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Abstract
The Sensitivity Conjecture and the Log-rank Conjecture are among the most important and
challenging problems in concrete complexity. Incidentally, the Sensitivity Conjecture is known
to hold for monotone functions, and so is the Log-rank Conjecture for f(x∧y) and f(x⊕y) with
monotone functions f , where ∧ and ⊕ are bit-wise AND and XOR, respectively. In this paper, we
extend these results to functions f which alternate values for a relatively small number of times
on any monotone path from 0n to 1n. These deepen our understandings of the two conjectures,
and contribute to the recent line of research on functions with small alternating numbers.
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1 Introduction

A central topic in Boolean function complexity theory is relations among different combin-
atorial and computational measures [29]. For Boolean functions, there is a large family of
complexity measures such as block sensitivity, certificate complexity, decision tree complexity
(including its randomized and quantum versions), degree (including its approximate version),
etc, that are all polynomially related [13]. One outlier1 is sensitivity, which a priori could be
exponentially smaller than the ones in that family. The famous Sensitivity Conjecture raised
by Nisan and Szegedy [48] says that sensitivity is also polynomially related to the block
sensitivity and others in the family. Despite a lot of efforts, the best upper bound we know is
still exponential: bs(f) ≤ C(f) ≤

( 8
9 + o(1)

)
s(f)2s(f)−1 from [25], improving upon previous

work [54, 2, 3]. See a recent survey [24] about this conjecture and how it has resisted many
serious attacks.

Communication complexity quantifies the minimum amount of communication required
for computing functions whose inputs are distributed among two or more parties [31]. In

∗ This work was supported by Research Grants Council of the Hong Kong S.A.R. (Project no.
CUHK14239416). The first author was also supported by NSF grants #CNS-1445424 and #CCF-
1423306.

† Most of this work was done when Chengyu Lin was in Chinese University of Hong Kong.
1 There are complexity measures, such as F2-degree, polynomial threshold degree, total influence, Boolean

circuit depth, CNF/DNF size, that are known not to belong to the polynomially equivalent class. But
the position of sensitivity is elusive.
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the standard bipartite setting, the function F has two inputs x and y, with x given to Alice
and y to Bob. The minimum number of bits needed to be exchanged to compute F (x, y) for
all inputs (x, y) is the communication complexity CC(F ). It has long been known [41] that
the logarithm of the rank of communication matrix MF

def= [F (x, y)]x,y is a lower bound of
CC(F ). Perhaps the most prominent and long-standing open question about communication
complexity is the Log-rank Conjecture proposed by Lovász and Saks [37], which asserts that
CC(F ) of any Boolean function F is also upper bounded by a polynomial of log rank(MF ).
The conjecture has equivalent forms related to chromatic number conjecture in graph theory
[37], nonnegative rank [36], Boolean roots of polynomials over real numbers [61], quantum
sampling complexities [4, 65], etc. Despite a lot of efforts devoted to the conjecture in the past
decades, the best upper bound is CC(F ) = O

(√
rank(MF ) log (rank(MF ))

)
by Lovett [39],

which is still exponentially far from the target.
While these two conjectures are notoriously challenging in their full generality, special

classes of functions have been investigated. In particular, the Sensitivity Conjecture is
confirmed to hold for monotone functions, as the sensitivity coincides with block sensitivity
and certificate complexity for those functions [47]. The Log-rank Conjecture is not known
to be true for monotone functions, but it holds for monotone functions on two bit-wise
compositions between x and y. More specifically, two classes of bit-wise composed functions
have drawn substantial attention. The first class contains AND functions F = f ◦ ∧, defined
by F (x, y) = f(x ∧ y), where ∧ is the bit-wise AND of x, y ∈ {0, 1}n. Taking the outer
function f to be the n-bit OR, we get Disjointness, the function that has had a significant
impact on both communication complexity theory itself [53] and applications to many other
areas such as streaming, data structures, circuit complexity, proof complexity, game theory
and quantum computation [15]. The AND functions also contain other well known functions
such as Inner Product, AND-OR trees [28, 33, 27, 19], and functions exhibiting gaps between
communication complexity and log-rank [49]. The second class is XOR functions F = f ◦ ⊕,
defined by F (x, y) = f(x⊕ y), where ⊕ is the bit-wise XOR function. This class includes
Equality [62, 46, 1, 7, 11] and Hamming Distance [63, 16, 26, 34, 35] as special cases.

