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Abstract

Given an n×d matrix A, its Schatten-p norm, p ≥ 1, is defined as ‖A‖p =
(∑rank(A)

i=1 σi(A)p
)1/p

,
where σi(A) is the i-th largest singular value of A. These norms have been studied in functional
analysis in the context of non-commutative `p-spaces, and recently in data stream and linear
sketching models of computation. Basic questions on the relations between these norms, such as
their embeddability, are still open. Specifically, given a set of matrices A1, . . . , Apoly(nd) ∈ Rn×d,
suppose we want to construct a linear map L such that L(Ai) ∈ Rn′×d′ for each i, where n′ ≤ n
and d′ ≤ d, and further, ‖Ai‖p ≤ ‖L(Ai)‖q ≤ Dp,q‖Ai‖p for a given approximation factor Dp,q

and real number q ≥ 1. Then how large do n′ and d′ need to be as a function of Dp,q?
We nearly resolve this question for every p, q ≥ 1, for the case where L(Ai) can be expressed

as R ·Ai ·S, where R and S are arbitrary matrices that are allowed to depend on A1, . . . , At, that
is, L(Ai) can be implemented by left and right matrix multiplication. Namely, for every p, q ≥ 1,
we provide nearly matching upper and lower bounds on the size of n′ and d′ as a function of Dp,q.
Importantly, our upper bounds are oblivious, meaning that R and S do not depend on the Ai,
while our lower bounds hold even if R and S depend on the Ai. As an application of our upper
bounds, we answer a recent open question of Blasiok et al. about space-approximation trade-offs
for the Schatten 1-norm, showing in a data stream it is possible to estimate the Schatten-1 norm
up to a factor of D ≥ 1 using Õ(min(n, d)2/D4) space.
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1 Introduction

Given an n×d matrix A, its Schatten-p norm, p ≥ 1, is defined as ‖A‖p =
(∑r(A)

i=1 σi(A)p
) 1

p ,
where r(A) is the rank of A and σi(A) is the i-th largest singular value of A, i.e., the square
root of the i-th largest eigenvalue of ATA. The Schatten-1 norm is the nuclear norm or trace
norm, the Schatten-2 norm is the Frobenius norm, and the Schatten ∞-norm, defined as
the limit of the Schatten-p norm when p→∞, is the operator norm. The Schatten 1-norm
has applications in non-convex optimization [5], while Schatten-2 and Schatten-∞ norms
are useful in geometry and linear algebra, see, e.g., [22]. Schatten-p norms for large p also
provide approximations to the Schatten-∞ norm.

∗ A full version of the paper is available at https://arxiv.org/abs/1702.05626.
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60:2 Embeddings of Schatten Norms

The Schatten norms appear to be significantly harder to compute or approximate than
the vector `p-norms in various models of computation, and understanding the complexity of
estimating them has led to new algorithmic ideas and lower bound techniques. The main
difficulty is that we do not directly have access to the spectrum of A, and naïvely it is
costly in space and time to extract useful information about it. A line of work has focused
on understanding the complexity of estimating such norms in the data stream model with
1-pass over the stream [13] as well as with multiple passes [4], the sketching model [2, 12, 14],
statistical models [9], as well as the general RAM model [17, 19]. Dimensionality reduction
in these norms also has applications in quantum computing [8, 21]. It has also been asked in
places if the Schatten-1 norm admits non-trivial nearest neighbor search data structures [1].

Our Results. In this paper we study the embeddability of the Schatten-p norm into the
Schatten-q norm for linear maps implementable by matrix multiplication. More concretely,
we first ask for the following form of embeddability: given n and t (where t = Ω(logn)),
what is the smallest value of Dp,q, which we call the distortion, such that there exists a
distribution R on Rt×n satisfying, for any given n× d matrix A,

Pr
R∼R

{
‖A‖p ≤ ‖RA‖q ≤ Dp,q‖A‖p

}
≥ 1− exp(−ct)?

Here c > 0 is an absolute constant. We can assume, w.l.o.g., that n = d because we can first
apply a so-called subspace embedding matrix (see, e.g., [22] for a survey) to the left or to the
right of A to preserve each of its singular values up to a constant factor. We shall show that
Dp,q & D̂p,q, where

D̂p,q =



n
1
p−

1
2 /t

1
q−

1
2 , 1 ≤ p ≤ q ≤ 2;

n
1
p−

1
2 , 1 ≤ p ≤ 2 ≤ q;

max{(n/t)
1
2−

1
p , t

1
p−

1
q }, 2 ≤ p ≤ q;

n
1
2−

1
p , 1 ≤ q ≤ 2 ≤ p;

n
1
2−

1
p /t

1
2−

1
q , 2 ≤ q ≤ p;

max{(n/t)
1
p−

1
2 , (t/ ln t)

1
q−

1
p }, 1 ≤ q ≤ p ≤ 2,

(1)

and the notation f & g means f ≥ g/C for some constant C > 0. The constant C in the
& notation above depends on p and q only. This distortion is asymptotically tight, up to
logarithmic factors, as we also construct a distribution R on t-by-n matrices for which for
any n× d matrix A,

Pr
R∼R

{
‖A‖p ≤ ‖RA‖q ≤ D̃p,q

(
log n

t

)
‖A‖p

}
≥ 1− exp (−ct) ,

where D̃p,q differs from Dp,q by a constant or a factor of log t. Specifically,

D̃p,q .

