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Abstract
In a recent work (Ghazi et al., SODA 2016), the authors with Komargodski and Kothari initiated
the study of communication with contextual uncertainty, a setup aiming to understand how
efficient communication is possible when the communicating parties imperfectly share a huge
context. In this setting, Alice is given a function f and an input string x, and Bob is given a
function g and an input string y. The pair (x, y) comes from a known distribution µ and f and g
are guaranteed to be close under this distribution. Alice and Bob wish to compute g(x, y) with
high probability. The lack of agreement between Alice and Bob on the function that is being
computed captures the uncertainty in the context. The previous work showed that any problem
with one-way communication complexity k in the standard model (i.e., without uncertainty1)
has public-coin communication at most O(k(1 + I)) bits in the uncertain case, where I is the
mutual information between x and y. Moreover, a lower bound of Ω(

√
I) bits on the public-coin

uncertain communication was also shown.
However, an important question that was left open is related to the power that public ran-

domness brings to uncertain communication. Can Alice and Bob achieve efficient communication
amid uncertainty without using public randomness? And how powerful are public-coin protocols
in overcoming uncertainty? Motivated by these two questions:

We prove the first separation between private-coin uncertain communication and public-coin
uncertain communication. Namely, we exhibit a function class for which the communication in
the standard model and the public-coin uncertain communication are O(1) while the private-
coin uncertain communication is a growing function of n (the length of the inputs). This
lower bound (proved with respect to the uniform distribution) is in sharp contrast with
the case of public-coin uncertain communication which was shown by the previous work to
be within a constant factor from the certain communication. This lower bound also implies
the first separation between public-coin uncertain communication and deterministic uncertain
communication. Interestingly, we also show that if Alice and Bob imperfectly share a sequence
of random bits (a setup weaker than public randomness), then achieving a constant blow-up
in communication is still possible.
We improve the lower-bound of the previous work on public-coin uncertain communication.
Namely, we exhibit a function class and a distribution (with mutual information I ≈ n) for
which the one-way certain communication is k bits but the one-way public-coin uncertain
communication is at least Ω(

√
k ·
√
I) bits.

Our proofs introduce new problems in the standard communication complexity model and
prove lower bounds for these problems. Both the problems and the lower bound techniques may
be of general interest.

∗ A full version of the paper is available at https://arxiv.org/abs/1705.01082 [7].
1 In other words, under the promise that f = g.
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1 Introduction

In many forms of communication (e.g., human, computer-to-computer), the communicating
parties share some context (e.g, knowledge of a language, operating system, communica-
tion protocol, encoding/decoding mechanisms.). This context is usually a) huge and b)
imperfectly shared among the parties. Nevertheless, in human communication, very efficient
communication is usually possible. Can we come up with a mathematical analogue of this
phenomenon of efficient communication based on a huge but imperfectly shared context?
Motivated by this general question, the study of “communication amid uncertainty” has
been the subject of a series of recent work starting with Goldreich, Juba and Sudan [13, 8]
followed by [12, 14, 15, 11, 4]. While early works were very abstract and general, later works
(starting with Juba, Kalai, Khanna and Sudan [12]) tried to explore the ramifications of
uncertainty in Yao’s standard communication complexity model [26]. In particular, the more
recent works relax the different pieces of context that were assumed to be perfectly shared
in Yao’s model, such as shared randomness [4], and in a recent work of the authors with
Komargodski and Kothari the function being computed [6].

Specifically, [6] study the following functional notion of uncertainty in communication.
Their setup builds on – and generalizes – Yao’s classical model of (distributional) commu-
nication complexity, where Alice has an input x and Bob has an input y, with (x, y) being
sampled from a distribution µ. Their goal is to communicate minimally so as to compute
some function g(x, y) (with high probability over the choice of (x, y)). The understated
emphasis of the model is that for many functions g, the communication required is much less
than the lengths of x or y, the entropy of x or y or even the conditional entropy of x given y.

The question studied by [6] is: How much of this gain in communication is preserved
when the communicating parties do not exactly agree on the function being computed? (We
further discuss the importance of this question in Section 1.2.) This variation of the problem
is modelled as follows: Alice is given a Boolean function f and an input string x, and Bob
is given a Boolean function g and an input string y where (x, y) is sampled from a known
distribution µ as before, and (f, g) is chosen (adversarially) from a known class F of pairs of
functions that are close in terms of the Hamming distance ∆µ (weighted according to µ).
Alice and Bob wish to compute g(x, y). Alice’s knowledge of the function f (which is close
but not necessarily equal to g) captures the uncertainty in the knowledge of the context.

