimal regret is

√
T ln k

2 . This was later extended to [0, 1] outcomes for

nature by Haussler et al. [15]. The asymptotic optimality of
√

T ln k
2 for arbitrary loss (gain)

functions follows from the analysis of Cesa-Bianchi [5]. When it is known beforehand that
the cumulative loss of the optimal expert is going to be small, the optimal regret can be
considerably improved, and such results were obtained by Littlestone and Warmuth [19] and
Freund and Schapire [9]. With certain assumptions on the loss function, the simplest possible
algorithm of following the best expert already guarantees sub-linear regret (see Hannan [14]).
Even when the loss functions are unbounded, if the loss functions are exponential concave,
sub-linear regret can still be achieved as shown by Blum and Kalai [4]. While our work
is focused on the worst-case adversaries for the MWA family of algorithms, Freund and
Schapire [10] prove lower bounds for general adaptive game-playing algorithms.

the finite horizon setting with T steps and k experts, and the realization that in the geometric horizon
setting, the expected stopping time is 1

δ .

ICALP 2017
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Recent works: Gravin et al. [12] give the minimax optimal algorithm, and the regret for
the prediction with expert advice problem for the cases of k = 2 and k = 3 experts. The
focus of [12] was providing a regret upper bound for the family of all algorithms, while the
focus of this paper is to provide regret lower bounds for large families of algorithms. Luo
and Schapire [20] consider a setting where the adversary is restricted to pick gain vectors
from the basis vector space {e1, . . . , ek}. Abernethy et al. [3] consider a different variant of
experts problem where the game stops when cumulative loss of any expert exceeds given
threshold. Abernethy et al. [2] consider general convex games and compute the minimax
regret exactly when the input space is a ball, and show that the algorithms of Zinkevich [28]
and Hazan et al. [16] are optimal w.r.t. minimax regret. Abernethy et al. [1] provide upper
and lower bounds on the regret of an optimal strategy for several online learning problems
without providing algorithms, by relating the optimal regret to the behavior of a certain
stochastic process. Mukherjee and Schapire [23] consider a continuous experts setting where
the algorithm knows beforehand the maximum number of mistakes of the best expert. Rakhlin
et al. [25] introduce the notion of sequential Rademacher complexity and use it to analyze
the learnability of several problems in online learning w.r.t. minimax regret. Rakhlin et
al. [26] use the sequential Rademacher complexity introduced in [25] to analyze learnability
w.r.t. general notions of regret (and not just minimax regret). Rakhlin et al. [24] use the
notion of conditional sequential Rademacher complexity to find relaxations of problems like
prediction with static experts that immediately lead to algorithms and associated regret
guarantees. They show that the random playout strategy has a sound basis and propose a
general method to design algorithms as a random playout. Koolen [17] studies the regret
w.r.t. every expert, rather than just the best expert in hindsight and considers tradeoffs in
the Pareto-frontier. McMahan and Abernethy [21] characterize the minimax optimal regret
for online linear optimization games as the supremum over the expected value of a function
of a martingale difference sequence, and similar characterizations for the minimax optimal
algorithm and the adversary. McMahan and Orabona [22] study online linear optimization
in Hilbert spaces and characterize minimax optimal algorithms. Chaudhuri et al. [8] describe
a parameter-free learning algorithm motivated by the cases of large number of experts k.
Koolen and Erven [18] develop a prediction strategy called Squint, and prove bounds that
incorporate both quantile and variance guarantees.

2 Finite horizon

We begin our analysis of MWA by focusing on the simple case of k = 2 experts. We first
identify the structure of the optimal adversary, and through it we obtain the tight regret
bound as T → ∞. Before proceeding further, it is useful to recall that when the gains
of the leading and lagging experts are given by g + d and g, the MWA algorithm follows
these experts with probabilities eηd

eηd+1 and 1
eηd+1 respectively. Thus, when the adversary

increases d by 1 i.e., increases the gain of the leading expert by 1, the regret benchmark
(namely, the gains of the leading expert) increases by 1, where as MWA is correct only with
probability eηd

eηd+1 , and this therefore inflicts a regret of 1
eηd+1 on MWA. On the other hand, if

the adversary decreases d by 1, then the benchmark doesn’t change, where as MWA succeeds
with probability 1

eηd+1 , and this therefore inflicts a regret of −1
eηd+1 . When the adversary

doesn’t change d, the regret inflicted is 0.
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Structure of the optimal adversary

Let η be the fixed update rate of the optimal MWA (the parameter in the exponent as
explained in Section 1)6. Against a specific algorithm, an optimal adversary can always
be found in the class of deterministic adversaries. The actions of the optimal adversary
(against a specific MWA algorithm) depend only on the distance d between leading and
lagging experts and time step t.