{
max{(n/t)

1
p−

1
2 , t

1
q−

1
p }, 1 ≤ q ≤ p ≤ 2;

D̂p,q, otherwise,
(2)

where D̂p,q is given in (1). Replacing t with t/(ln(n/t)), we arrive at a matching failure
probability and distortion, while using a logarithmic factor more number of rows in R.
Namely, we construct a distribution R on matrices with t ln(n/t) rows for which

Pr
R∼R

{
‖A‖p ≤ ‖RA‖q ≤ D̃p,q‖A‖p

}
≥ 1− exp (−ct) .
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We can also sketch RA on the right by a subspace embedding matrix S with Θ(t) rows,
which yields

Pr
R,S

{
‖A‖p ≤

∥∥RAST∥∥
q
≤ D̃p,q‖A‖p

}
≥ 1− exp (−ct) .

We show that this two-sided sketch is asympotically optimal for two-sided sketches in its
product of number of rows of R and number of columns of S, up to logarithmic factors.
Formally, we next ask: what is the smallest value of Dp,q for which there exists a distribution
G1 on Rr×n and a distribution G2 on Rn×s satisfying

Pr
R∼G1,S∼G2

{
‖A‖p ≤ ‖RAS‖q ≤ Dp,q‖A‖p

}
≥ 1− exp(−cmin{r, s})?

Again we can assume, w.l.o.g, that r = s, because otherwise we can compose R or S with
a subspace embedding to preserve all singular values up to a constant factor1. Henceforth
for the two-sided problem, we assume that G1 and G2 are distributions on Rt×n. We also
prove a matching lower bound that Dp,q & D̂p,q except in the case when 1 ≤ q ≤ p ≤ 2,
where we instead obtain a matching lower bound up to logarithmic factors, namely, Dp,q &

max{(n/t)
1
p−

1
2 / log

3
2 t, (t/ ln t)

1
q−

1
p }.

In the important case when p = q = 1, our results show a space-approximation tradeoff
for estimating the Schatten 1-norm (or trace norm) in a data stream, answering a question
posed by Blasiok et al. [3]. This application crucially uses that R and S are oblivious to A,
i.e., they can be sampled and succinctly stored without looking at A. Specifically, when each
entry of A fits in a word of O(logn) bits, we can choose R and S to be Gaussian random
matrices with entries truncated to O(logn) bits and with entries drawn from a family of
random variables with bounded independence. For time-efficiency purposes, R and S can
also be chosen to be Fast Johnson Lindenstrauss Transforms or sparse embedding matrices
[6, 16, 18], though they will have larger dimension, especially to satisfy the exponential
probability of failure in the problem statement (and even with constant failure probability,
the dimension will be slightly larger; see [22] for a survey).

Choosing R and S to be Gaussian matrices, our result provides a data stream algorithm
using (n2/D4) polylog(n) bits of memory, and achieving approximation factor D (taking
t = n/D2). While ‖A‖2, the Frobenius norm of A, provides a

√
n-approximation to ‖A‖1

and can be approximated up to a constant factor in a data stream using O(1) words of space,
if we want an algorithm achieving a better approximation factor then all that was known
was an algorithm requiring O(n2) words of space, namely, the trivial algorithm of storing A
exactly and achieving D = 1. It was asked in [3] if there is a smooth trade-off between the
case when D = 1 and D =

√
n; our (n2/D4) polylog(n) space algorithm provides the first

such trade-off, and is optimal at the two extremes. Our results are the first of their kind for
large approximation factors D � 1 for estimating the Schatten-p norms in a data stream.

Finally, while in our upper bounds R and S are chosen obliviously to A, for our lower
bounds we would like to rule out those R and S which are even allowed to depend on
A. Clearly, if there is only a single matrix A, this question is ill-posed as one can just
choose R and S to have a single row and column so that ‖RAS‖q = ‖A‖p. Instead, we
ask the question analogous to the Johnson-Lindenstrauss transform (see e.g., [10]): given

1 That is, if r ≤ s, we can choose a subspace embedding matrix H of dimension n × Θ(r) such that
‖RASH‖q = Θ(‖RAS‖q) with probability ≥ 1− exp(−s), and then pad R with zero rows so that R has
the same number of rows as columns of S, increasing the number of rows of R by at most a constant
factor.

ICALP 2017



60:4 Embeddings of Schatten Norms

A1, . . . , Apoly(n), can we construct an R with t rows and an S with t columns for which
‖Ai‖p ≤ ‖RAiS‖q ≤ Dp,q‖Ai‖p for all i? We show that our lower bound on the trade-off
between Dp,q and t given by (1) continues to hold even in this setting.

Our Techniques. We shall focus on the case p = q in this description of our technical
overview. For our upper bounds, a natural idea is to take R to be a (normalized) Gaussian
random matrix, and the analysis of the quantity ‖RA‖p, when p ≥ 2, follows fairly directly
from the so-called non-commutative Khintchine inequality as follows.

