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Abstract
In the problem of one-bit compressed sensing, the goal is to find a δ-close estimation of a k-sparse
vector x ∈ Rn given the signs of the entries of y = Φx, where Φ is called the measurement matrix.
For the one-bit compressed sensing problem, previous work [32, 19] achieved Θ(δ−2k log(n/k))
and Õ( 1

δ k log(n/k)) measurements, respectively, but the decoding time was Ω(nk log(n/k)). In
this paper, using tools and techniques developed in the context of two-stage group testing and
streaming algorithms, we contribute towards the direction of sub-linear decoding time. We give
a variety of schemes for the different versions of one-bit compressed sensing, such as the for-each
and for-all versions, and for support recovery; all these have at most a log k overhead in the
number of measurements and poly(k, logn) decoding time, which is an exponential improvement
over previous work, in terms of the dependence on n.
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1 Introduction

1.1 Standard Compressed Sensing
The compressed sensing framework describes how to reconstruct a vector (signal) x ∈ Rn
given the linear measurements y = Φx where Φ ∈ Rm×n for some m � n. This is an
under-determined system with n variables and m equations. In many applications, however,
such as images, we know that the vector x can be approximated by a k-sparse vector in
some known basis. In this case, the matrix Φ contains a sufficient amount of information
to roughly recover x if m is large enough; in particular, as shown in [4, 5], the signal can
be approximately reconstructed from Θ(k log(n/k)) measurements when Φ is a Gaussian
matrix. In order to do this, however, one has to solve the non-convex program

min‖x‖0 s.t. y = Φx

However, [9, 4] show it is possible to avoid the non-convex formulation and, alternatively,
we can use Basis Pursuit (BP), which changes the objective to min‖x‖1, and still recover a
decent approximation of x. This can be solved using linear programming.

Compressed sensing, and sparse recovery, have appeared to be very useful tools in
many areas such as analog-to-digital conversion [25], threshold group testing [1], discrete
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signal processing [12], streaming algorithms [29] and bioinformatics [26]. Depending on
the application, one cares about optimizing different parameters of interest (measurements,
decoding time, encoding time, failure probability).

Often we distinguish between the for-all model (or uniform recovery) and the for-each
model (non-uniform recovery). In the for-all model, a single matrix is picked, which allows
reconstruction of all k-sparse vectors. Whereas in the for-each model, the measurements
are chosen at random such that, for some error probability p, they will contain sufficient
information to reconstruct a single vector x with probability at least 1− p. We note that all
aforementioned papers refer to the for-all model.

Moreover, it is desirable to achieve sublinear decoding time. The state of the art for
the for-each model is [15]. The authors there achieve k · poly(logn) decoding time with
Θ(k log(n/k)) measurements. The failure probability was improved later in [17] using a much
more complicated scheme. In the for-all model, Gilbert et.al. [18] give the first algorithm
that runs in sublinear time with a number of measurements O(kpoly(logn)). Porat and
Strauss devised a scheme under a slightly weaker recovery guarantee with O(k log(n/k))
measurements accompanied with the first sublinear decoding procedure running in time
O(k1−αnα), for any constant α [33]. Subsequent work [16], the authors manage to bring the
dependence of the approximation ε fact down to the right order of ε−1 and achieve runtime
poly(k, logn), when ε ≤ ( log k

logn )γ , for any constant γ.

1.2 One-Bit Compressed Sensing
Often in applications compressed sensing measurements must be quantized, since the require-
ment of infinite precision is not realistic: any measurement must be mapped to a small finite
value in some universe [3]. Thus, one-bit compressed sensing emphasizes the compressed
aspect of compressed sensing; many algorithms for standard compressed sensing rely on
infinite precision in their real-valued inputs, relying on more precision than real sensors are
capable of returning, an assumption which is unrealistic for real-world applications. Moreover,
in hardware implementations, for example, where quantizers are implemented using compar-
ators to zero [3], there is need of quantization to one-bit measurements. Comparators are
indeed fast, but they are expensive, so minimizing their usage is really important. Moreover,
dynamic range issues are a smaller problem in the case of one-bit quantizers.

It is clear that quantization increases the complexity of the decoding procedure and,
additionally, is irreversible: given y = sign(Φx) it is impossible to get the exact vector
back. Previous results inquired the case in which the quantization maps each coordinate to
{−1,+1}, which means that we learn only the sign of each coordinate. First, it is not obvious
whether there is sufficient information to reconstruct a signal given its one-bit measurements.
Of course, since we cannot know the length of the signal, nor the exact signal (even if its
length were given), we can ask the following question: can we find its direction?