Both AND and XOR functions have recently drawn much attention [38, 12, 67, 32, 42, 55,
35, 59, 66, 50, 64], partly because their communication matrix rank has intimate connections
to the polynomial representations of the outer function f . Specifically, the rank of Mf◦∧
is exactly the Möbius sparsity2 mono(f), the number of nonzero coefficients α(S) in the
multilinear polynomial representation f(x) =

∑
S⊆[n] α(S)

∏
i∈S xi for f : {0, 1}n → {0, 1}

[12]. And the rank ofMf◦⊕ is exactly the Fourier sparsity ‖f̂‖0, the number of nonzero Fourier
coefficients f̂(S) in the multilinear polynomial representation f(x) =

∑
S⊆[n] f̂(S)

∏
i∈S xi

for f : {+1,−1}n → {0, 1}.
It is known that the Log-rank Conjecture holds for these two classes of functions when

the outer function f is monotone [38, 42], and this work aims to extend these as well as
the sensitivity result on monotone functions, to functions that are close to being monotone.
One needs to be careful about the distance measure here, since the widely-used (e.g. in
property testing and computational learning) normalized Hamming distance dist(f, g) =
Prx∈{0,1}n [f(x) 6= g(x)] does not meet our requirement. Indeed, if we flip the value f(x) at
just one input x, then this changes f by an exponentially small amount measured by dist,
but the sensitivity would change from a small s(f) to a large n− s(f). Similarly, the Fourier
sparsity is also very sensitive to local changes (‖f̂‖0 to 2n − ‖f̂‖0), and so is Möbius sparsity

2 Named after the Möbius transform from f to α.
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if we flip the value at 0n.
One robust distance measure to monotone functions, which has recently drawn an

increasingly amount of attention, is the alternating number, defined as follows. View the
Boolean hypercube {0, 1}n as a lattice with the partial order x � y if xi ≤ yi for all i. A
path x(1) → · · · → x(k) on {0, 1}n is monotone if x(i) ≺ x(i+1) for all i. The alternating
number of a function f on {0, 1}n is the maximum number of i’s with f(x(i)) 6= f(x(i+1)),
on any monotone path x(0) → · · · → x(n) from 0n to 1n. It is clear that constant functions
have alternating number 0, and monotone functions have alternating number 1. For general
functions f , we have alt(f) ≤ n, thus alt(f) is a sub-linear complexity measure. The smaller
alt(f) is, the closer it is to monotone functions. Studies of the alternating number dated
back to [40], in which Markov showed that the inversion complexity, the minimum number of
negation gates needed in any Boolean circuit computing f , is exactly dlog2(alt(f) + 1)e. Late
work investigated the inversion complexity/alternating number over computational models
such as constant-depth circuit [52], bounded-depth circuit [56], Boolean formula [43], and
non-deterministic circuit [44]. It has been recently shown that small alternating number can
be exploited in learning Boolean circuits [10]. Also there are some studies in cryptography
considering the effect of negation gates [23].

In this paper, we study the Sensitivity and Log-rank Conjectures for functions whose
alternating numbers are small, compared to sensitivity, Möbius sparsity and Fourier sparsity.
First, the following theorem shows that the Sensitivity Conjecture holds for f with alt(f) =
poly(s(f)).

I Theorem 1. For any function f : {0, 1}n → {0, 1}, it holds that

bs(f) = O(alt(f)2 · s(f)).

Note that if a function is non-degenerate in the sense that it depends on all n variables,
then the sensitivity is at least Ω(logn) [54], therefore the above theorem also confirms the
Sensitivity Conjecture for non-degenerate functions f with alt(f) = poly logn.

The next two theorems confirmed the Log-rank Conjecture for f ◦ ⊕ with alt(f) =
poly log(‖f̂‖0), and for f ◦ ∧ with alt(f) = O(1).

I Theorem 2. For any function f : {0, 1}n → {0, 1}, it holds that

CC(f ◦ ⊕) ≤ 2 · alt(f) · log2 rank(Mf◦⊕).

I Theorem 3. For any function f : {0, 1}n → {0, 1}, it holds that

CC(f ◦ ∧) ≤ O(logalt(f)+1 rank(Mf◦∧)).

In the last theorem, the dependence on alt(f) can be slightly improved (by a factor of 2) if a
factor of logn is tolerated in the communication cost.

Related work

The Sensitivity Conjecture has many equivalent forms, summarized in the survey [24]. Also
see the recent paper [18] which tries to solve this conjecture using a communication game
approach. At the other end of the spectrum, [51, 5] seek the largest possible separation
between sensitivity and block sensitivity, and [9] got a super-quadratic separation between
sensitivity and query complexity. Apart from monotone functions [47], the Sensitivity
Conjecture has also been confirmed on graph properties [60], cyclically-invariant function [14],

ICALP 2017
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read-once functions [45], functions admitting the Normalized Block property [57] and several
cases of read-k formulas [8]. Other than the conjecture itself, some recent work [6, 21, 22]
discussed combinatorial and computational structures of low-sensitivity functions.