We define the public-coin uncertain communication complexity PubCCUµε (F) as the
minimum length of a two-way public-coin protocol whose output is correct with probability at
least 1− ε over its internal randomness and that of (x, y). We similarly define the private-coin
uncertain communication complexity PrivCCUµε (F) by restricting to private-coin protocols.
Clearly, PubCCUµε (F) ≤ PrivCCUµε (F). The quantities owPubCCUµε (F) and owPrivCCUµε (F)
are similarly defined by restricting to one-way protocols.2

2 Note that the uncertain model is clearly a generalization of Yao’s model which corresponds to the
particular case where F = {(f, f)} for some fixed function f . On the other hand, the uncertain model
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The previous work ([6]) gave an upper bound on owPubCCUµε (F) whenever F consists
of functions g whose one-way distributional complexity is small. More precisely, denote by
owCCµε (g) the one-way communication complexity of g in the standard distributional model.3
Namely, owCCµε (g) is the minimum length of a one-way deterministic protocol computing
g with probability at least 1− ε over the randomness of (x, y). Then, [6] showed that if F
consists of pairs (f, g) of functions that are at distance δ, and if owCCµε (f), owCCµε (g) ≤ k,
then for every positive θ, owPubCCUµε+2δ+θ(F) ≤ Oθ(k · (1 + I(x; y))), where I(x; y) denotes
the mutual information between x and y.4 Note that if µ is a product distribution and if
we let the parameter θ be a small constant, then the blow-up in communication is only a
constant factor. However, the protocol of [6] crucially uses public randomness, and one of
the main motivations behind this work is to understand how large the blow-up would be in
the case where Alice and Bob have access to weaker types of randomness (or no randomness
at all).

We point out that understanding the type of randomness that is needed in order to
cope with uncertainty is a core question in the setup of communication with contextual
uncertainty: If Alice and Bob do not (perfectly) agree on the function being computed, why
can we assume that they (perfectly) agree on the shared randomness?

1.1 Our Contributions
We prove several results about the power of shared randomness in uncertain communication.

Private and Imperfectly Shared Randomness

Our first result (Theorem 1) shows that private-coin protocols are much weaker than public-
coin protocols in the setup of communication with contextual uncertainty. Far from obtaining
a constant factor blow-up in communication, private-coin protocols incur an increase that is
a growing function of n when dealing with uncertainty.

Let U , U2n be the uniform distribution on {0, 1}2·n. For positive integers t and n, we
define log(t)(n) by setting log(1)(n) = logn, and log(i)(n) = max(log log(i−1)(n), 1) for all
i ∈ {2, . . . , t}.

I Theorem 1 (Lower-bound on private-coin uncertain protocols). For every sufficiently small
δ > 0, there exist a positive integer ` , `(δ) and a function class F , Fδ such that
(i) For each (f, g) ∈ F , we have that ∆U (f, g) ≤ δ.
(ii) For each (f, g) ∈ F , we have that owCCU0 (f), owCCU0 (g) ≤ ` .
(iii) For every η > 0 and ε ∈ (4δ, 0.5], we have that PrivCCUUε/2−2δ−η(F) = Ω(η2 · log(t)(n))

for some positive integer t = Θ((ε/δ)2).

In Theorem 1, the inputs x and y are binary strings of length n and F is a family of pairs
of functions, which each function mapping {0, 1}n × {0, 1}n to {0, 1}. Also, the parameter η

can also be viewed as a particular case of Yao’s model via an exponential blow-up in the input size. For
more on this view (which turns out to be ineffective in our setup), we refer the reader to Note 9 at the
end of this section.

3 By the “easy direction” of Yao’s min-max principle, we can without loss of generality consider determin-
istic (instead of public-coin) protocols when defining owCCµε (g). We point out that this is not true in
the uncertain case.

4 One interpretation of the dependence of the communication in the uncertain setup on the mutual
information I(x; y) is that the players are better able to use the correlation of their inputs in the
standard case than in the uncertain case.
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49:4 The Power of Shared Randomness in Uncertain Communication

can possibly depend on n. We point out that Theorem 1 also implies the first separation
between deterministic uncertain protocols and public-coin uncertain protocols5.

I Note 2. We point out that the relative power of private-coin and public-coin protocols in
the uncertain model is both conceptually and technically different from the standard model.
Specifically, the randomness is potentially used in the standard model in order to fool an
adversary selecting the input pair (x, y), whereas in the uncertain model, it is used to fool an
adversary selecting the pair (f, g) of functions that are promised to be close. This promise
makes the task of proving lower bounds against private-coin protocols in the uncertain model
(e.g., Theorem 1) significantly more challenging than in the standard model.6 Moreover, a
well-known theorem due to Newman [21] shows that in the standard model, any public-coin
protocol can be simulated by a private-coin protocol while increasing the communication by
an additive O(logn) bits. By contrast, there is no known analogue of Newman’s theorem in
the uncertain case!

I Note 3. The construction that we use to prove Theorem 1 cannot give a separation
larger than Θ(log logn). Thus, showing a separation of ω(log logn) between private-coin
and public-coin protocols in the uncertain case would require a new construction. For more
details, see Note 13.

In light of Theorem 1, it is necessary for Alice and Bob to share some form of randomness
in order to only incur a constant blow-up in communication for product distributions.
Fortunately, it turns out that it is not necessary for Alice and Bob to perfectly share a
sequence of random coins. If Alice is given a uniform-random string r of bits and Bob is
given a string r′ obtained by independently flipping each coordinate of r with probability
0.49, then efficient communication is still possible!