1. Loop aggregation: At each time step, the adversary may either increase or decrease the
gap d by 1, or leave d unchanged. We denote these actions of the adversary by d t→ d+ 1,
d

t→ d− 1, and d t→ d. The respective regret values inflicted on the algorithm are given
by 1

eηd+1 ,
−1

eηd+1 , and 0, which are all independent of the time when an action was taken.
This means that if the adversary loops between d and d+ 1 at several disconnected points
of time, it may as well aggregate all of them and complete all of them in consecutive time
steps. I.e., the optimal adversary starts at d = 0 and then weakly monotonically increases
d, stopping at various points d = s, looping for an arbitrary length of time between d = s

and d = s− 1 and then proceeding forward.
2. Staying at same d is dominated: It is not hard to see that any action x→ x is dominated

for the adversary as this wastes a time step and inflicts 0 regret on the algorithm. Thus the
“weakly monotonically increases” in the previous paragraph can be replaced by “strictly
monotonically increases” (except of course for the stopping points for looping).

3. Loop(0) domination: Define Loop(d) def= d→ d+ 1→ d. It is easy to see that the regret
inflicted by Loop(d) is exactly 1

eηd+1 −
1

eη(d+1)+1 and this quantity is maximized at d = 0.
Thus, the optimal adversary should replace all loops by loops at 0. This gives us the
structure claimed in Figures 1, 2 for the optimal adversary.

Given the optimal adversary’s structure (as described in Figures 1, 2) w.l.o.g. we can
assume it to be looping for T−`

2 steps at 0 and then monotonically increasing d for ` steps
at which point the game ends. In the following we will analyze the regret inflicted by the
optimal adversary (which we showed was optimal for the class of algorithm Asingle) against a
broader class Adec of MWA. The regret of the adversary is:

T−`
2∑
t=1

[
1
2 −

1
eη(2t) + 1

]
+
`−1∑
d=0

1
eη(T−`+d+1)d + 1

. (1)

Asymptotic regret of the optimal adversary

We first notice that for a fixed adversary with a given `, the regret of MWA with decreasing
η(t) in (1) is greater than or equal to the regret of MWA with a constant η′ = η(T − `), i.e.,

T − `
2

[
1
2 −

1
eη′ + 1

]
+
`−1∑
d=0

1
edη′ + 1 . (2)

This is true as each individual term in (2) is equal to or smaller than the corresponding term
in (1). In the following we are going to use ` = T 3/4 for the adversary and for convenience,
we write eη′(T−`) = τ = 1 + α√

T
. The two terms in (1) together place strong bounds on

what α should be: they imply that α = Θ(1). We show this in 2 steps: first we show that
α = O(1), and then show that α = Ω(1).

6 In fact, we can identify the optimal adversary for a much broader family of algorithms (see the full
version [11] for more details).
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1. The first term in (2) forces α to be O(1). The regret of MWA for ` = T 3/4 is at least

T − `
2

[
1
2 −

1
eη′ + 1

]
' T

2

[
1
2 −

1
eη′ + 1

]
= α

√
T

4(1 + eη′) =
√
T

4( 2
α + 1√

T
)
.

Since MWA’s regret upper bound in the finite horizon model is Θ
(√

T
)
, α must be O(1).

2. To show that α = Θ(1) we argue that the regret from the second term of (2) is ω(
√
T )

when α = o(1). For all d ≤
√
T
α , we have τd = (1 + α√

T
)d ≤ e. Thus MWA’s regret for

k = min(
√
T
α , T 3/4) is at least

k−1∑
d=0

1
τd + 1 ≥

k−1∑
d=0

1
e+ 1 = Ω(k) = ω

(√
T
)
.

Since MWA’s regret upper bound in the finite horizon model is Θ
(√

T
)
, we get α = Ω(1).

Now, we obtain the following asymptotic estimate for the second part of (2), where
η′ ∼ eη′ − 1 = α√

T
.