For the Log-rank Conjecture, apart from the equivalent forms mentioned earlier, some
seemingly weaker formulations in terms of the largest monochromatic rectangle size [49], ran-
domized communication complexity and information cost [17] are actually equivalent to the ori-
ginal conjecture. For lower bounds, the best one had been CC(F ) = Ω

(
(log rank(MF ))log3 6)

(attributed to Kushilevitz in [49]), achieved by an AND function, until the recent result
of CC(F ) = Ω̃

(
log2 rank(MF )

)
[20]. For XOR functions f ◦ ⊕, the Log-rank Conjecture is

confirmed when f is symmetric [67], monotone [42], linear threshold functions (LTFs) [42],
AC0 functions [30], has low F2-degree [59] or small spectral norm [59]. For AND functions
f ◦ ∧, it seems that the conjecture is only confirmed on monotone functions [38].

2 Preliminaries

2.1 n-bit (Boolean) functions
We use [n] to denote the set {1, 2, . . . , n}. The all-0 n-bit string is denoted by 0n and the
all-1 n-bit string is denoted by 1n.

For a Boolean function f : {0, 1}n → {0, 1}, its F2-degree is the degree of f viewed
as a polynomial over F2. Such functions f can be also viewed as polynomials over R:
f(x) =

∑
S⊆[n] α(S)xS , where xS =

∏
i∈S xi. If we represent the domain by {+1,−1}n,

then the polynomial (still over R) changes to f(x) =
∑

S⊆[n] f̂(S)xS , usually called Fourier
expansion of f . The coefficients α(S) and f̂(S) in the two R-polynomial representations
capture many important combinatorial properties of f . We denote by mono(f) the Möbius
sparsity, the number of non-zero coefficients α(S), and by ‖f̂‖0 the Fourier sparsity, the
number of non-zero coefficients f̂(S). Some basic facts used in this paper are listed as follows.

I Fact 4. For any f : {0, 1}n → {0, 1}, deg2(f) = n if and only if |f−1(1)| is odd.

I Fact 5. For any f : {0, 1}n → {0, 1}, deg2(f) ≤ log ‖f̂‖0.

For any input x ∈ {0, 1}n and i ∈ [n], let xi be the input obtained from x by flipping
the value of xi. For a Boolean function f : {0, 1}n → {0, 1} and an input x, if f(x) 6= f(xi),
then we say that x is sensitive to coordinate i, and i is a sensitive coordinate of x. We
can also define these for blocks. For a set B ⊆ [n], let xB be the input obtained from x

by flipping xi for all i ∈ B. Similarly, if f(x) 6= f(xB), then we say that x is sensitive to
block B, and B is a sensitive block of x. The sensitivity s(f, x) of function f on input x
is the number of sensitive coordinates i of x: s(f, x) = |{i ∈ [n] : f(x) 6= f(xi)}|, and the
sensitivity of function f is s(f) = maxx s(f, x). It is easily seen that the n-bit AND and OR
functions both have sensitivity n. The block sensitivity bs(f, x) of function f on input x is
the maximal number of disjoint sensitive blocks of x, and the block sensitivity of function f

is bs(f) = maxx bs(f, x). Note that there are always bs(f, x) many disjoint minimal sensitive
blocks, in the sense that any B ( Bi is not a sensitive block of x.

For a Boolean function f : {0, 1}n → {0, 1} and an input x ∈ {0, 1}n, the certificate
complexity C(f, x) of function f on input x is the minimal number of variables restricting
the value of which fixes the function to a constant. The certificate complexity of f is
C(f) = maxx C(f, x), and the minimal certificate complexity of f is Cmin(f) = minx C(f, x).
The decision tree complexity DT(f) of function f is the minimum depth of any decision tree
that computes f .
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A subfunction or a restriction of a function f on {0, 1}n is obtained from f by restricting
the values of some variables. Sometimes we say to restrict f to above an input d, or to take
the subfunction f ′ over {x : x � d}, then we mean to restrict variables xi to be 1 whenever
di = 1. Similarly, we say to restrict f to under an input u, or take the subfunction f ′ over
{x : x � u}, meaning to restrict xi to be 0 whenever ui = 0.

Let Fn be the set of all the real-valued functions on {0, 1}n. A complexity measure
M : ∪∞n=1Fn → R is downward non-increasing if M(f ′) ≤ M(f) for all subfunction f ′ of
f . That is, restricting variables does not increase the measure M . It is easily seen that
the F2-degree, the alternating number, the decision tree complexity, the sensitivity, the
block sensitivity, the certificate complexity, the Fourier sparsity, are all downward non-
increasing. When M is not downward non-increasing, it makes sense to define the closure
by M clo(f) = maxf ′ M(f ′) where the maximum is taken over all subfunctions f ′ of f . In
particular, Cclo

min(f) = maxf ′ Cmin(f ′). The next theorem relates decision tree complexity to
Cclo

min.

I Theorem 6 ([59]). For any f : {0, 1}n → {0, 1}, it holds that DT(f) ≤ Cclo
min(f) deg2(f).

(The original theorem proved was actually PDT(f) ≤ Cclo
⊕,min(f) deg2(f), where PDT(f) is the

parity decision tree complexity and Cclo
⊕,min(f) is the parity minimum certificate complexity.