More formally, for ρ ∈ [0, 1], define owIsrCCUµε,ρ(F) in the same way that we defined
owPubCCUµε (F) except that instead of Alice and Bob having access to public randomness,
Alice will have access to a sequence r of independent uniformly-random bits, and Bob will have
access to a sequence r′ of bits obtained by independently flipping each coordinate of r with
probability (1− ρ)/2. Note that this setup of imperfectly shared randomness interpolates
between the public randomness and private randomness setups, i.e., owIsrCCUµε,1(F) =
owPubCCUµε (F) and owIsrCCUµε,0(F) = owPrivCCUµε (F).

I Theorem 4 (Uncertain protocol using imperfectly shared randomness). Let ρ ∈ (0, 1] and µ
be a product distribution. Let F consist of pairs (f, g) of functions with ∆µ(f, g) ≤ δ, and
owCCµε (f), owCCµε (g) ≤ k. Then, for every positive θ, owIsrCCUµε+2δ+θ,ρ(F) ≤ Oθ(k/ρ2).

The imperfectly shared randomness model in Theorem 4 was recently independently
introduced (in the setup of communication complexity) by Bavarian, Gavinsky and Ito
[2] and by Canonne, Guruswami, Meka and Sudan [4] (and it was further studied in [5]).
Moreover, our proof of Theorem 4 is based on combining the uncertain protocol of [6] and
the locality-sensitive-hashing based protocol of [4].

We point out that Theorem 4 also holds for more general i.i.d. sources of correlated
randomness than the one described above. More precisely, for i.i.d. (not necessarily binary)

5 This uses the fact that private-coin communication complexity is no larger than deterministic commu-
nication complexity, both in the certain and uncertain setups.

6 In particular, the diagonilization-based arguments that imply a separation between the public-coin and
the private-coin communication complexities of the Equality function in the standard model completely
fail when we impose such a promise.
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sources of (imperfectly) shared randomness with maximal correlation7 ρ, the work of Witsen-
hausen [24] along with the protocols of [4] and [6] imply an uncertain protocol with Oθ(k/ρ2)
bits of communication.

Public Randomness

We now turn to our next result where we consider the dependence of the upper bound of [6]
on the mutual information I , I(X;Y ) in the case of public-coin protocols. The previous
work [6] proved a lower bound of Ω(

√
I) on this dependence, but their lower-bound does not

grow with k. We improve this lower bound to Ω(
√
k ·
√
I).

I Theorem 5 (Improved lower-bound on public-coin uncertain protocols). For every sufficiently
small δ > 0 and every positive integers k, n such that k = o(exp(

√
n)), there exist an input

distribution µ on input pairs (X,Y ) ∈ {0, 1}k·n × {0, 1}k·n with mutual information I ≈ k · n
and a function class F , Fδ,k,n such that8
(i) For each (f, g) ∈ F , we have that ∆µ(f, g) ≤ δ.
(ii) For each (f, g) ∈ F , we have that owCCµ0 (f), owCCµ0 (g) ≤ k.
(iii) owPubCCUµε (F) = Ω(

√
k ·
√
I) for some absolute constant ε > 0 independent of δ.

As will be explained in detail in Section 2.2, the proof of Theorem 5 is based on an extension
of the lower bound construction of [6], which is then analyzed using different techniques.
I Note 6. The construction that we use to prove Theorem 5 cannot give a lower bound
larger than Θ̃(

√
k ·
√
I). Thus, improving on the lower bound in Theorem 5 by more than

logarithmic factors in k and I would require a new construction.

New Communication Problems

Our lower bounds in Theorems 1 and 5 are derived by defining new problems in standard
communication complexity (i.e., without uncertainty) and proving lower bounds for these
problems. We describe these problems and our results on these next.

The construction that we use to prove Theorem 1 requires us to understand the following
“subset-majority with side information” setup. Alice is given a subset S ⊆ [n] and a string
x ∈ {±1}n, and Bob is given a subset T ⊆ [n] and a string y ∈ {±1}n. The subsets S and T are
adversarially chosen but are promised to satisfy S ⊆ T , |T | = ` and |T \S| ≤ δ ·` for some fixed
parameters ` and δ. The strings x and y are chosen independently and uniformly at random.
Alice and Bob wish to compute the function SubsetMaj((S, x), (T, y)) , Sign(

∑
i∈T xiyi). In

words, SubsetMaj((S, x), (T, y)) is equal to 0 if x and y differ on a majority of the coordinates
in subset T , and 1 otherwise. Note that S does not directly appear in the definition of
the function SubsetMaj but it can serve as useful side-information for Alice.9 What is
the private-coin communication complexity of computing SubsetMaj on every (S, T )-pair
satisfying the above promise and with high probability over the random choice of (x, y) and
over the private randomness? We prove the following (informally stated) lower bound.

7 The maximal correlation of a pair (X,Y ) of random variables (with support X × Y) is defined as
ρ(X,Y ) , supE[F (X)G(Y )] where the supremum is over all functions F : X → R and G : Y → R
with E[F (X)] = E[G(Y )] = 0 and Var[F (X)] = Var[G(Y )] = 1. It is not hard to show that the binary
source of imperfectly shared randomness defined in the paragraph preceding Theorem 4 has maximal
correlation ρ.