The problem was first studied in the work of Boufounos and Baraniuk [3], where the
authors suggest recovering the signal x by solving the optimization problem

min‖x‖1 s.t.: y �Ax ≥ 0, ‖x‖2 = 1,

where � stands for the element-wise product between two vectors. The goal is to find a
vector y on the unit sphere such that ‖y− x

‖x‖2
‖22 ≤ δ. It is clear that this relaxation requires

solving a non-convex program, an obstacle which Laska et al. [28] tried to remedy by giving
an optimization algorithm that finds a stationary point of the aforementioned program;
both papers, however, do not provide provable guarantees for the number of measurements
needed. An alternative formulation was studied in [24], which showed that the number
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of measurements could be brought down to O(δ−1k logn), but the main obstacle of the
non-convex formulation remained. In [31] Vershyin and Plan gave the first computationally
tractable algorithm for the problem of one-bit compressed sensing by designing a compressed
sensing scheme that approximately recovers a k-sparse vector from O(δ−5k log2(nk )) one-bit
measurements via a linear programming relaxation. Their techniques were based on random
hyperplane tessellations; the main geometric lemma they needed was that O(k log(n/k))
random hyperplanes partition the set of k-sparse vectors with unit norm into cells, each one
having small diameter. In [32] the same authors improved the number of measurements to
O(δ−2k log(nk )) by analyzing a simple convex program. Their results can also be generalized
to other sparsity structures, where the crucial quantity that determines the number of
measurements is the gaussian mean-width of the set of all unit vectors having a specific
sparsity pattern. Last but not least, they manage to handle gaussian noise and, most
importantly, adversarial bit flips, though with a small worsening in the dependence on
δ in their number of measurements. In [19] a two-stage algorithm with Õ( 1

δk log(n/k))
measurements and O(nk log(n/k) + 1

δ5 (k log(n/k))5) decoding time was proposed. Apart
from recovering the vector, other algorithms that recover only the support of the signal have
been proposed; see for example [19, 22].

In [20] it is conjectured that even if the support of the vector is known, the dependence
of the number of measurements on δ must be at least 1

δ . In order to circumvent this,
alternative quantization schemes were proposed, with the most common being Sigma-Delta
quantization [21, 27]. In [2] Baraniuk, Foucart, Needell, Plan and Wootters manage to
bring the dependence on δ down to log( 1

δ ) if the quantizer is allowed to be adaptive and the
measurements take a special form of threshold signs.

1.3 Group Testing
In the group testing problem, we have a large population, which consists of “items”, with a
known number of defectives. The goal is to find the defectives using as few tests as possible,
where a test is just a query whether a certain subset of items contains at least one defective.
The group testing problem was first studied by Dorfman in [13]. There are two types of
algorithms for this problem, namely adaptive and non-adaptive. In the first case, the outcome
of previous tests can be used to determine future tests, whereas in non-adaptive algorithms
all tests are performed at the same time. Group testing has many applications in DNA
library screening and detection of patterns in data; more can be found in [6], [8].

Any solution for the group testing problem corresponds to a binary matrix, where the
number of rows equals the number of tests and the number of columns equals the cardinality
of the population. Given such a matrix M and a vector x indicating the positions of the
defectives, we should be able to identify x from Mx, where the addition here corresponds
to the OR operation of Boolean algebra. Since decoding time is important, the brute-force
algorithm that iterates over each possible subset in order to recognise the defective set
does not suffice. However, one can design matrices such that the naive decoding algorithm,
which eliminates items belonging to negative tests and returns all the other items, correctly
identifies all defective items [14]. In the literature these matrices are known as k-disjunct
matrices.

In this paper, we are also interested in the so-called two-stage group testing problem,
where two stages are allowed: the first stage recognises a superset of the defectives, and the
second stage, which is performed after seeing the results of the first stage, recognizes the
exact set of the defectives by querying separately for each one. We refer to (k, l) two-stage
group testing as the case when there are k defectives and the superset is allowed to have up
to k + l elements. In fact, this is equivalent to the existence of a matrix M such that given
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Mx one can find a set S with k + l elements such that all defectives are included in S. The
same naive algorithm, which eliminates all items that belong to a negative test and returns
all other items, will be used here. A matrix is called (k, l) list-disjunct if this algorithm finds
a superset of the support with at most k + l elements. The term ‘list-disjunct’ appeared
in [23], although it was also studied before in [11] under the name of super-imposed codes,
and in [34] under the name of list-decoding super-imposed codes. In [30] Ngo, Porat and
Rudra give efficient and strongly explicit constructions of matrices that allow two-stage group
testing, which are also error-tolerant, in the sense that they can correct e0 false positives
and e1 false negatives in sub-linear time and additional Θ(e0 + k · e1) tests. They also prove
matching lower bounds for several cases, including the case that k = Θ(l).