But as observed by [58], the same argument applies to standard decision tree as well.)

For general Boolean functions f , we have s(f) ≤ bs(f) ≤ C(f). But when f is monotone,
equalities are achieved.

I Fact 7. If f : {0, 1}n → {0, 1} is monotone, then s(f) = bs(f) = C(f).

I Fact 8 ([42]). If f : {0, 1}n → {0, 1} is monotone, then s(f) ≤ deg2(f).

One can associate a partial order � to the Boolean hypercube {0, 1}n: x � y if xi ≤ yi

for all i. We also write y � x when x � y. If x � y but x 6= y, then we write x ≺ y and
y � x. A path x(1) → · · · → x(k) on {0, 1}n is monotone if x(i) ≺ x(i+1) for all i.

I Definition 9. For any function on {0, 1}n, the alternating number of a path x(1) → · · · →
x(k) is the number of i ∈ {1, 2, ..., k − 1} with f(x(i)) 6= f(x(i+1)). The alternating number
alt(f, x) of input x ∈ {0, 1}n is the maximum alternating number of any monotone path from
0n to x, and the alternating number of a function f is alt(f) = alt(f, 1n). Equivalently, one
can also define alt(f) to be the largest k such that there exists a list {x(1), x(2), . . . , x(k+1)}
with x(i) � x(i+1) and f(x(i)) 6= f(x(i+1)), for all i ∈ [k].

A function f : {0, 1}n → R is monotone if f(x) ≤ f(y), ∀x � y. A function f : {0, 1}n → R
is anti-monotone if f(x) ≤ f(y), ∀x � y. It is not hard to see that alt(f) = 0 iff f is constant,
and alt(f) = 1 iff f is monotone or anti-monotone.

I Definition 10. For a function f on {0, 1}n, an input u ∈ {0, 1}n − {1n} is called a max
term if f(u) 6= f(1n), and f(x) = f(1n) for all x � u. An input d ∈ {0, 1}n − {0n} is called
a min term if f(d) 6= f(0n), and f(x) = f(0n) for all x ≺ d.

2.2 Communication complexity
Suppose that for a bivariate function F (x, y), the input x is given to Alice and y to Bob.
The (deterministic) communication complexity CC(F ) is the minimum number of bits needed
to be exchanged by the best (deterministic) protocol that computes F (on the worst-case
input).

ICALP 2017



51:6 Sensitivity and Log-Rank Conjectures for Functions with Small Alternating Numbers

The rank (over R) of the communication matrix for bit-wise composed functions coincides
with some natural parameters of the outer function f . For XOR functions f ◦ ⊕, it holds
that rank(Mf◦⊕) = ‖f̂‖0, and for AND functions f ◦ ∧, it holds that rank(Mf◦∧) = mono(f).
When f is OR function of n variables, we have rank(Mf◦∧) = mono(ORn) = 2n − 1.

It is well known that communication can simulate queries. More specifically, for XOR
functions and AND functions, we have that

CC(f ◦ ∧) ≤ 2DT(f) and CC(f ◦ ⊕) ≤ 2DT(f). (1)

In a {0,1}-communication matrix M , for b ∈ {0, 1}, a b-rectangle is a submatrix of all
entries equal to b. The b-covering number Coverb(M) of matrix M is the minimum number of
b-rectangles that can cover all b entries in M . (These b-rectangles need not be disjoint.) For
notational convenience, we sometimes write Cover1(F ) for Cover1(MF ). Lovász [36] showed
the following bounds.

I Theorem 11 ([36]). For any Boolean funcion F (x, y), it holds that

log Coverb(MF ) ≤ CC(F ) ≤ log Coverb(MF ) · log rank(MF ).

3 The Sensitivity Conjecture

This section is devoted to the proof of Theorem 1. We will first show the following lemma,
in which the first statement is used in this section and the second statement will be used in
Section 4 for proving the Log-rank Conjecture of XOR functions.

I Lemma 12. For any f : {0, 1}n → {0, 1}, it holds that
1. max{C(f, 0n),C(f, 1n)} ≤ alt(f) · s(f)
2. max{C(f, 0n),C(f, 1n)} ≤ alt(f) · deg2(f).

Proof. First note that it suffices to prove the two upper bounds for C(f, 0n), because then
we can take g(x) = f(x̄) to get that C(f, 1n) = C(g, 0n) ≤ alt(g) · s(g) = alt(f) · s(f).