8 We note that I ≈ k · n means that I/(k · n)→ 0 as n→∞.
9 Note that we could have alternatively defined SubsetMaj in terms of S, and let T serve as the potentially
useful side-information. Our lower bound would also apply to this setup.
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49:6 The Power of Shared Randomness in Uncertain Communication

I Lemma 7. Any private-coin protocol computing SubsetMaj on every (S, T )-pair satisfying
the promise and with high probability over the random choice of (x, y) and over the private
randomness should communicate at least log(t)(n) bits for some positive integer t that depends
on δ and the error probability.

The proof of Theorem 5 is based on a construction that leads to the question described
next regarding the communication complexity of a particular block-composed function.
Namely, consider the following “majority composed with subset-parity with side information”
setup. Alice is given a sequence of subsets S , (S(i) ⊆ [n])i∈[k] and a sequence of strings
x , (x(i) ∈ {0, 1}n)i∈[k], and Bob is given a sequence of subsets T , (T (i) ⊆ [n])i∈[k] and
a sequence of strings y , (y(i) ∈ {0, 1}n)i∈[k]. We consider the following distribution µ on
((S, x), (T, y)). Independently for each i ∈ [k], we sample ((S(i), x(i)), (T (i), y(i))) as follows:
S(i) is a uniform-random subset and T (i) is an ε-noisy10 copy of S(i), and independently
x(i) is a uniform-random string and y(i) is an ε-noisy copy of x. Here, ε is a positive
parameter that can depend on n and k. Alice and Bob wish to compute the function
Maj ◦ SubsetParity((S, x), (T, y)) , Sign

(∑k
i=1(−1)〈T (i),x(i)⊕y(i)〉) where T (i) denotes both

the subset and its 0/1 indicator vector, the inner product is over F2, and x(i) ⊕ y(i) is the
coordinate-wise XOR of x(i) and y(i). What is the communication complexity of computing
Maj ◦ SubsetParity with high probability over the distribution µ? We prove the following
lower bound.

I Lemma 8. Any 1-way protocol computing Maj ◦ SubsetParity with high probability over the
distribution µ should communicate Ω(k · ε · n) bits.

In Section 2.1, we outline the proof of Theorem 1 and explain how it leads to the setup
of Lemma 7 and how we prove Lemma 7. In Section 2.2, we outline the proof of Theorem 5
and explain how it leads to the setup of Lemma 8 and how we prove Lemma 8.

Before doing so, we discuss some conceptual implications of our results.

1.2 Implications
Functional uncertainty models much of the day-to-day interactions among humans, where
a person is somewhat aware of the objectives of the other person she is interacting with,
but do not know them precisely. Neither person typically knows exactly what aspects of
their own knowledge may be relevant to the interaction, yet they do manage to have a short
conversation. This is certainly a striking phenomenon, mostly unexplained in mathematical
terms. This line of works aims to explore such phenomena. It is important to understand
what mechanisms may come into play here, and what features play a role. Is the ability
to make random choices important? Is shared information crucial? Is there a particular
measure of distance between functions that makes efficient communication feasible? In
order to understand such questions, one first needs to have a ground-level understanding of
communication with functional uncertainty. This work tackles several basic questions that
remain unexplored.

An ideal model for communication would only assume a constant amount of perfectly
shared context between the sender and receiver, such as the knowledge of an encoding/decod-
ing algorithm, one universal Turing machine, etc. Solutions to most interesting communication
problems seem to assume a shared information which grows with the length of the inputs.

10This means that the indicator vector of T (i) is obtained by independently flipping each coordinate of
the indicator vector of S(i) with probability ε.
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Recent work showed that in many of these scenarios some assumptions about the shared
context can be relaxed to an imperfect sharing, but these results are often brittle and
break when two or more contextual elements are simultaneously assumed to be imperfectly
shared. Our work raises the question of whether imperfectly shared randomness would be
sufficient to overcome functional uncertainty. We show that this is indeed the case for product
distributions, but the loss for non-product distributions might be much larger (for this and
other open questions, we refer the reader to our conclusion Section 6). Such results highlight
the delicate nature of the role of shared context in communication. They beg for a more
systematic study of communication which at the very least should be able to mimic the aims,
objectives and phenomena encountered in human communication.
I Note 9. As mentioned in Footnote 2, the uncertain model is clearly a generalization of
Yao’s model. Strictly speaking, the uncertain model can also be viewed as a particular case of
Yao’s model by regarding the function(s) that is being computed as part of the inputs of Alice
and Bob, which results in an exponential blow-up in the input-size. This latter view turns out
to be fruitless for our purposes. Indeed, from this perspective, all the different well-studied
communication functions (such as Equality, Set Disjointness, Pointer Jumping, etc.) are
regarded as special cases of one “universal function”! More importantly, this view completely
blurs the distinction between the goal of the communication (i.e., the function to compute)
and the inputs of the parties. On a technical level, it does not simplify the task of proving
the lower bounds in Theorems 1 and 5 in any way since it does not capture the promise that
the two functions (given to Alice and Bob) are close in Hamming distance. Thus, in the rest
of this paper, we stick to the former view and use the expressions “uncertain model” and
“standard model" to refer to the setups with and without uncertainty, respectively.