A group testing scheme is a tuple (M,R), where M is a matrix in {0, 1}m×n and R a
procedure that takes as input Mx and outputs a vector y. Depending on the guaratee we
want, we will either refer to it as two-stage group testing or (one-stage) group testing. The
worst-case running time of the procedure R corresponds to the decoding time of the scheme.

1.4 Our Results
The main goal of our work is to make algorithms for one-bit compressed sensing not only
“data-efficient” but also computationally efficient. Thus, we try to understand under which
conditions and which number of measurements sublinear decoding time is possible. In the
for-each version of noisy one-bit compressed sensing we give a scheme with almost-optimal
measurements and sublinear decoding time. We also focus on decoding noiseless signals
and presents several results towards this direction. We first give a scheme with sublinear
decoding time with a small overhead in the number of measurements, by connecting the
problem with Combinatorial Group Testing. Second, we try to understand whether it is
possible to achieve a for-all guarantee for one-bit compressed sensing, while still keeping
sublinear decoding time. We answer this question in the affirmative if we are allowed to
use O(k2 logn) measurements. Our techniques also give a scheme for support recovery that
outperforms the one in [19] by being exponentially faster than it; one additional aspect of
our scheme is that the measurement matrix is explicit, which means that we can compute it
in polynomial time.

For the case of general vectors, we define the δ-`2/`2 guarantee: For a unit vector x ∈ Rn
we say that a scheme satisfies the δ-`2/`2 guarantee for one-bit compressed sensing if the
output satisfies

‖x̂− x‖22 ≤ c‖xtail(k)‖22 + δ,

while xtail(k) is the vector that occurs after zeroing out the biggest k coordinates of x in
magnitude and c is some absolute constant.

In the support recovery problem, one wants to construct a matrix Φ, such that for
all k-sparse x, one is able to recover the support of the vector x, given measurements
y = sign(Φx).

We present the results that we have in greater detail in Tables 1 and 2. We note that the
decoding time of each scheme is poly(k, logn).

δ-`2/`2 for-each one-bit Compressed Sensing from O(k log(n/k) · (log k + log log(n/k)) +
δ−2k) measurements.
For-each one-bit Compressed Sensing (noiseless signals) from O(k logn+logk n·log logk n+
δ−2k) measurements. This extends the result of [32], as it manages to also decrease the
number of measurements for the for-each version of the problem for a wide range of
parameters.
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Table 1 Comparison of recovery schemes for one-bit compressed sensing.

Algorithm Measurements Decoding-Time Model Noise

[32] δ−6k log( n
k

) poly(n) For-all Type 1
[32] δ−2k log( n

k
) poly(n) For-each Type 2

[19] Õ(δ−1k log( n
k

)) O(nk logn) + poly(k, logn) For-all No
This paper δ−2k + k log( n

k
)(log k + log log( n

k
)) poly(k, logn) For-each Type 3

This paper k logn+ δ−2k + logk n · log logk n poly(k, logn) For-each No
This paper k2 logn log logk n+ δ−6k log( n

k
) poly(k, logn) For-all No

Table 2 Comparison of schemes for support recovery.

Algorithm Measurements Decoding time Model

[19] k3 logn nk logn For-all
This paper (Theorem 18) k3 logn k3poly(logn) For-all

For-all one-bit Compressed Sensing (noiseless signals) in O(k2 logn log logk n+δ−2k logn)
measurements. This is the first scheme that allows sublinear decoding time in the for-all
model of one-bit compressed sensing, although the dependence on k is k2.
Support recovery from one-bit measurement (noiseless signals) in O(k3 logn) measurem-
nnts. This scheme is not only exponentially faster than the one presented in [19], but
also explicit, in the sense that the matrix can be computed in polynomial time in n.