We prove upper bounds on C(f, 0n) by induction on alt(f). When alt(f) = 1, the function
is either monotone or anti-monotone, thus

C(f, 0n) ≤ C(f) = s(f) ≤ deg2(f),

where the first inequality is by definition of C(f, 0n), the middle equality is by Fact 7 and
the last inequality is because s(f) ≤ deg2(f) for monotone f (Fact 8). Now we assume that
the inequalities in the lemma hold for alt(f) < a and we will show that they hold for f with
alt(f) = a as well. Let u be a max term of f . Define S0(u) def= {i ∈ [n] : ui = 0}, and consider
the subcube above u: {x : x � u}. Let f ′ be the subfunction obtained by restricting f on
this subcube. By the definition of max term f(u) 6= f(ui) for all i ∈ S0(u). Therefore,

|S0(u)| ≤ s(f, u) ≤ s(f). (2)

We know that any point z � u has f(z) = f(1n) 6= f(u). So the number of 1-inputs of f ′ is
odd, implying that deg2(f ′) = |S0(u)| (Fact 4). Thus we have

|S0(u)| = deg2(f ′) ≤ deg2(f). (3)

Now consider another restriction of f , this time to the subcube under u, i.e. {x : x � u}.
This is implemented by restricting all variables in S0(u) to 0, yielding a subfunction f ′′ with
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alt(f ′′) ≤ alt(f)− 1. Using induction hypothesis, we have that

C(f ′′, 0[n]−S0(u)) ≤ alt(f ′′) ·min{s(f ′′), deg2(f ′′)}
≤ (alt(f)− 1) ·min{s(f), deg2(f)} (4)

Recall that f ′′ is obtained from f by restricting |S0(u)| variables, thus

C(f, 0n) ≤ |S0(u)|+ C(f ′′, 0[n]−S0(u)).

Plugging Eq.(2) and Eq.(4) into the above inequality gives

C(f, 0n) ≤ alt(f) ·min{s(f),deg2(f)},

completing the induction. J

Now we are ready to prove the following theorem, which gives an explicit constant for
Theorem 1.

I Theorem 13. For any boolean function f ,

bs(f) ≤
{
Ct · s(f) if alt(f) = 2t,
(Ct + 1) · s(f) if alt(f) = 2t+ 1,

(5)

where Ct =
∑t

i=1(i+ 2) = 1
2 t(t+ 5).

Proof. We prove Eq.(5) by induction on t = balt(f)/2c. Clearly it holds when t = 0: If
alt(f) = 0 then f is a constant function and bs(f) = s(f) = 0. When alt(f) = 1, f is
monotone or anti-monotone, thus bs(f) = s(f).

Now for any Boolean function f with alt(f) > 1, we first consider the case when
alt(f) = 2t ≥ 2. We will bound the block sensitivity for each input x. Consider the following
possible properties for x:
1. there exists a max term u of f such that x � u;
2. there exists a min term d of f such that x � d.

Case 1: x satisfies at least one of the above conditions. Without loss of generality assume
it satisfies the first one; the other case can be similarly argued. Fix such a max term u � x.
By definition of max term, we know that alt(f, u) ≤ alt(f)− 1, and that u is sensitive to all
i ∈ S0(u) def= {i : ui = 0}. Therefore, |S0(u)| ≤ s(f, u) ≤ s(f).

Let f ′ be the subfunction of f restricted on the subcube {t : t � u}, then alt(f ′) =
alt(f, u) ≤ alt(f)− 1 = 2t− 1 = 2(t− 1) + 1.

By induction hypothesis and the fact that sensitivity is downward non-increasing, we
have

bs(f ′, x) ≤ bs(f ′) ≤ (Ct−1 + 1) · s(f ′) ≤ (Ct−1 + 1) · s(f). (6)

Next it is not hard to see that

bs(f, x) ≤ bs(f ′, x) + |S0(u)|. (7)

Indeed, take any disjoint minimal sensitive blocks B1, . . . , B` ⊆ [n] of x (with respect to
f), where ` = bs(f, x). If Bi ⊆ [n] − S0(u), then x is still sensitive to Bi in f ′. As the
Bi’s are disjoint, at most |S0(u)| many Bi’s are not contained in [n]− S0(u), thus at least

ICALP 2017
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x

xDi

xUi

xBi

ui

di

xBj

xDi∪Bj

xUi∪Bj

Figure 1 Order among different inputs used in the proof. Arrows indicate the partial order in
{0, 1}n. Solid round circles stand for one Boolean value, and squares stand for the other. The value
for hollow circles are not fully determined, but we will show that most of them share the same value
with the squares.

bs(f, x)−|S0(u)| blocks Bi are still sensitive blocks of x in f ′. Therefore, bs(f, x)−|S0(u)| ≤
bs(f ′, x), as Eq.(7) claimed.

Combining Eq.(6), Eq.(7), and the fact that |S0(u)| ≤ s(f), we conclude that

bs(f, x) ≤ bs(f ′, x) + |S0(u)| ≤ (Ct−1 + 1) · s(f ′) + s(f) ≤ (Ct−1 + 2) · s(f), (8)

which is at most Ct · s(f) by our setting of parameter Ct =
∑t

i=1(i+ 2) = Ct−1 + t+ 2.