I Lemma 1 (Non-commutative Khintchine Inequality [15]). Suppose that C1, . . . , Cn are (de-
terministic) matrices of the same dimension and g1, . . . , gn are independent N(0, 1) variables.
It holds that

E
g1,...,gn

∥∥∥∥∥∑
i

giCi

∥∥∥∥∥
p

' max


∥∥∥∥∥∥
(∑

i

CiC
T
i

) 1
2
∥∥∥∥∥∥
p

,

∥∥∥∥∥∥
(∑

i

CTi Ci

) 1
2
∥∥∥∥∥∥
p

 , p ≥ 2.

In order to estimate ‖RA‖p, we can write

RA =
∑
i,j

rij(eieTj A) =:
∑
i,j

rijCij

and it is straightforward to compute that∑
i,j

CijC
T
ij = tr(AAT )It = ‖A‖2

F It,
∑
i,j

CTijCij = t ·ATA.

It follows from the non-commutative Khintchine inequality that (recall that R is a normalized
Gaussian matrix with N(0, 1/t) entries)

E ‖RA‖p ' max
{
t

1
2−

1
p ‖A‖F , ‖A‖p

}
, p ≥ 2.

Using a concentration inequality for Lipschitz functions on Gaussian space, one can show
that ‖RA‖p is concentrated around E ‖RA‖p, and using standard the standard relationship
between ‖A‖F and ‖A‖p then completes the argument.

When p < 2, the non-commutative Khintchine inequality gives a much less tractable
characterization, so we need to analyze ‖RA‖p in a different manner, which is potentially
of independent interest. Our analysis also works for non-Gaussian matrices R whenever R
satisfies certain properties, which, for instance, are satisfied by a Fast Johnson-Lindenstrauss
Transform.

Upper bound. We give an overview of our upper bound now, focusing on the one-sided case,
since the two-sided case follows by simply right-multiplying by a generic subspace embedding
S. Here we focus on the case in which R is an r×n Gaussian matrix, where r = t ·polylog(n).
By rotational invariance of Gaussian matrices, and for the purposes of computing ‖AR‖p, we
can assume that A is diagonal. Let A1 be the restriction of A to its top Θ(t logn) singular
values. Since R is a Gaussian matrix with at least t logn rows, it is well-known that R is
also a subspace embedding on A1 (see, e.g., [20, Corollary 5.35]), namely, σi(RA1) ' σi(A1)
for all i, and thus ‖RA1‖p ' ‖A1‖p = Ω(‖A‖p) when ‖A1‖p = Ω(‖A‖p).

If it does not hold that ‖A1‖p = Ω(‖A‖p), then the singular values of A are “heavy-tailed”,
and we show how to find a σi(A) with i < Θ(t logn) for which σ2

i (A) is relatively small
compared to σ2

i (A) + σ2
i+1(A) + · · · + σ2

n(A). More specifically, let A2 be the restriction
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of A to σi(A), . . . , σn(A). Then we have that ‖A2‖op . ‖A2‖F /
√
t. Since for a Gaussian

matrix R it holds that ‖RA2‖op . ‖A2‖op + ‖A‖F /
√
r (see Proposition 3), we thus have that

‖RA2‖op . ‖A2‖F /
√
t. On the other hand, ‖RA2‖F ' ‖A2‖F . This implies there exist Ω(t)

singular values of RA2 that are Ω(‖A2‖F /
√
t), which yields that ‖RA2‖p & ‖A2‖p = Ω(‖A‖p).

Therefore we have established the lower bound that ‖RA‖p ≥ max{‖RA1‖p, ‖RA2‖p} in
terms of ‖A‖p.

To upper bound ‖RA‖p in terms of ‖A‖p, note that ‖RA‖p ≤ ‖RA1‖p + ‖RA2‖p by the
triangle inequality, where A1, A2 are as above. Again it follows from the subspace embedding
property of R that ‖RA1‖p . ‖A1‖p ≤ ‖A‖p. Regarding ‖RA2‖p, we relate its Schatten-p
norm to its Frobenius norm and use the fact that ‖RA2‖F ' ‖A2‖F . This gives an upper
bound of ‖RA2‖p in terms of ‖A2‖p, and using that ‖A2‖p ≤ ‖A‖p, it gives an upper bound
in terms of ‖A‖p. This is sufficient to obtain an overall upper bound on ‖RA‖p.