An interesting aspect of our results is that in the for-each model, the δ factor does not
need to multiply the k logn factor, in contrast to the for-all version. We explain the three
types of noise handled by the schemes in Table 1:

Type 1 stands for adversarial bit flips. This means that after receiving y = sign(Φx), an
adversary can flip some of the entries of y, and then give it to the decoder. Here, we
assume that x is exactly k-sparse. The result of [32] can tolerate up to cδ fraction of
adversarial bit flips, where c is some absolute constant smaller than 1.
Type 2 noise stands for gaussian random noise that is added to the k-sparse vector x
after the matrix Φ has been applied to it. This means that y = sign(Ax + u), where
u ∼ cN (0, I), where c is some absolute constant.
Type 3 noise refers to general noise and is handled by the δ-`2/`2 guarantee. This
means that y = sign(Φ(xhead(k) + xtail(k))), where we can view the term xtail(k) as
pre-measurement adversarial noise.

The ideas that are used in this paper to obtain sublinear decoding time are based on
ideas that appeared in [30], as well as the dyadic trick, which has appeared in the streaming
literature in the context of the Count-Min Sketch [10]. As far as we know, our work is the
first that looks at sublinear decoding time in the one-bit compressed sensing framework and
even achieves less measurements in some cases. Last but not least, we believe that a strong
point of our schemes is their simplicity.

2 Preliminaries

We define the sign function as sign(z) = +1, for z ≥ 0 and sign(z) = −1 for z < 0. For a
vector x, we define sign(x)i = sign(xi), for all i ∈ [n].

ICALP 2017
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Any one-bit compressed sensing scheme is defined by a pair (D,Dec) where D is a
distribution over Rm×n and Dec is an algorithm that takes input sign(Φx) for some x ∈ Rn
and gives back a vector x̂. We will refer to Dec either as the “decoder” or “decoding procedure”.
We may also slightly abuse notation and refer to the pair (A,Φ), where A is a matrix coming
from some distribution D. We use m to denote the number of measurements, and decoding
time refers to the running time of Dec. We also define Σk = {x : ‖x‖0 ≤ k, ‖x‖2 ≤ 1} to be
the set of all k-sparse vectors contained in the unit `2 ball, and Σ1

k = {x : ‖x‖2 = 1, ‖x‖0 ≤ k}
the set of unit norm vectors with at most k non-zero coordinates.

For x ∈ Rn we denote its support set by supp(x). For a vector x, head(k) denotes the set
of its k largest coordinates in magnitude, while tail(k) denotes the set of its n− k smallest
coordinates in magnitude. For a coordinate i, we say that i is a 1

k -heavy hitter if, for some
absolute constant Ch it holds that x2

i ≥ 1
Chk
‖xtail(k)‖22. The constant Ch will be chosen later.

For any x which we are sensing using a one-bit compressed sensing scheme, we assume that
it ‖x‖2 = 1.

For each S ⊂ n, let xS ∈ R|S| denote the signal x restricted to coordinates in S. Similarly,
for a matrix M ∈ Rr×n and each S ⊂ n let MS ∈ Rr×|S| be the matrix M restricted to
columns in S.

I Definition 1. A scheme (D,Dec) satisfies the δ-`2/`2 guarantee for one-bit compressed
sensing with failure probability p if for each x ∈ Sn−1, it estimates a vector x̂ such that

∀x, PΦ∼D[x̂ = Dec(Φx) : ‖x− x̂‖22 ≤ C‖xtail(k)‖22 + δ] ≥ 1− p,

where C is an absolute constant.

For function f : Rn → Rm and a vector x ∈ Rn we say that y = f(x) is a sketch of x. In
our case, f will always be of the form f(x) = sign(Ax), where A ∈ Rm×n.

We also give the definition of the tensor product of two matrices. We note that this is
not the standard tensor product (or Kronecker product, as usually known) appearing in the
literature.

I Definition 2. Let A ∈ {0, 1}m × {0, 1}N and B ∈ {0, 1}m′ × {0, 1}N . The tensor product
A⊗B is an mm′ ×N binary matrix with rows indexed by the elements of [m]× [m′] such
that for i ∈ [m] and j ∈ [m′], the row of A ⊗ B indexed by (i, j) is the coordinate-wise
product of the i-th row of A and j- th row of B.