Case 2: x satisfies neither of the conditions 1 and 2. So f(x) needs to be the same with
both f(0n) and f(1n), and f is constant on both subcubes {t : t � x} and {t : t � x}.
Otherwise we can take a minimal d where d � x and f(d) = f(x) 6= f(0n) and by definition d
is a min term, or take the maximal u where u � x and f(u) = f(x) 6= f(1n) and by definition
u is a max term.

Fix ` = bs(f, x) disjoint minimal sensitive blocks {B1, B2, . . . , B`} of x. For each block
Bi, decompose it into Bi = Ui ∪Di where Ui = {i ∈ Bi : xi = 1} and Di = {i ∈ Bi : xi = 0},
as depicted below.

x = (
D1︷ ︸︸ ︷

0 . . . 0
U1︷ ︸︸ ︷

1 . . . 1︸ ︷︷ ︸
B1

)(
D2︷ ︸︸ ︷

0 . . . 0
U2︷ ︸︸ ︷

1 . . . 1︸ ︷︷ ︸
B2

) · · · (
Dl︷ ︸︸ ︷

0 . . . 0
Ul︷ ︸︸ ︷

1 . . . 1︸ ︷︷ ︸
Bl

)0 . . . 01 . . . 1

First we will show that for each i, xUi satisfies condition 1 and xDi satisfies condition 2,
i.e. there exist some max term u � xUi and some min term d � xDi . (See Figure 1 for
an illustration.) Indeed, for any sensitive block Bi of x, f(xBi) 6= f(x) = f(0n) = f(1n).
Take a maximal ui such that ui � xBi and f(ui) = f(xBi). By definition ui is a max term.
Similarly we can take a min term di where di � xBi . Then from the definition of Ui and Di

we can conclude that xUi � xBi � ui and xDi � xBi � di. Moreover, both Ui and Di cannot
be empty, since otherwise either x � xDi = xBi � ui or x � xUi = xBi � di, contradicting
our assumption of case 2. This further indicates that f(x) = f(xUi) = f(xDi) as we have
taken each Bi to be a minimal sensitive block.

Next we are going to find some Ui or Di such that xUi or xDi is sensitive to most Bi’s.
In this case if there are many sensitive blocks of input x, xUi or xDi must have high block
sensitivity. But we have eliminate this possibility in case 1. To achieve this, we count the
following two quantities:

#U : the number of pairs (i, j) such that i 6= j and f(xUi) 6= f(xUi∪Bj ),
#D : the number of pairs (i, j) such that i 6= j and f(xDi) 6= f(xDi∪Bj ).
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Recall that f(x) = f(xUi) = f(xDi) and f(x) 6= f(xBj ), thus it is equivalent to counting
#U : the number of pairs (i, j) such that i 6= j and f(xBj ) = f(xUi∪Bj ),
#D : the number of pairs (i, j) such that i 6= j and f(xBj ) = f(xDi∪Bj ).

Now we bound the number of such i’s for each j. Fix a block Bj , and consider the
subfunction fu on the subcube {z : z � xBj} and the subfunction fd on the subcube
{z : z � xBj}. Let us look at fu first. Because Di ∩Bj = ∅ whenever i 6= j, xDi∪Bj � xBj

which lies in the domain of fu. By the definition of certificate complexity of fu on input xBj ,
there is a subcube C of co-dimension C(fu, xBj ) (with respect to {z : z � xBj}) containing
xBj , s.t. f takes a constant 0/1 value on C. Denote by S the set of coordinates in this
certificate. Then S ⊆ {k ∈ [n] : (xBj )k = 0} and |S| = C(fu, xBj ). Now for each Di, if
Di ∩ S = ∅, then f(xBj ) = f(xDi∪Bj ) as the values of the certificate variables S are not
flipped. As all {Di}i6=j are disjoint, at most C(fu, xBj ) many of Di’s may intersect S. Thus
f(xBj ) = f(xDi∪Bj ) for all but at most C(fu, xBj ) many of Di. Similarly we can say that
all but at most C(fd, xBj ) many of Ui’s (i 6= j) satisfy that f(xBj ) = f(xUi∪Bj ). Applying
Lemma 12 (statement 1), we have

C(fu, xBj ) ≤ alt(fu) · s(fu) ≤ alt(fu) · s(f),

C(fd, xBj ) ≤ alt(fd) · s(fd) ≤ alt(fd) · s(f).

Because alt(fu) + alt(fd) ≤ alt(f) = 2t, and there are ` sensitive blocks Bi, thus from the
second definition of #U and #D we can see that

#U + #D ≥ ` ·
(
(`− 1− alt(fu) · s(f)) + (`− 1− alt(fd) · s(f))

)
≥ ` · 2 (`− 1− t · s(f)) . (9)

Since there are 2` of Ui’s and Di’s in total, by pigeonhole principle there must be a Ti

(being Ui or Di) that contributes to at least (#U + #D)/2` ≥ `− 1− t · s(f) to (#U + #D).
Fix this Ti. By definition of #U and #D, there exist at least `− 1− t · s(f) blocks Bj with
i 6= j and f(xTi) 6= f(xTi∪Bj ). That is, xTi is sensitive to at least `− 1− t · s(f) blocks Bj

where j 6= i. Considering that xTi is also sensitive to Bi\Ti, we conclude that

bs(f, xTi) ≥ 1 + (`− 1− t · s(f)) = bs(f, x)− t · s(f).