Lower bound. Now we give an overview of our lower bounds for some specific cases. First
consider one-sided sketches. We choose our hard distribution as follows: we choose an
n× (10t) Gaussian matrix G padded with 0s to become an n×n matrix. For a sketch matrix
R containing t rows, by rotational invariance of Gaussian matrices, ‖RG‖p is identically
distributed to ‖ΣRG

′‖p, where ΣR is the t × t diagonal matrix consisting of the singular
values of R, and where G′ is a t × (10t) Gaussian matrix. It is a classical result that all
singular values of G′ are Θ(

√
t) and thus ‖RG‖p '

√
t‖R‖p. This implies that

√
nt

1
2−

1
p .
√
t‖R‖p . Dp,p

√
nt

1
2−

1
p , (3)

since all non-zero singular values of G are Θ(
√
n). On the other hand, applying R to the

n× n identity matrix gives that

n
1
p ≤ ‖R‖p ≤ Dp,pn

1
p . (4)

Combining (3) and (4) gives that Dp,p ≥ max{(n/t)1/2−1/p, (n/t)1/p−1/2}.
For the two-sided sketch, we change the hard distribution to (i) n× n Gaussian random

matrix F and (ii) the distribution of GHT , where G and H are n×Θ(t) Gaussian random
matrices. The proof then relies on the analysis for

∥∥RFST∥∥
p
and

∥∥RGHTST
∥∥
p
. When

p ≥ 2, non-commutative Khintchine inequality gives immediately that∥∥RGHTST
∥∥
p
'
√
t
∥∥RFST∥∥

p
'
√
tmax{‖R‖p‖S‖op, ‖R‖op‖S‖p}, p ≥ 2. (5)

When p < 2, a different approach is followed. We divide the singular values of R and S into
bands, where each band contains singular values within a factor of 2 from each other. We shall
consider the first Θ(log t) bands only because the remaining singular values are 1/poly(t) and
negligible. Now, if all singular values of R′ and S′ are within a factor of 2 from each other,
then

∥∥R′F (S′)T
∥∥
p
' ‖R′‖op‖S′‖op‖F‖p and

∥∥R′GHT (S′)T
∥∥
p
' ‖R′‖op‖S′‖op

∥∥GHT
∥∥
p
. It

is not difficult to see that

‖GHT ‖p '
√
t‖F‖p (6)

Since R′ and S′ consist of one of the Θ(log t) bands of R and S, respectively, it follows that∥∥RGHTST
∥∥
p
'
√
t/polylog(t) ·

∥∥RFST∥∥
p
, p < 2. (7)

A lower bound of Dp,p then follows from combining (6), (5) (or (7)) with

‖F‖p ≤
∥∥RFST∥∥

p
≤ Dp,p‖F‖p, and

∥∥GHT
∥∥
p
≤
∥∥RGHTST

∥∥
p
≤ Dp,p

∥∥GHT
∥∥
p
.
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60:6 Embeddings of Schatten Norms

To strengthen the lower bound for the sketches that even depend on the input matrix, we
follow the approach in [10]. We first work with random hard instances, and then sample
input matrices A1, . . . , Apoly(n) from the hard distribution, and apply a net argument on
sketching matrices R and S to obtain a deterministic statement, which states that for any
fixed R and S such that the distortion guarantee is satisfied with all samples A1, . . . , Apoly(n),
the distortion lower bound remains to hold.

2 Preliminaries

Notation. Throughout the paper, we use f . g to denote f ≤ Cg for some constant C,
f & g to denote f ≥ Cg for some constant C, and f ' g to denote C1g ≤ f ≤ C2g for some
constants C1 and C2.

Bands of Singular Values. Given a matrix A, we split the singular values of A, σ1(A) ≥
σ2(A) ≥ · · · , into bands such that the singular values in each band are within a factor of 2
from each other. Formally, define the i-th singular value band of A to be

Bi(A) =
{
k : ‖A‖op2i+1 < σk(A) ≤ ‖A‖op2i

}
, i ≥ 0,

and let Ni(A) = |Bi(A)|, the cardinality of the i-th band.

Extreme Singular Values of Gaussian Matrices. We shall repeatedly use the following
results on Gaussian matrices.

I Proposition 2 ([20, Corollary 5.35]). Let G be an r × n (r < n) Gaussian random
matrix of i.i.d. entries N(0, 1). With probability at least 1 − 2 exp(−u2/2), it holds that√
n−
√
r − u ≤ smin(G) ≤ smax(G) ≤

√
n+
√
r + u.

Combining [11, Corollary 3.21] and the concentration bound in Gauss space [20, Proposi-
tion 5.34], we also have

I Proposition 3. Let A be a deterministic n × n matrix and G be an r × n (r < n)
Gaussian random matrix of i.i.d. entries N(0, 1). Then for any K, it holds that ‖GA‖op ≤
K(‖A‖op

√
r + ‖A‖F ) with probability at least 1− exp(−c

√
Kr), where c > 0 is an absolute

constant.

Nets on Matrices. The following fact concerns nets of matrices and was used in [10]. We
shall use it in our lower bound arguments.

I Proposition 4 ([10, Lemma 2]). There exists a net R ⊂
⋃t0
t=1 Rt×n of size exp(O(t0n ln(Dn/η))

such that for any R ∈ Rt×n (1 ≤ t ≤ t0) with column norms in [1, D], we can find R′ ∈ R
such that ‖R−R′‖op ≤ η.

3 Lower Bounds

In this section we show the full proof of the (n/t)1/2−1/p lower bound for one-sided sketches
(Theorem 5) and the (n/t)1/p−1/2/ log3/2 t bound for two-sided sketches (Theorem 6), which
demonstrates our techniques. Other cases can be found in the full version.