`−1∑
d=0

1
τd + 1 ∼

∫ `

0

dx
eη′x + 1 = 1

η′
ln

2 e`η
′

e`η′ + 1

 ∼ √T
α

(
ln(2)− ln(1 + e−`η

′
)
)
. (3)

The first part of (2) can be estimated as follows

T − `
2

[
1
2 −

1
eη′ + 1

]
∼ T

2

 eη
′ − 1

2(eη′ + 1)

 ∼ T

2 ·
η′

4 = α
√
T

8 . (4)

As e−`η′ = e−αT
1/4 = o(1), (3) simplifies to ln(2)

√
T

α , while the estimate for (4) is α
√
T

8 .
Now the estimate

√
T
[

ln(2)
α + α

8

]
for the regret in (2) is minimized for the choice of parameter

α =
√

8 ln(2). Then the regret of the optimal MWA is at least
√
T · ln(2)

2 (1 + o(1)). It is

known that there is MWA for k = 2 experts with regret at most
√
T · ln(2)

2 (asymptotic in
T ). Thus, we obtain the following claim 1 (in the claim below, by “optimal MWA” we mean
the MWA with the optimally tuned η(t) = η′).

I Claim 1. For AF = Asingle,Adec: R2(AF , Dlsdet) =
√

T ln 2
2 = R2(AF ,Duniv).

We generalize the adversary for k = 2 and obtain a tight lower bound for Adec matching the
known upper bound for arbitrary even number k of experts and almost matching bound
for odd number k of experts. Since Rk(Asingle) ≥ Rk(Adec), the lower bound in Theorem 2
below applies to Asingle as well.

I Theorem 2. For AF = Asingle,Adec:
(i) For even k: Rk(AF , Dlsdet) =

√
T ·ln k

2 = Rk(AF ,Duniv).

(ii) For odd k: Rk(AF , Dlsdet) ≥
√

T ·ln k
2

(
1− 1

k2

)
≥
√

1− 1
k2Rk(AF ,Duniv).

Proof. Let η(t) be the update rate of the optimal MWA, we define ` = T 3/4 and η′ = η(T−`).
We employ the following adversary for the even k number of experts:
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1. Divide all experts into two equal parties, numbered A and B. For the first T−`
2 rounds

(` = T 3/4), advance all the experts in party A in even numbered rounds, and all experts
in party B in odd numbered rounds.

2. For the remaining ` steps, pick an arbitrary expert and keep advancing just that expert.

Similar to (1) this adversary obtains the regret of at least
∑T−`

2
t=1

[
1
2 −

1
eη(2t)+1

]
+∑`−1

d=0
k−1

ed·η(T−`+d+1)+k−1 . We further notice that similar to (2) the regret of MWA with
decreasing η(t) in the above expression is greater than or equal to the regret of MWA with a
constant η′ = η(T − `), i.e., the previous expression is at least

T − `
2

[
1
2 −

1
eη′ + 1

]
+
`−1∑
d=0

k − 1
ed·η′ + k − 1 . (5)

We use (4) to estimate the first term of (5). We estimate the second term of (5) similar
to (3) as follows.

`−1∑
d=0

k − 1
edη′ + k − 1 ∼

∫ `

0

(k − 1)dx
exη′ + k − 1 = 1

η′
ln

 k · e`η′

e`η′ + k − 1

 ∼ √T ln(k)
α

. (6)

Now, combining these two estimates the regret from (5) is at least

α
√
T

8 +
√
T ln(k)
α

≥ 2 ·

√
α
√
T

8 ·
√
T ln(k)
α

=
√
T ln(k)

2 ,

which precisely matches the upper bound on the regret of MWA[6].
For the odd k number of experts we employ almost the same adversary as for even k,

although, since k now is odd, we split experts into two parties of almost equal sizes (see the
full version [11] for more details). J

2.1 General variations of MWA
We have seen that the best known MWA with a flat learning rate η achieves optimal (or
almost optimal in the case of odd number of experts) regret among all MWAs with monotone
decreasing learning rates η(t). However, it seems that in the finite horizon model a better
strategy for tuning parameters of MWA would be to use higher rates η(t) towards the end T .
In the following we study a broader family of MW algorithms Aarb where learning parameter
η(t) can vary in an arbitrary way. In the following theorem we show that such adaptivity of
MWA cannot decrease the regret of the algorithm by more than a factor of 2/3.

I Remark. In fact, our analysis extends to the family Arand where each η(t) can be a random
variable drawn from a distribution Ft. Effectively, with a random η(t) the algorithm player
can get any convex combination f(Gi,t−1, t) = Eη(t)[eη(t)Gi,t−1 ] of eη(t)Gi,t−1 in the vector of
probabilities for following each expert i at time t. This constitutes a much richer family of
algorithms compared to the standard single parameter MWA family.