Finally, recall that we have showed that xTi satisfies one of the condition 1 and 2. Therefore
xTi is an input falling into case 1. By Eq.(8), we have bs(f, xTi) ≤ (Ct−1 + 2) · s(f). Putting
everything together, we have

bs(f, x) ≤ bs(f, xTi) + t · s(f) ≤ (Ct−1 + 2 + t) · s(f) = Ct · s(f).

This finishes the proof for alt(f) = 2t.
When alt(f) = 2t + 1, for any input x, f(x) must differ from either f(0n) or f(1n)

since f(0n) 6= f(1n). Without loss of generality, assume that f(x) 6= f(0n). Take the
minimal d such that d � x and f(d) = f(x) 6= f(0n). By definition d is a min term and
x satisfies condition 2. Then using the same analysis above as in case 1, we can show
bs(f, x) ≤ (Ct + 1) · s(f) and this finishes the proof. J

4 The Log-Rank Conjecture

We prove Theorem 2 and 3 in this section. We start with Theorem 2, which is now easy given
Lemma 12. Recall that the second statement of Lemma 12 says that max{C(f, 0n),C(f, 1n)} ≤
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alt(f) · deg2(f), therefore

Cmin(f) ≤ alt(f) · deg2(f). (10)

As both alt(f) and deg2(f) are downward non-increasing, applying Eq.(10) to all subfunctions
of f yields Cclo

min(f) ≤ alt(f) · deg2(f). Since DT(f) ≤ Cclo
min(f) · deg2(f) (Theorem 6) we get

the following.

I Theorem 14. For any f : {0, 1}n → {0, 1}, it holds that DT(f) ≤ alt(f) · deg2(f)2.

Theorem 2 follows from this together with the fact that CC(f ◦ ⊕) ≤ 2DT(f) (Eq.(1)) and
that deg2(f) ≤ log ‖f̂‖0 = log rank(Mf◦⊕) (Fact 5).

Note that if we use the first statement of Lemma 12, we will get the following corollary,
which gives better dependence on alt(f) for low F2-degree functions.

I Corollary 15. DT(f) ≤ alt(f)s(f) · deg2(f).

Next we prove Theorem 3 for AND functions. Different than the above approach for
XOR functions of going through DT(f), we directly argue communication complexity of
AND functions. Recall that Theorem 3 says that

CC(f ◦ ∧) ≤ min{O(loga+1 rank(Mf◦∧)), O(log
a+3

2 rank(Mf◦∧) logn)}.

Proof of Theorem 3. Without loss of generality, we can assume that f(0n) = 0 since
otherwise we can compute ¬f first and negate the answer (note that rank(M¬f◦∧) differs from
rank(Mf◦∧) by at most 1). For notational convenience let us define r = mono(f) = rank(Mf◦∧)
and ` = log r. For b ∈ {0, 1}, further define C(a)

b to be the maximum Coverb(f ◦ ∧) over
all functions f : {0, 1}n → {0, 1} with alternating number a and f(0n) = 0. We will give
three bounds for C(a)

b in terms of C(a−1)
b , and combining them gives the claimed result in

Theorem 3.

Bound 1, from max terms. We apply this bound for C(a)
b when a and b have different

parities, that is, when a is even and b = 1, and when a is odd and b = 0. Consider the first
case and the second is similar. Take any Boolean function f with f(0n) = 0 and alt(f) = a is
even, we have f(1n) = 0. Any 1-input is under some max term, so it is enough to cover inputs
under max terms when bounding the Cover1(f). Take an arbitrary max term u ∈ {0, 1}n.
Suppose its Hamming weight is s. Considering the subfunction f ′ on {t : t � u}, which is
an OR function of n − s variables. In the communication setting, this is the Disjointness
function of n − s variables. Thus ` = log rank(Mf◦∧) ≥ n − s. This implies that all max
terms u of f are `-close to 1n in Hamming distance. Considering that different max terms
are incomparable by definition, we know that the number of max terms is at most

(
n
`

)
.