I Theorem 5 (One-sided sketch). Let p > 2 and p > q. There exist a set T ⊂ Rn×n with
|T | = poly(n) and an absolute constant c ∈ (0, 1) such that, if it holds for some matrix
R ∈ Rt×n with t ≤ cn and for all A ∈ T that ‖A‖p ≤ ‖RA‖q ≤ Dp,q‖A‖p, then it must hold
that Dp,q & (n/t)

1
2−

1
p .
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Instead of proving this theorem, we prove the following rephrased version.

I Theorem 5’ (rephrased). Let p > 2 and p > q. There exists an absolute constant D0 and
a set T ⊂ Rn×n with |T | = O(n ln(Dn)) such that, if D ≥ D0 and it holds for some matrix
R ∈ Rt×n and for all A ∈ T that

‖A‖p ≤ ‖RA‖q ≤ D
1
2−

1
p ‖A‖p, (8)

then it must hold that t & n/D.

Proof. Let r = n/(ρ2D) and t0 = θr for some constants ρ > 1 and θ ∈ (0, 1) to be determined.
We shall show that if t ≤ t0, it will not happen that R satisfies (8) for all A in a carefully
chosen set T .

Let D be the distribution of Gaussian random matrices of dimension n × r with i.i.d.
entries N(0, 1/r). Let R = UΣV T be the singular value decomposition of R and A ∼ D.
Then by rotational invariance of the Schatten norm and Gaussian random matrices, we know
that ‖RA‖q is identically distributed to ‖ΣA‖q = ‖BTΣ′‖q, where Σ′ is the left t× t block
of Σ and B is formed by the first t rows of A.

It follows from Proposition 2 that with probability ≥ 1 − exp(−c1c2r), smax(B) ≤
1 + 2c1

√
t/r ≤ 1 + 2

√
θc1, and thus

‖BTΣ′‖q ≤ smax(B)‖Σ′‖q ≤ (1 + 2
√
θc1)‖Σ′‖q = (1 +

√
θc1)‖R‖q ≤ (1 + 2

√
θc1)D

1
2−

1
pn

1
p ,

that is, with probability ≥ 1− exp(−c1c2r),

‖RA‖q ≤ (1 + 2
√
θc1)D

1
2−

1
pn

1
p .

On the other hand, with probability ≥ 1− exp(−c1c2r), all singular values of A are at least√
n/r − 2c1 = ρ

√
D − 2c1 ≥ (1− ε)ρ

√
D if we choose D0 ≥ 4c2

1/ε
2. Then

‖RA‖q ≥ ‖A‖p ≥ (1− ε)sr
1
p

√
D = (1− ε)ρ1− 2

pn
1
pD

1
2−

1
p .

Also, with probability ≥ 1− exp(−c1c2r), all singular values of A are at most
√
n/r+ 2c1 =

ρ
√
D + 2c1 ≤ (1 + ε)ρ

√
D and thus

‖A‖p ≤ r
1
p (1 + ε)s

√
D = (1 + ε)ρ1− 2

pn
1
pD

1
2−

1
p .

This motivates the following definitions of constraints for R ∈ Rt×n and A ∈ Rn×n:

P1(R,A) : ‖RA‖q ≤ (1 + 2
√
θc1)D

1
2−

1
pn

1
p P2(R,A) : ‖RA‖q ≥ (1− ε)ρ1− 2

pn
1
pD

1
2−

1
p

P3(A) : ‖A‖p ≤ (1 + ε)ρ1− 2
pn

1
pD

1
2−

1
p .

Now, for m samples A1, . . . , Am drawn from D, it holds for any fixed R that

Pr
A1,...,Am

{∃i s.t. P1(R,A) and P2(R,A) and P3(A) hold} ≥ 1− e−c1c2mr. (9)

Since 1 ≤ ‖GeieTi ‖q ≤ D and ‖GeieTi ‖q = ‖Ri‖2, we can restrict the matrix R to
matrices with column norm in [1, D]. Thus we can find a net R ⊂

⋃t0
t=1 Rt×n of size

exp(O(t0n ln(Dn/η)) such that for any R with column norms in [1, D], we can find R′ ∈ R
such that ‖R−R′‖op ≤ η.

Now it follows from (9) that

Pr
A1,...,Am

{∀R ∈ R,∃i, P1(R,A) and P2(R,A) and P3(R,A) hold}

≥ 1 − exp
(
O

(
t0n ln Dn

η

))
exp

(
−c1c2

D
mn
)
> 0,
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provided that m = Θ(n ln(Dn)). Fix A1, . . . , Am such that for each R ∈ R there exists an i
such that P1(R,Ai) and P2(R,Ai) and P3(Ai) all hold.