2 Overview of Proofs

2.1 Overview of Proof of Theorem 1
Reduction to Lemma 7

In order to prove Theorem 1, we need to devise a function class for which circumventing the
uncertainty is much easier using public randomness than using private randomness. One
general setup in which Bob can leverage public randomness to resolve some uncertainty
regarding Alice’s knowledge is the following “small-set intersection” problem. Assume that
Alice is given a subset S ⊆ [n], and Bob is given a subset T ⊆ [n] such that T contains S
and |T | = `, where we think of ` as being a large constant. Here, Bob knows that Alice has
a subset of his own T but he is uncertain which subset Alice has. Using public randomness,
a standard 1-way hashing protocol communicating Õ(`) bits allows Bob to determine S with
high probability. On the other hand, using only private randomness, the communication
complexity of this task is Θ(log logn) bits.

With the above general setup in mind, we consider functions fS indexed by small subsets
S of coordinates on which they depend. Since we want the functions fS and fT to be close
in Hamming distance, we enforce |T \ S| to be small for every pair (fS , fT ) of functions in
our class, and we let each function fS be “noise-stable”. Since we want our function fS to
genuinely depend on all coordinates in S, the majority function fS(x, y) = Sign(

∑
i∈S xiyi)

for x, y ∈ {±1}n arises as a natural choice. We also let x and y be independent uniform-
random strings. In this case, it can be seen that if |T \ S| is a small constant fraction of |T |,
then the quadratic polynomials

∑
i∈S xiyi and

∑
i∈T xiyi behave like standard Gaussians

with correlation close to 1, and the quadratic threshold functions fS(x, y) and fT (x, y) are
thus close in Hamming distance.

ICALP 2017



49:8 The Power of Shared Randomness in Uncertain Communication

Note that in the certain case, i.e., when both Alice and Bob agree on S, they can easily
compute fS(x, y) by having Alice send to Bob the ` bits (xi)i∈S . Moreover, if Alice and Bob
are given access to public randomness in the uncertain case, Bob can figure out S via the
hashing protocol mentioned above using Õ(`) bits of communication, which would reduce the
problem to the certain case11. The bulk of the proof will be to lower-bound the private-coin
uncertain communication. Note that by the choice of our function class and distribution,
this is equivalent to proving Lemma 7.

Proof of Lemma 7

To prove Lemma 7, the high-level intuition is that a protocol solving the uncertain problem
should be essentially revealing to Bob the subset S that Alice holds. Formalizing this intuition
turns out to be challenging, especially that a private-coin protocol solving the uncertain
problem is only required to output a single bit which is supposed to equal the Boolean
function fT (x, y) with high probability over (x, y) and over the private randomness. In
fact, this high-level intuition can be shown not to hold in certain regimes12. Moreover, the
standard proofs that lower bound the communication of small-set intersection do not extend
to lower-bound the communication complexity of fT .

To lower-bound the private-coin communication of solving the uncertain task by a growing
function of n, we consider the following shift communication game. Bob is given a sorted
tuple σ = (σ1, . . . , σt) of integers with 1 ≤ σ1 < · · · < σt ≤ n, and Alice is either given the
prefix (σ1, . . . , σt−1) of length t− 1 of σ or the suffix (σ2, . . . , σt) of length t− 1 of σ. Bob
needs to determine the input of Alice. We show that a celebrated lower bound of Linial [19]
on the chromatic number of certain related graphs implies a lower bound of log(t+1)(n) on
the private-coin communication of the shift communication game. We then show that any
private-coin protocol solving the uncertain task can be turned into a private-coin protocol
solving the shift-communication game with a constant (i.e., independent of n) blow-up in
the communication.

2.2 Overview of Proof of Theorem 5
Reduction to Lemma 8

The proof of Theorem 5 builds on the lower-bound construction of [6] which we recall next.
Let µ be the distribution over pairs (x, y) ∈ {0, 1}2n where x is uniform-random and y is an
ε-noisy copy of x with ε =

√
δ/n. Then, the mutual information between x and y satisfies

I ≈ n. For each S ⊆ [n], consider the function fS(x, y) , 〈S, x⊕ y〉 where the inner product
is over F2, x⊕ y denotes the coordinate-wise XOR of x and y, and S is used to denote both
the subset and its 0/1 indicator vector. Moreover, consider the class F of all pairs of functions
(fS , fT ) where |S4T | ≤

√
δn. It can be seen that for such S and T , the distance between fS

and fT under µ is at most δ. If Alice and Bob both know S, then Alice can send the single
bit 〈S, x〉 to Bob who can then output the correct answer 〈S, x⊕ y〉 = 〈S, x〉 ⊕ 〈S, y〉. This
means that the certain communication is 1 bit. Using the well-known discrepancy method,
[6] showed a lower bound of Ω(