In order to proceed, we have to explain the difference between the for-all and the for-each
model. Let Px be the predicate that the sparse recovery scheme returns a vector x̂ such that
‖x− x̂‖22 > δ, when the matrix Φ is chosen from the distribution D. Let p be some target
probability. In the for-each model the guarantee is that ∀x ∈ Σ1

k,P[Px] ≤ p. In the for-all
model the guarantee is that P[∃x ∈ Σ1

k : Px] ≤ p. The randomness of the scheme is over the
distribution D.

The following result, appearing in [32] is a crucial component of most of our algorithms.
This theorem is a special case of Theorem 1.1 from that paper, and it is also discussed in
subsection 3.1 of the same paper (check “random noise before quantization” discussion).

I Theorem 3. Let A be a random m× n matrix, with each entry being a standard gaussian,
and all entries are independent. Let x ∈ Σ1

k and y = sign(Ax+ v), where v ∼ N (0, I). Then,
the convex program

z = argmax 〈y,Az〉 s.t. ‖z‖2 ≤ 1, ‖z‖1 ≤
√
k,

outputs a x̂ such that ‖x̂ − x‖22 ≤ δ with probability 1 − e−Ω(k log(n/k)), as long as m =
Ω(δ−2k log(n/k)).
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Algorithm 1 Naive Decoding Algorithm.
S ← ∅
for i ∈ [n] do

if exists no negative test where i participates in then
S ← S ∪ {i}

end if
end for
Output S.

We should review some folklore definitions from Combinatorial Group Testing theory.
For their proofs one can check [30].

I Definition 4. A t×n matrixM is k-disjunct if for every set S ⊂ [n] with |S| ≤ k, ∀j /∈ S, ∃i
such that Mi,j = 1 but ∀k ∈ S,Mi,k = 0. In other words, supp(Mj)− ∪l∈Ssupp(Ml) 6= ∅.

I Definition 5. A t× n matrix M is (k, l)-disjunct if for every two disjoint sets S, T ⊂ [n]
with |S| ≤ k, |T | = l, there exists a row i such that ∀j ∈ S,Mi,j = 0, but ∃j ∈ T,Mi,j = 1.

In the noiseless case, we will make extensive use of the following two lemmas:

I Lemma 6. Let M be a k-disjunct matrix. Then, given y = Mx, the naive decoding
algorithm returns a set S such that S = supp(x), i.e. the naive decoding algorithm correctly
finds the support of x.

I Lemma 7. Let M be a (k, l)-disjunct matrix. Then, given y = Mx, the naive decoding
algorithm returns a set S such that supp(x) ⊂ S and |S| ≤ |supp(x)| + l, i.e. the naive
decoding algorithm finds a superset of the support of x with additional l elements.

Of course, the two different definitions solve a different problem; the latter one solving a
more relaxed version of Group Testing than the former. We will refer to the second version
as two-stage group testing, whereas we will refer to the first version just as group testing.

2.1 Formal Statement of Results
I Theorem 8. There exists a randomized construction of a scheme (Φ, OneBitCS()) which
with probability 1 − O( 1

k log(n/k) + e−k) satisfies the δ-`2/`2 guarantee. Moreover, Φ has
O(k log(n/k)(log k + log log(n/k)) + δ−2k) rows and OneBitCS() runs in time poly(k logn).

I Theorem 9. There exists a randomized construction of a scheme (Φ,OneBitCS()) such
that

∀x ∈ Σ1
k,P[x̂ = OneBitCS(Φx), ‖x− x̂‖22 > δ] ≤ e−k.

The number of rows of Φ is O(k logn + logk n log logk n + δ−2k) and the running time of
OneBitCS() is poly(k, logn).

I Theorem 10. There exists a randomized construction of a scheme (Φ,OneBitCS()) such
that

P[∃x ∈ Σ1
k : x̂ = OneBitCS(Φx), ‖x− x̂‖22 > δ] ≤ e−k log(n/k).

The matrix Φ has O(k2 log(n/k) log logk n + δ−6k log(n/k)) rows and OneBitCS() runs in
poly(k, logn) time.

ICALP 2017
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I Theorem 11. There exists a deterministic construction of a scheme (Φ, Support()), where
Support(Φx) outputs a set L of at most k elements, and ∀x ∈ Σ1

k, Support(Φx) = supp(x).
The matrix Φ has O(k3 logn) rows and Support() runs in poly(k, logn) time.

Complete proofs of these theorems are deferred to the full version.

2.2 Overview of techniques
All of our algorithms find the superset of the support of the vector x (noiseless case) or
a small set containing the largest O(k) in magnitude coordinates (noisy case). This set
contains the crucial information needed to approximate x. Then, by restricting to the set
obtained, we show how the algorithm from [32] can give us the desired guarantees.