Take T = {In, e1e
T
1 , . . . , ene

T
n , A1, . . . , Am}. We know that if R satisfies (8) for all A ∈ T ,

then there exists R′ such that ‖R′ − R‖op ≤ η, and there exists 1 ≤ i ≤ m such that
P1(R′, Ai), P2(R′, Ai) and P3(Ai) all hold. It follows that

‖RAi‖q ≤ ‖R′Ai‖q + ‖(R−R′)Ai‖q ≤ ‖R′Ai‖q + ‖R−R′‖op‖Ai‖p

≤
(

1 + 2
√
θc1 + (1 + ε)ρ1− 2

p η
)
D

1
2−

1
pn

1
p

and

‖RAi‖q ≥ ‖RAi‖q − ‖(R−R′)Ai‖q ≥ ‖R′Ai‖q − ‖R−R′‖op‖Ai‖p
≥ ((1− ε)− (1 + ε)η) ρ1− 2

pD
1
2−

1
pn

1
p

We meet a contradiction when θ, ε and η are all sufficiently small and ρ is sufficiently large,
for instance, when η = Θ(ε), θ = Θ(ε2/c2

2) and ρ = Θ(1 + pε/(p− 2)). J

I Theorem 6 (Two-sided sketch). Let p < 2. There exist a set T ⊂ Rn×n with |T | = poly(n)
and an absolute constant c ∈ (0, 1) such that, if it holds for some matrices R,S ∈ Rt×n
with t ≤ cn and for all A ∈ T that ‖A‖p ≤

∥∥RAST∥∥
q
≤ Dp,q‖A‖p, it must hold that

Dp,q & (n/t)
1
p−

1
2 / log

3
2 t.

Instead of proving this theorem, we prove the following rephrased version.

I Theorem 6’ (rephrased). Let p < 2, p > q and D ≥ D0 for some an absolute constant D0.
There exists a set T ⊂ Rn×n with |T | = O(n ln(Dn)) such that it holds for some matrices
R,S ∈ Rt×n and for all A ∈ T that

‖A‖p ≤
∥∥RAST∥∥

q
≤ D

1
p−

1
2 ‖A‖p, (10)

then it must hold that t & n/(D log3p/(2−p) t).

We need two auxiliary lemmata, whose proofs are omitted owing to space limitations.

I Lemma 7. Let A and B be deterministic n × n matrices and G be a Gaussian random
matrix of i.i.d. N(0, 1) entries. It holds with probability 1−O(1) that

‖AGB‖p . (log
5
2 n)(log logn)‖A‖op‖B‖opEp(A,B),

where

Ep(A,B) = max
0≤i,j≤3 logn

1
2i+j ·min {Ni(A), Nj(B)}

1
p ·max

{√
Ni(A),

√
Nj(B)

}
. (11)

I Lemma 8. Let A and B be deterministic n×N matrices and G,H be N × r Gaussian
random matrices of i.i.d. N(0, 1) entries. Suppose that n ≤ cr for some absolute constant
c ∈ (0, 1). It holds with probability 1−O(1) that ‖AGHTBT ‖p &

√
r‖A‖op‖B‖opEp(A,B),

where Ep(A,B) is as defined in (11).

Now we are ready to show Theorem 6’.



Y. Li and D. P. Woodruff 60:9

Proof of Theorem 6’. Without loss of generality, we can assume that the maximum column
norm of R and that of S are the same; otherwise we can rescale R and S.

Let r = n/(ρ2D) and t0 = θr for some ρ = Θ(log3p/(2−p) t) and θ ∈ (0, 1) to be determined.
We shall show that if t ≤ t0, it will not happen that R and S satisfy (10) for all A ∈ T .

Let D be the distribution of Gaussian random matrices of dimension n × r with i.i.d.
entries N(0, 1) and let G,H ∼ D be independent. It follows from Lemma 8 that with
probability ≥ 1−O(1),

‖ΣRGHTΣTS‖q &
√
rEq(R,S). (12)

On the other hand, it follows from (10) that with probability ≥ 1− exp(−c1n),

‖ΣRGHTΣTS‖q ≤ D
1
2−

1
p ‖GHT ‖p . D

1
2−

1
pnr

1
p . (13)

Now, let F be the distribution of an n× n Gaussian matrix of i.i.d. entries N(0, 1) and let F
be drawn from F . Then ‖RFS‖q is identically distributed as ΣRF ′ΣS , where F ′ is a random
t× t Gaussian matrix of i.i.d. entries N(0, 1). It follows from Lemma 7 that with probability
≥ 1−O(1),

‖ΣRF ′ΣTS‖q . (log
5
2 t)(log log t)Eq(R,S) ≤ (log3 t)Eq(R,S) (14)

On the other hand, it follows from (10) that with probability ≥ 1− exp(−c2n),

‖RFST ‖q ≥ ‖F‖p & n1/p√n. (15)

Define events P1(G,H,R, S) and P2(F,R, S) to be (12) and (14) respectively. Further define

P3(G,H) :
∥∥GHT

∥∥
p
. nr1/p and P4(F ) : ‖F‖p . n1/p√n.