I Theorem 3. For AF = Aarb,Arand:
(i) For even k: Rk(AF , Dlsrand) ≥ 2

3

√
T ·ln k

2 ≥ 2
3Rk(AF ,Duniv).

(ii) For odd k: Rk(AF , Dlsrand) ≥ 2
3

√
T ·ln k

2

(
1− 1

k2

)
≥ 2

3

√
1− 1

k2Rk(AF ,Duniv).
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Proof. Define ` = T 3/4 and R =
[
T−`−1

2

]
. We use the following adversary for even number

of experts k:
1. Choose j ∈ [R] uniformly at random. With probability 0.5 don’t advance any expert in

the first step.
2. Divide all experts into two equal parties, numbered A and B. For the next j rounds,

advance all the experts in party A in even numbered rounds, and all experts in party B
in odd numbered rounds.

3. For next ` steps, pick any expert i and keep advancing just expert i. Do nothing in
remaining steps.

The regret of the algorithm is

1
R

R−1∑
j=0

[
1
2

 j∑
t=1

[
1
2 −

1
eη(2t) + 1

]
+
`−1∑
d=0

k − 1
ed·η(2j+d+1) + k − 1

+

1
2

 j∑
t=1

[
1
2 −

1
eη(2t+1) + 1

]
+
`−1∑
d=0

k − 1
ed·η(2j+d+2) + k − 1

]. (7)

Since η(t) can be arbitrary nonnegative number, we break (7) into terms with the same
η(t) (we also drop a few terms to simplify the expression). In the following, we will also
assume that eη(t) = 1 + α(t)√

T
, where α(t) = Θ(1) for every t ∈ [T ]. Later we will explain why

this assumption is without loss of generality.

(7) ≥ 1
2R

T−`−1∑
t=`

[R− dt/2e] · [1
2 −

1
eη(t) + 1

]
+
`−1∑
d=0

k − 1
eη(t)d + k − 1


'
T−`−1∑
t=`

[R− dt/2e
R

]
α(t)
8
√
T

+
√
T ln(k)

2R · α(t)

 ≥ T−`−1∑
t=`

2

√√√√[R− dt/2e
R

]
α(t)
8
√
T

√
T ln(k)

2R · α(t)

=
√

ln(k)
2 · 2R

T−`−1∑
t=`

√√√√[R− dt/2e
R

]
'
√

ln(k)
2 · T

∫ 1

0

√
1− x dx =

√
ln(k)
2T · 2

3 . (8)

In the above derivation we obtain the first approximation ' by using approximations from
(4) and (6).

We now argue that the assumption α(t) = Θ(1) is without loss of generality for every
t ∈ [T ]. We apply a similar argument as in Theorem 1, but now for each individual term with
a particular η(t). The term

∑`−1
d=0

k−1
eη(t)d+k−1 in (8) is already large enough for the estimate

when α(t) = o(1). The term
[
R− dt/2e

]
·
[

1
2 −

1
eη(t)+1

]
also places a strong bound of O(1) on

α(t), when
[
R− dt/2e

]
is constant fraction of T . To argue about t close to the threshold T ,

we can slightly modify the adversary by playing with a small constant probability ε entirely
“looping” strategy (without “straight line” part). This would make the coefficient in front of[

1
2 −

1
eη(t)+1

]
to be sufficiently large, and at the same time would decrease the lower bound

by at most 1− ε factor. Taking ε arbitrary small we obtain the bound in (8). This concludes
the proof for the even number of experts

For the odd number of experts k. We slightly modify the adversary analogous to the case
of odd number of experts in Theorem 2. This gives us an additional factor of 1− 1

k2 for each
of the looping terms.

Note that since our adversary is independent of how the η(t)’s are picked in the algorithm,
it follows immediately that our lower bound applies for AF = Aarb,Arand. J



N. Gravin, Y. Peres, and B. Sivan 48:13

I Remark. One can slightly improve the lower bound in Theorem 3 and get a better factor
than 2

3 . To this end we employ a more complicated adversary by playing with some probability
p > 0 the same strategy as in Theorem 3 and with the remaining 1− p probability playing
purely looping strategy (see the full version [11]).

3 Geometric horizon

We prove two main results in this Section. We derive the structure of the optimal adversary
for 2 experts and show that the optimal regret for 2 experts is exactly 0.391√

δ
as δ → 0. For

an arbitrary number of experts k, we derive a regret lower bound of 1
2

√
ln(k)

2δ (see the full
version [11] for proofs of these results).
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