√
n) bits on the communication of the associated uncertain

problem. Since in this case I ≈ n, this in fact lower-bounds the uncertain communication by

11Alternatively, Alice and Bob can run the protocol of [6] which would communicate O(`) bits.
12For example, for constant error probabilities, the 1-way randomized communication complexity of

small-set intersection is known to be Θ(` · log(`)) bits (see, e.g., [3]) whereas the public-coin protocol of
[6] can compute fT with O(`) bits of communication.
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Ω(
√
I) bits. For this construction, this lower bound turns out to be tight up to a logarithmic

factor.
To improve the lower-bound from

√
I to

√
k ·
√
I, we consider the following “block-

composed” framework. Let {fS(i)(x(i), y(i)) : i ∈ [k]} be k independent copies of the above
base problem of [6] and consider computing the composed function g

(
fS(1)(x(1), y(1)), . . . ,

fS(k)(x(k), y(k))
)
for some outer function g : {0, 1}k → {0, 1}. For any choice of g, the certain

communication of the composed function would be at most k bits. When choosing the outer
function g to use in our lower bound, we thus have two objectives to satisfy. First, g has to
be sufficiently hard in the sense that its average-case decision tree complexity with respect
to the uniform distribution on {0, 1}k should be Ω(k); otherwise, it will not be the case
that the uncertain communication of computing g on k copies of the base problem is at
least k times the uncertain communication of the base problem. Second, g has to be noise
stable in order to be able to upper bound the distance between g

(
fS(1)(·), . . . , fS(k)(·)

)
and

g
(
fT (1)(·), . . . , fT (k)(·)

)
.

Note that setting g to be a dictator function would satisfy the noise-stability property, but
it clearly would not satisfy the hardness property, as the composed function would be equal
to the base function and would thus have uncertain communication Õ(

√
n) bits. Another

potential choice of g is to set it to the parity function on k bits. This function would satisfy
the hardness property, but it would strongly violate the noise stability property that is crucial
to us. This leads us to setting g to the majority function on k bits, which is well-known to be
noise stable, and has average-case decision-tree complexity Ω(k) with respect to the uniform
distribution on {0, 1}k. In fact, the noise stability of the majority function readily implies
an upper bound of O(

√
δ) on the distance between any pair of composed functions that are

specified by tuples of subsets (S(1), . . . , S(k)) and (T (1), . . . , T (k)) with |S(i)4T (i)| ≤
√
δn

for each i ∈ [k]. The crux of the proof will be to lower-bound the uncertain communication
of the majority-composed function by Ω(k

√
n), which amounts to proving Lemma 8. Since

in this block-composed framework the mutual information satisfies I ≈ kn, this would imply
the lower bound of Ω(

√
k
√
I) on the uncertain communication in Part (iii) of Theorem 5.

Proof of Lemma 8

We first point out that the average-case quantum decision tree complexity of Majk with respect
to the uniform distribution is Õ(

√
k) [1]. This implies that any communication complexity

lower-bound method that extends to the quantum model cannot prove a lower bound larger
than Õ(

√
k ·
√
n) on our uncertain communication13. In particular, we cannot solely rely on

the discrepancy bound (as done in [6]), since this bound is known to lower-bound quantum
communication. Similarly, the techniques of [22, 23, 18] rely on the generalized discrepancy
bound (originally due to [16]) which also lower-bounds quantum communication. Moreover,
the recent results of [20] only apply to product distributions (i.e., where Alice’s input is
independent of Bob’s input) in contrast to our case where the inputs of Alice and Bob are
very highly-correlated. Finally, the recent works of [9, 10] do not imply lower bounds on the
average-case complexity with respect to the distribution that arises in our setup.

To circumvent the above obstacles, we use a new approach that is tailored to our setup
and that is outlined next. Let Π be a 1-way protocol solving the uncertain task with high
probability. We consider the information that Π reveals about the inputs to the outer

13Thus, since I ≈ k · n in our block-composed framework, such methods cannot be used to improve the
lower-bound of Ω(

√
I) of [6] by more than logarithmic factors.
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function, i.e., about the length-k binary string
(
fS(1)(x(1), y(1)), . . . , fS(k)(x(k), y(k))

)
. We

call this quantity the intermediate information cost of Π, and we argue that it is at least
Ω(k) bits. To do so, we recall the Hamming distance function HDk defined by HDk(u, v) = 1
if the Hamming distance between u and v is at least k/2 and HDk(u, v) = 0 otherwise. We
upper bound the information complexity of computing HDk over the uniform distribution on
{0, 1}2k by the intermediate information cost of Π. We do so by giving an information-cost
preserving procedure where Alice and Bob are given independent uniformly distributed u
and v (respectively) and use their private and public coins in order to simulate the input
distribution (X,Y ) of our uncertain problem. The known 1-way lower bound of [25] on HDk
under the uniform distribution then implies that Π reveals Ω(k) bits of information to Bob
about the tuple

(
fS(1)(x(1), y(1)), . . . , fS(k)(x(k), y(k))

)
. This allows Bob to guess this tuple

with probability 0.51k. We then apply the strong direct product theorem for discrepancy of
[17] which, along with the discrepancy-based lower bound on the communication of the base
uncertain problem of [6], implies that Π should be communicating at least Ω(k

√
n) bits.