Both P3(G,H) and P4(F ) hold with probability ≥ 1− e−c3n when G,H ∼ D and F ∼ F .
Now, for 2m samples G1, . . . , Gm, H1, . . . ,Hm independently drawn from D, and m

samples F1, . . . , Fm independently drawn from F , it holds for any fixed R and S that

Pr
Gi,Hi,Fi

{∃i, P1(Gi, Hi, R, S),P2(Fi, R, S),P3(Gi, Hi),P4(Fi) all hold} ≥ 1− e−c4m. (16)

Since 1 ≤ ‖ReieTj ST ‖q = ‖Ri‖2‖Sj‖2 ≤ D, we can restrict the matrix R and S to
matrices with column norm in [1,

√
D]. Thus we can find a net M ⊂

⋃t0
t=1 Rt×n of size

exp(O(t0n ln(Dn/η)) such that for anyM with column norms in [1,
√
D], there existsM ′ ∈ G

such that ‖M −M ′‖op ≤ η.
Now it follows from (16) that

Pr
Gi,Hi,Fi

{∀R,S ∈M,∃i, P1(Gi, Hi, R, S),P2(Fi, R, S),P3(Gi, Hi),P4(Fi) all hold}

≥ 1 − exp
(
O

(
t0n ln Dn

η

))
exp (−c4m) > 0,

provided that m = Θ(n ln(Dn)). Fix {Gi, Hi, Fi}i such that for each pair R′, S′ ∈M there
exists i such that P1(Gi, Hi, R

′, S′) and P2(Fi, R′, S′) and P3(Gi, Hi) and P4(Fi) all hold.
Take T = {In} ∪ {eieTj }1≤i,j≤n ∪ {GiHT

i }1≤i≤m ∪ {Fi}1≤i≤m. We know that if (R,S)
satisfies (10) for all A ∈ T , then there exists R′ and S′ such that ‖R′ − R‖op ≤ η and
‖S′ − S‖op ≤ η, and there exists 1 ≤ i ≤ m such that P1(Gi, Hi, R

′, S′) and P2(Fi, R′, S′)

ICALP 2017
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and P3(Gi, Hi) and P4(Fi) all hold. One can then show that (12), (15) hold with slightly
smaller constants and (13), (14) with slightly larger constants for R and S. It follows that

n
1
p
√
n

log3 t
. D

1
p−

1
2
√
rnr

1
p , or, 1

log3 t
.

(
rD

n

) 1
p−

1
2

= 1
ρ

2
p−1 ,

which contradicts our choice of ρ (the hidden constant in . above depends only on D0, θ
and η, and then we can choose the hidden constant in the Θ-notation for ρ). J

4 Upper Bounds

We shall only show the upper bounds for 1 ≤ p ≤ q ≤ 2 in this section. Other cases can be
found in the full version.

Let G ∈ Rr×n (r ≥ Ct) be a random matrix and c, c′, η > 0 be absolute constants which
satisfy the following properties:
(a) (subspace embedding) For a fixed t-dimensional subspace X ⊆ Rn it holds with probab-

ility ≥ 1− exp(−c′t) that

(1− η)‖x‖2 ≤ ‖Gx‖2 ≤ (1 + η)‖x‖2, ∀x ∈ X;

(b) For a fixed A ∈ Rn×n it holds with probability ≥ 1− exp(−c′r) that

‖GA‖op ≤ c
(
‖A‖op + 1√

r
‖A‖F

)
;

(c) For a fixed A ∈ Rn×n it holds with probability ≥ 1− exp(−c′r) that

(1− η)‖A‖F ≤ ‖GA‖F ≤ (1 + η)‖A‖F .

Consider the singular value decomposition A = UΣV T , where U and V are orthogonal
matrices, Σ = diag{σ1, . . . , σn} with σ1 ≥ σ2 ≥ · · · . For an index set I ⊆ [n], define
AI = UΣIV T , where ΣI is Σ restricted to the diagonal elements with indices inside I (the
diagonal entries with indices outside I are replaced with 0).

I Theorem 9. Let 1 ≤ p ≤ q ≤ 2. There exist constants θ = θ(p, q) < 1 small enough and
C = C(p, q) large enough such that for t ≤ θn and matrix G satisfying the aforementioned
properties, it holds for any (fixed) A ∈ Rn×n with probabilty 1− exp(−c′′t) that

t
1
q−

1
2

n
1
p−

1
2 log n

t

‖A‖p . ‖GA‖q . ‖A‖p.

Note that for t = Ω(logn) and r = Ct for some large constant C, a Gaussian random matrix of
i.i.d. entries N(0, 1/r), or a randomized Hadamard Transform matrix of r = Θ(t polylog(t))
rows, satisfies the three conditions on G [7]. The following corollary of Theorem 9 is
immediate.

I Corollary 10. Suppose that 1 ≤ p ≤ q and c logn ≤ t ≤ θn for some absolute constants
θ ∈ (0, 1) and c ≥ 1. There exists (random) G ∈ Rr×m with r & t such that with probability
≥ 1− exp(−c′′t),

‖A‖p ≤ ‖GA‖q .
n

1
p−

1
2

t
1
q−

1
2

(
log n

t

)
‖A‖p.

In particular when p = q,

‖A‖p ≤ ‖GA‖p .
(n
t

) 1
p−

1
2
(

log n
t

)
.
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Now we prove Theorem 9. We first need an auxiliary lemma.