We first treat the noisy case. We sketch our approach to find a set of size O(k) that
contains all 1

k -heavy hitters of our vector x. Let us first discuss the Count-Sketch [7] for finding
heavy hitters in data streams (where we also have magnitude information). The Count-Sketch
consists of logn different iterations: in each iteration r we hash every element to O(k) buckets
using a 2-wise independent hash function hr : [n] → [O(k)], combined with random signs.
This means that for each pair (r, b) the (r, b)-th measurement is

∑
i:hr(i)=b σi,rxi, where σi,r

are pairwise independent random signs. For each coordinate i and iteration r, we read the
value of the bucket hr(i) multiplied by σi,r to get an estimate for xi. The median of all logn
different estimates is our final estimate for xi. This approach essentially solves a harder
problem called `∞/`2 sparse recovery, but at this point we are interested in finding only the
heavy hitters of x, not approximating their values; we will use the algorithm of [32] for that
later. So, when we only have access to one-bit measurements an immediate approach is the
following. Using the same hashing scheme as Count-Sketch, the decoding algorithm for every
coordinate i and every iteration r checks if σi,r agrees or disagrees with the sign of the value
of the bucket hr(i), let this be Cr,hr(i) . If this happens more than 3

4 of the time we classify
i as a heavy hitter. This happens because if i is a heavy hitter, with constant probability
xi will dominate the value of hr(i). Unfortunately, this does not suffice to give us sublinear
decoding time.

What we need is a technique called the dyadic trick, which was introduced in [10], for the
`1 case when all xi are non-negative. In this case, we form a tree of size depth logn, where
level l corresponds to the decomposition of [n] into 2l equal-sized and disjoint intervals. The
algorithm at each step keeps a list of size O(k) of “active” nodes, that is intervals that contain
some heavy hitter. At every level we run a version of the Count-Min Sketch to find the heavy
intervals (those that have `1 mass larger than ‖xtail(k)‖1

k ) and proceed by considering their
children as active. The algorithm terminates when we reach the last level. Observe that at
all times we want to guarantee that the list is of size O(k) and hence O(k logn) nodes are
visited in total.

In our case, however, we only have sign information about our measurements and we do
not assume that xi are non-negative. Remember that every node of the tree corresponds to
an interval. For any interval I in each level of the tree we add a normal random variable in
front of every xi for i ∈ I and when we hash nodes to buckets, we combine with a random
sign. We explain what this means. Let us focus on some interval/node I. If we hash this
node to U buckets using a hash function hr : [2l]→ [U ], then the contribution of the interval
to the value of bucket hr(a) will be σI ·

∑
i∈I g

I
i xi, where gIi is the gaussian corresponding

to each i ∈ I and σI is the sign associated with I. The idea is that
∑
i∈I g

I
i xi essentially

approximates the `2 mass of the interval and hence one can expect σI ·
∑
i∈T g

I
i xi to be

roughly σI · ‖xI‖2. This would mean that if I contains a heavy hitter, the sign of the
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measurement it participates in should roughly be the same as the sign of
∑
i∈I g

I
i xi and

hence, by repeating a lot of times, we can hope to clasify this interval as heavy. In this
approach, however, there are technical hurdles, one of them being that we should not refresh
the gaussians across iterations in the same level otherwise the signs will be uniformly at
random. In the next section we show how to take care of all the details.

In the noiseless case, we use techniques and schemes developed in the context of two-stage
group testing. More specifically, we show that if we take a (k, k)-disjunct matrix A and
replace each non-zero entry with a normal random variable, we get a for-each scheme for
identifying a superset S of the support of x. Using this idea and Lemma 7 we can detect a
superset S of the support of x. If we also keep in parallel matrix G each entry of which is a
normal random variable, we can use Theorem 3 by restricting G on the columns indexed
by S to get the result of Theorem 9. We take a similar approach for the for-all version of
the problem, namely Theorem 10. In this case we have to suffer an additional multiplicative
factor of k in the measurements. More specifically, let A ∈ {0, 1}t×n be a (k, k)-disjunct
matrix and let V be a k × n matrix. Then, the measurement matrix for is the vertical
concatenation of A⊗ V concatenated with G. For every i and x, (ai ⊗ V )x can be seen as
single test on x: (ai⊗V )x = 0 if and only if supp(ai)∩ supp(x) = ∅. Vertically concatenating
(A⊗ V ) and ((−A)⊗ V ) we can check whether (ai ⊗ V )x = 0 or not. Then, a modification
of Algorithm 1 and the for-all theorem of [32] (Result 1 from Table 1) gives us the desired
result. For the support recovery problem, our approach is similar: We use a deterministic
k-disjunct matrix A guaranteed by [23] and form the vertical concatenation of A⊗ V and
(−A)⊗ V . A similar reasoning as above, along with Lemma 6 gives the desired result. The
reason we make use of a k-disjunct matrix and not a list-disjunct one is because we are
interested in finding exactly the support.