Organization of the rest of the paper

In Section 3, we give some preliminaries. In Sections 4 and 5, we describe the proofs of
Theorems 1 and 5 respectively. All the missing proofs as well as the proof of Theorem 4
appear in the full version. In Section 6, we conclude with some interesting open questions.

3 Preliminaries

For a real number x, we define Sign(x) to be 1 if x ≥ 0 and 0 if x < 0. For a set S, we write
X ∈R S to indicate that X is a random variable that is uniformly distributed on S. For a
positive integer n, we let [n] , {1, . . . , n}. For a real number x, we denote exp(x) a quantity
of the form 2Θ(x). For any two subsets S, T ⊆ [n], we let S \ T be the set of all elements of S
that are not in T . We let S4T be the symmetric difference of S and T , i.e., the union of
S \ T and T \ S. For functions f, g : X × Y → {0, 1} and any distribution µ on X × Y, we
define the distance ∆µ(f, g) , Pr(x,y)∼µ[f(x, y) 6= g(x, y)] as the Hamming distance between
the values of f and g, weighted with respect to µ. If µ is the uniform distribution on X × Y ,
we drop the subscript µ and denote ∆µ by ∆. We next recall the standard communication
complexity model of Yao [26]. For any function f : X × Y → {0, 1}, we denote by CC(f),
owCC(f), PrivCCε(f) and owPrivCCε(f) its two-way deterministic, one-way deterministic,
two-way private-coin and one-way private-coin communication complexity respectively. For
any distribution µ over X×Y , we denote by CCµε (f) and owCCµε (f) the two-way distributional
and one-way distributional communication complexity of over µ with error ε, respectively.

We next recall the model of communication with contextual uncertainty. For more details
on this model, we refer the reader to [6]. In this setup, Alice knows a function f and is given an
input x, and Bob knows a function g and is given an input y. Let F ⊆ {f : X ×Y → {0, 1}}2
be a family of pairs of Boolean functions with domain X × Y, and µ be a distribution on
X × Y . We say that a public-coin (resp. private-coin) protocol Π ε-computes F over µ if for
every (f, g) ∈ F , we have that Π outputs the value g(x, y) with probability at least 1 − ε
over the randomness of (x, y) ∼ µ and over the public (resp. private) randomness of Π.

I Definition 10 (Contextually Uncertain Communication Complexity). Let µ be a distribution
on X × Y and F ⊆ {f : X × Y → {0, 1}}2. The two-way (resp. one-way) public-coin
communication complexity of F under contextual uncertainty, denoted PubCCUµε (F) (resp.
owPubCCUµε (F)), is the minimum over all two-way (resp. one-way) public-coin protocols Π
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that ε-compute F over µ, of the maximum communication complexity of Π over (f, g) ∈ F ,
(x, y) from the support of µ and settings of the public coins.

Similarly, the two-way (resp. one-way) private-coin communication complexity of F
under contextual uncertainty PrivCCUµε (F) (resp. owPrivCCUµε (F)) is defined by restricting
to two-way (resp. one-way) private-coin protocols.

4 Construction for Private-Coin Uncertain Protocols

We now describe the construction that is used to prove Theorem 1. Each function in our
universe is specified by a subset S ⊆ [n] and is of the form fS : {±1}n×{±1}n → {0, 1} with
fS(X,Y ) , Sign(

∑
i∈S XiYi) for all X,Y ∈ {±1}n. The function class is then defined by

Fδ , {(fS , fT ) : S ⊆ T, |T | = ` and |T \ S| ≤ δ′ · `},

where δ′ = α · δ2 for some sufficiently small positive absolute constant α, and ` = `(δ)
is a sufficiently large function of δ. The input pair (X,Y ) is drawn from the uniform
distribution on {±1}2n. The proof of Part (i) of Theorem 1 follows from the fact that the the
polynomials

∑
i∈S XiYi and

∑
i∈T XiYi behave like zero-mean Gaussians with unit-variance

and correlation
√

1− δ′. The proof of Part (ii) of Theorem 1 is immediate and is given in the
full version for completeness. To prove Part (iii) of Theorem 1, the next definition – which is
based on the graphs studied by Linial [19]– will be crucial to us.

I Definition 11 (Shift Communication Game Gm,t). Let m and t be positive integers with
t ≤ m. In the communication problem Gm,t, Bob is given a sorted tuple σ = (σ1, . . . , σt)
of distinct integers with 1 ≤ σ1 < · · · < σt ≤ m. In the YES case, Alice is given the prefix
(σ1, . . . , σt−1) of length t− 1 of σ. In the NO case, Alice is given the suffix (σ2, . . . , σt) of
length t− 1 of σ. Alice and Bob need to determine which of the YES and NO cases occurs.

Lemma 12 lower-bounds the private-coin communication complexity of Gm,t. Its proof
uses Linial’s lower bound on the chromatic number of related graphs.