Next we upper bound the 1-rectangles by giving a partition of set of 1-inputs into 1-
rectangles. For each max term u ∈ {0, 1}n, let U = {i ∈ [n] : ui = 1}, and k = n− |U |, then
k ≤ `. The submatrix {(x, y) : x, y ∈ {0, 1}n, x ∧ y � u} is partitioned into 3k submatrices
as follows. Suppose that the set of 0-coordinates in u is {i1, . . . , ik}, then for each ij , we can
choose (xij

, yij
) from the set {(0, 0), (0, 1), (1, 0)} to enforce xij

∧ yij
= 0. Thus there are 3k

ways of restricting these k variables in Ū , giving 3k submatrices. Let fu : {0, 1}U → {0, 1} be
the subfunction of f restricted on the subcube {t : t � u} where fu(zU ) = f(zU , 0Ū ). (Here
the input to f is x′ ∧ y′ at U and 0 at Ū .) Note that each of the 3k submatrices is still the
communication matrix of fu ◦∧ for some max term u. Also note that this fu has fu(0U ) = 0,
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but fu(1U ) = 1 and alt(fu) ≤ alt(f) − 1. Since all the 1-inputs of f are under some max
term u, the 1-covering number Cover1(f ◦ ∧) can be upper bounded by the following:

Cover1(f ◦ ∧) ≤
∑

u:max term
3` · Cover1(fu ◦ ∧) ≤

(
n

`

)
· 3` · max

u:max term
Cover1(fu ◦ ∧).

Using the fact alt(fu) ≤ alt(f)− 1, and that the above inequality holds for any f , we have
the following bound on C(a)

1 :

logC(a)
1 ≤ 3` · logn+ logC(a−1)

1 , when a is even. (11)

Similarly, when a is odd, f(1n) = 1, and thus any 0-input is under some max term. A similar
argument shows the following bound on C(a)

0 :

logC(a)
0 ≤ 3` · logn+ logC(a−1)

0 , when a is odd. (12)

Bound 2, from min terms. Take any Boolean function f with f(0n) = 0. Then any 1-input
must be above some min term. Take any min term d. Let D = {i : di = 1}. If we restrict
variables xi and yi to 1 for all i ∈ D, then we go to a rectangle {(x, y) : xi = yi = 1,∀i ∈ D}.
The union of these rectangles for all min terms d contains all 1-inputs. Restrict f on the
subcube {z : z � d} to get a subfunction fd, which has fd(0D̄) = 1, and alt(fd) ≤ alt(f)− 1.
Note that for each min term d, we have α(d) =

∑
x�d(−1)|d⊕x|f(x) = 1 6= 0 3, which

contributes 1 to mono(f), thus the number of min terms is at most mono(f) = r. Since each
1-input of f is above some min term d, the 1-covering number Cover1(f) has

Cover1(f ◦ ∧) ≤
∑

d:min term
Cover1(fd ◦ ∧) ≤ r · max

d:min term
Cover1(fd ◦ ∧).

Note that alt(fd) ≤ alt(f)− 1, and fd takes value 1 on its all-0 input, thus Cover1(fd ◦ ∧) =
Cover0(¬fd ◦ ∧) ≤ C(a−1)

0 (note that the maximum in the definition of C0 is over all f with
f(0n) = 0). This implies

logC(a)
1 ≤ `+ logC(a−1)

0 . (13)

Note that this inequality holds as long as f(0n) = 0, regardless of the parity of a.

Bound 3, from CC. When a is odd, we have a bound for C(a)
0 by Eq.(12) and a bound for

C
(a)
1 by Eq.(13). When a is even, we have two bounds for C(a)

1 , Eq.(11) and Eq.(13), but no
bound for C(a)

0 . Note that we can always use CC to bound C(a)
0 :

log Cover0(f ◦ ∧) ≤ CC(f ◦ ∧)
≤ log rank(Mf◦∧) · log Cover1(f ◦ ∧)
= ` · log Cover1(f ◦ ∧),

This implies that

logC(a)
0 ≤ ` · logC(a)

1 . (14)

3 If f(0n) = 1, then for each min term d, we have α(d) =
∑

x�d
(−1)|d⊕x|f(x) = −1, which is still

non-zero.
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Similarly it also holds that logC(a)
1 ≤ ` · log C(a)

0 .

Now we combine the three bounds and prove the theorem by induction on a. In the base
case of a = 0, the function is constant 0 and thus C(0)

0 = 1 and C(0)
1 = 0. For general a, we

can repeatedly apply Eq.(13) and Eq.(14) to get

logC(a)
1 ≤

a∑
i=1

`i = (1 + o(1))`a.

Thus CC(f ◦ ∧) ≤ ` · logC(a)
1 ≤ (1 + o(1))`a+1.

If we can tolerate a logn factor, then the dependence on a can be made slightly better.
Assume that a is even, we have

logC(a)
1 ≤ `+ logC(a−1)

0 (by Eq.(13))

≤ `+ 3` logn+ logC(a−2)
0 (by Eq.(12))

≤ `+ 3` logn+ ` logC(a−2)
1 . (by Eq.(14))

Solving this recursion gives logC(a)
1 ≤ O(` a

2 logn), and thus CC = O(` a
2 +1 logn). When a is

odd, we can use Eq.(13) and Eq.(14) to reduce it to the “even a” case, resulting a bound
CC ≤ O(` a+3

2 logn). Putting these two cases together, we get the claimed bound. J
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