3 For-each δ-`2/`2 One-Bit Compressed Sensing

As mentioned in the previous section, the algorithm is based on a two-stage approach. The
first stage identifies the set S of the “heavy” coordinates of the vector x; these coordinates
carry most of the `2 mass of x and hence the crucial information needed to approximate it.
The second stage runs the convex program of [32] with the universe being S instead of [n].

The most important part of the algorithm and essentially our contribution, that enables
sublinear decoding time, is the procedure that finds the set S. As mentioned before, we turn
our attention to the Count-Sketch and the dyadic trick [7, 10], and show that, with only a
constant multiplicative increase in the measurement complexity, we can modify them so that
they also work with one-bit measurements. We note that these algorithms appeared in the
linear case of the very-relevant problem of finding heavy hitters in data streams.

In what follows, we assume that n is a power of 2. Let C−1, C0, C1, C2 be large enough
constants to be defined later. For each l, we consider a partition of [n] to 2l equal-sized
disjoint intervals and we denote by Lal the a-th interval in this partition. We also set
∆ = 1

C−1k logn ,∆
′ = log( 1

∆ ), where C−1 is an absolute constant larger than 1.
The sensing matrix Φ is the vertical concatenation of matrices E(log k), E(log k+1), . . . ,

E(logn), A. The number of rows of each E(l) is C0 · C1 · C2 · k∆′ and the number of
rows of A is O(δ−2k). For log k ≤ l ≤ logn let E(l) be the l-th matrix. E(l) consists of
submatrices E(l)

1 , . . . , E
(l)
C2∆′ . Each matrix E(l)

m consists of C1 matrices E(l)
m,t , t = 1, . . . , C1.

Let hl,m,t : [2l] → [C0k] be a hash function that maps intervals/nodes at level l to C0k

buckets. We define the q-th row of E(l)
m,t via its dot product with x:〈

eTq E
(l)
m,t, x

〉
=

∑
a:hl,m,t(a)=q

σl,am,t
∑
j∈La

l

g
(l)
j,m · xj ,
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OneBitHeavyHitters(y):

1. Slog k−1 ← {L1
log k−1, L

2
log k−1 . . . , L

k/2
log k−1}

2. For l = log k to logn:
3. For each Li

l−1 in Sl−1 add L2i−1
l and L2i

l to Sl.
4. For every element La

l in Sl

5. If CheckIfHeavy(La
l ) = ‘light’ remove La

l from Sl

6. Output every x in Slog n

Figure 1 Recovery of `2 Heavy Hitters from One-Bit Measurements.

where g(l)
j,m ∼ N (0, 1) and σl,am,t are random signs. The above expression states that in each

sketch E(l)
m,t we hash the nodes at level l in C2k buckets.

In other words, every E(l) holds a hierarchical separation of [n] into 2l intervals of length
n/2l. Fix now some m ∈ [C2∆′]. Then, in each E

(l)
m,t, every node/interval is hashed to

some bucket and the coordinates inside this interval are combined with standard Gaussians.
Moreover, every interval is assigned a random sign. The intuition is that with constant
probability, we do expect the term

∑
j∈La

l
g

(l)
j,m,t ·xj , to behave roughly like the l2 mass of the

interval itself. Then, by keeping the same gaussians, we take C1 such hashing schemes (we
refresh only the σ variables and the hash functions). For fixed m, l, this means that we use
in total C1C2∆′ measurements, C2∆′ for each of the C1 rounds. Let this scheme be called
Scheme 1. Then, for each level, we repeat the Scheme 1 C2∆′ times, for m = 1, . . . , C2∆′.
Note now that across Eml for different m, l we use new g variables. The reason we have to
make this additional repetition, in contrast to the standard dyadic trick, is that we only have
sign information and we cannot use fresh gaussians at every measurement, since this would
imply uniformity of the signs of the measurements. In other words, we would roughly see
half +1 and half −1 and we would not be able to distinguish the ‘heavy’ intervals from the
‘light’ ones, as we will see next.