I Lemma 11. Let θ, t, C and G be as defined in Theorem 9 and b = Θ(log(n/t)). At least
one of the following conditions will hold:

bt∑
i=1

σpi ≥
1
2

n∑
i=1

σpi (17)

and

σ2
s ≤

2
t

n∑
i=s

σ2
i for some s ≤ bt. (18)

To prove the preceding lemma, consider the first b blocks of singular values of A each of
size t, that is, I1 = {σ1, . . . , σt}, . . . , Ib = {σ(b−1)t+1, . . . , σbt}.

I Lemma 12. If (18) does not hold for any s ≤ bt, it must hold for all 2 ≤ j ≤ b that
σjt ≤ 1

2σ(j−1)t.

Proof. If this is not true for some j then
∑jt
i=(j−1)t+1 σ

2
i ≥ tσ2

jt >
t
2σ

2
(j−1)t, which contradicts

(18) with s = (j − 1)t ≤ bt. J

Proof of Lemma 11. Suppose that (17) does not hold and we need to show that (18) holds
for some s ≤ bt. Otherwise, it follows from Lemma 12 that σbt+1 ≤ σ1

2b ≤
(
t
n

)2
σ1 and thus

n∑
i=bt+1

σpi < nσpbt+1 ≤
t2p

n2p−1σ
p
1 ≤ tθ2p−1σp1 , (19)

On the other hand,

bt∑
i=1

σpi ≥ tσ
p
1

(
1
2 + 1

4 + · · ·+ 1
2b

)
=
(

1− 1
2b

)
tσp1 = (1− θ2)tσp1 . (20)

Using the assumption on θ, we see that the rightmost side of (20) is bigger than the rightmost
side of (19), which contradicts the assumption that (17) does not hold. J

I Lemma 13. Let 1 ≤ p ≤ q ≤ 2, and t, b and G be defined as in Lemma 11. Suppose that
s satisfies (18) and let J = {s, s+ 1, . . . , n}. Then

‖GAJ‖q &
t

1
q−

1
2

n
1
p−

1
2
‖AJ‖p.

Proof. Combining Property (b) of G with (18) yields that

‖GAJ‖op ≤
c√
t

(
√

2 +
√

1
C

)
‖AJ‖F =: K√

t
‖AJ‖F

On the other hand, Property (c) states that ‖GAJ‖F ≥ 1
2‖AJ‖F . This implies that at least

αr singular values of GAJ are at least γ√
t
‖AJ‖F , provided that C

(
(1− α)γ2 + αK2) < 1

4 ,

which is satisfied if we choose γ ' 1/
√
C and α ' 1/K2/q. It follows that

‖GAJ‖q ≥ (αr)
1
q
γ√
t
‖AJ‖F ≥ (αC)

1
q γ · t

1
q−

1
2

n
1
p−

1
2
‖AJ‖p. J
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I Lemma 14. Let 1 ≤ p ≤ q ≤ 2, and t, b and G be defined as in Lemma 11. Suppose that
s satisfies (18) and let J = {s, s+ 1, . . . , n}. Then

‖GAJ‖q .
1

t
1
p−

1
q

‖AJ‖p

Proof. When p ≤ 2, it holds that ‖AJ‖2
F ≤ ‖AJ‖

p
p‖AJ‖

2−p
op . Using (18), we obtain that

‖AJ‖p ≥
‖AJ‖2/p

F

‖AJ‖2/p−1
op

≥
(
t

2

) 1
p−

1
2

‖AJ‖F .

On the other hand, it follows from Property (c) of G that

‖GAJ‖q ≤ r
1
q−

1
2 ‖GAJ‖F ≤ (1 + η)r

1
q−

1
2 ‖AJ‖F .

Therefore,

‖GAJ‖q ≤ (1+η)r
1
q−

1
2

(
2
t

)1
p−

1
2

‖AJ‖p = (1+η)(Cbqt)
1
q−

1
2

(
2
t

)1
p−

1
2

‖AJ‖p .
1

t
1
p−

1
q

‖AJ‖p.J

Now we are ready to show Theorem 9.

Proof of Theorem 9. It follows from the subspace embedding property of G that

(1− η)‖AIi‖q ≤ ‖GAIi‖q ≤ (1 + η)‖AIi‖q, 1 ≤ i ≤ b

and thus

1− η
t

1
p−

1
q

‖AIi
‖p ≤ ‖GAIi

‖q ≤ (1 + η)‖AIi
‖p.

When (17) holds, there exists i∗ (1 ≤ i∗ ≤ b) such that

‖AIi∗‖p ≥
1

2
1
p b
‖A‖p

and thus

1
bt

1
p−

1
q

‖A‖p . ‖GAIi∗‖q . ‖A‖p.

When (17) does not hold, let J be as defined in Lemma 13 and

1
2

1
p

‖A‖p ≤ ‖AJ‖p ≤ ‖A‖p.

The claimed upper and lower bounds follow from combining the bounds above, together with
Lemma 13, Lemma 14, and

max
{
‖GAI1‖q, . . . , ‖GAIb

‖q, ‖GAJ‖q
}
≤ ‖GA‖q ≤

b∑
i=1

∥∥GA[Ii]
∥∥
q

+ ‖GAJ‖q,

noticing that t
1
2−

1
p /n

1
2−

1
p ≤ 1/t

1
p−

1
q . J
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