I Lemma 12. There is an absolute constant c such that for every sufficiently small ε > 0,
we have that PrivCCε(Gm,t) ≥ c · log(t+2)(m).

The proof of Part (iii) of Theorem 1 – which is the main part in the proof of Theorem 1 –
is deferred to the full version.
I Note 13. As mentioned in Note 3, the above construction cannot give a separation larger
than Θ(log logn). This is because using private randomness, Bob can learn the set S using
O(log logn) bits of communication (see, e.g., [3]). Additionally, Alice can send the coordinates
of X indexed by the elements of S to Bob who can then compute fS(X,Y ).

5 Construction for Public-Coin Uncertain Protocols

In this section, we describe the construction that is used to prove Theorem 5. We set

δ′ , c · δ2 and ε ,
√
δ′/n, (†)

where δ is the parameter from the statement of Theorem 5, and c > 0 is a small-enough
absolute constant. To define our input distribution, we first define a slightly more general
distribution µη. The support of µη is {0, 1}kn × {0, 1}kn and we will view the coordinates
of a sample (x, y) ∼ µη as x = (x(i))i∈[k] and y = (y(i))i∈[k] with x(i), y(i) ∈ {0, 1}n for all
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i ∈ [k]. A sample (x, y) ∼ µη is generated by letting x ∈R {0, 1}kn and for all i ∈ [k] and
j ∈ [n], independently setting y(i)

j to be an η-noisy copy of x(i)
j . In other words, we set

y
(i)
j = x

(i)
j w.p. 1− η and y(i)

j = 1− x(i)
j w.p. η. Our input distribution is then µ2ε−2ε2 .

We now define our function class Fε. Each function in our universe is specified by a
sequence of subsets S , (S(i) ⊆ [n])i∈[k] and it is of the form fS : {0, 1}2·k·n → {0, 1} with14

fS(x, y) , Sign
( ∑
i∈[k]

(−1)〈S
(i),x(i)⊕y(i)〉) (1)

for all x, y ∈ {0, 1}k·n, where in Eq. (1) the inner product is over F2, the sum is over R and
x(i) ⊕ y(i) denotes the coordinate-wise XOR of the two length-n binary strings x(i) and y(i).
The function class is then defined by Fε , {(fS , fT ) : |S(i)4T (i)| ≤ ε · n for all i ∈ [k]}.

The proof of Part (i) of Theorem 5 follows from known bounds on the noise stability
of the majority function. The proof of Part (ii) is immediate. To prove Part (iii), we first
define (as in [6]) a communication problem in the standard distributional model that reduces
to solving the contextually-uncertain problem specified by the function class Fε and the
distribution µ2ε−2ε2 . For distributions φ and ψ, we denote by φ⊗ ψ the joint distribution of
a sample from φ and an independent sample from ψ. The new problem is defined as follows.

Inputs: Alice’s input is a pair (S, x) where S , (S(i) ⊆ [n])i∈[k] and x ∈ {0, 1}k·n. Bob’s
input is a pair (T, y) where T , (T (i) ⊆ [n])i∈[k] and y ∈ {0, 1}k·n.
Distribution: Let Dq be the distribution on the pair (S, T ) of sequences of k subsets of [n],
which is defined by independently setting, for each i ∈ [k], S(i) to be a uniformly-random
subset of [n], and T (i) to be a q-noisy copy of S(i). The distribution on the inputs of
Alice and Bob is then given by νε , Dε ⊗ µ2ε−2ε2 with ε =

√
δ′/n.

Function: The goal is to compute the function F : {0, 1}2kn × {0, 1}2kn → {0, 1} defined
by F ((S, x), (T, y)) = fT (x, y) = Sign

(∑
i∈[k](−1)〈T (i),x(i)⊕y(i)〉).

The next proposition follows from a simple application of the Chernoff bound.

I Proposition 14. For any θ > 0, owPubCCUµ2ε−2−ε2

θ (Fε) ≥ owCCνεθ+θ′(F ) with θ′ =
2−Θ(ε·n).

In the full version, we prove the following lower bound on owCCνεθ (F ), which along with
Proposition 14 and the settings of ε and δ′ in (†), implies Part (iii) of Theorem 5.

I Lemma 15. For every sufficiently small positive constant θ, owCCνεθ (F ) = Ω(k · ε · n).

6 Open Questions

As mentioned in Notes 3 and 6 in Section 1, significantly improving the bounds from
Theorems 1 and 5 seems to require fundamentally new constructions, and is a very important
question. Moreover, is there an analogue of the protocol in Theorem 4 for non-product
distributions?

Another very important and intriguing open question is whether efficient communication
under contextual uncertainty is possible in the multi-round setup. Namely, if k is the r-round
certain communication, can we upper bound the r-round uncertain communication by some
function of k, I and possibly r? Even for r = 2 and when the uncertain protocol is allowed

14We will use the symbol S(i) to denote both the subset of [n] and its corresponding 0/1 indicator vector.
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to use public randomness, no non-trivial protocols are known in this setting. On the other
hand, no separations are known for this case (beyond those known for r = 1) even if the
protocols are restricted to be deterministic.
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