The decoding algorithm processes these intervals in increasing l for l = log k up to logn
and keeps a list of intervals at each time (the list is denoted by Sl in the pseudocode). In the
beginning of each step l, every node is hashed to C0k buckets. Suppose for a moment, that
we have the `2 mass of each interval and we hash these values, instead, into C0k buckets
combined with random signs. If an interval I contains a node that is ‘heavy’ and also
is hashed to a bucket b, then we expect that its `2 mass dominates the `2 mass of other
coordinates hashed to the same bucket. Thus, the sign of the sum must be determined
by the sign of the ‘heavy’ interval. To overcome the fact that we do not have the `2 mass
of the interval (since we can only make use of linear measurements) we add a standard
random variable in front of every node in the inteval, before hashing. We exploit the afore-
mentioned intuition, along with 2-stability of the Gaussian distribution , to show that we
can identify all “heavy” intervals and that we do not introduce a big number of erroneous
intervals (intervals that are not ‘heavy’). We repeat this hashing scheme C1 times with
the same gaussians and try to find the intervals whose sign agrees or disagrees with the
measurement they participate in most of the time. We consider them good. As mentioned
in the previous paragraph, this whole hashing scheme called Scheme 1. Now, we repeat
Scheme 1 C2∆′ times with completely fresh randomness. We then find the intervals which
were consider good at least 2

3C2∆′ times and add them to a list. At the end of each step l,
every interval Lil that belongs to the list and is substituted by its two sub-intervals L2i−1

l−1 , L2i
l−1.
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CheckIfHeavy(La
l ):

1. isheavy← 0
2. For m = 1 to C2∆′

3. cnt← 0
4. For t = 1 to C1

5. yq ← value of bucket hl,m,t(a)
6. If sign(yq) = σl,a

m,t

7. cnt← cnt + 1
8. If cnt > 0.8C1 or cnt < 0.2C1

9. isheavy← isheavy + 1
10. If isheavy > 2

3C2∆′

11. return ‘heavy’, else return ‘light’

Figure 2 Check if an Interval at a Specific Level is Heavy.

OneBitCS(y):

1. S ← OneBitHeavyHitters(y).
2. x̂ = argmax 〈y,ASz〉 subject to ‖z‖2 ≤ 1, ‖z‖1 ≤

√
k (Algorithm of [32]).

3. Output x̂.

Figure 3 One-Bit Compressed Sensing.

I Definition 12. For a coordinate i and a level l, let bl(i) be such that i ∈ Lb
l(i)
l . If the level

l is implicit, we may simplify the notation to b(i). In other words, bl(i) is the interval on
level l which contains i.

Fix some matrix Elm0
an an interval I in level l. Then, we will say that Elm0

classifies
interval I as good, if the variable isheavy is incremented in the execution of CheckIfHeavy(I)
when m = m0. Intuitively, Elm0

classifies I as good if I appears to contain a heavy hitter in
it. The next two lemmas are crucial components of our proof.

I Lemma 13. Let Ch be an absolute constant. Fix m, l. Let i ∈ [n] such that |xi|2 >
1

Chk
‖xtail(k)‖22. Let I an interval at level l. Assume that Lb(i)l , I ∈ Sl. Then, for some

absolute constant c, the following claims hold:
E

(l)
m will classify Lb(i)l as good with constant probability, strictly larger than 1

2 .
If there are at least ck intervals at the same level l which have greater `2 mass than I,
then, with constant probabiliy, E(l)

m will not classify I as good.

The proof of the aforementioned lemma is deferred to the full version.

I Lemma 14. Let S = OneBitHeavyHitters(y). then, with probability 1−O( 1
k log(n/k) ), for

all log k ≤ l ≤ logn, the following holds for the set Sl:

If |xi|2 > 1
Chk
‖xtail(k)‖22 and i ∈ Lb(i)l , then i ∈ S.

|Sl| ≤ ck, for some absolute constant c.

Proof. For the proof of this lemma, we need to introduce some additional definitions. We
will refer to any interval that contains a node i such that |xi|2 > 1

10k‖xtail(k)‖22, as a type 1
interval. For a level l, we say that an interval at level l is of type 2, if there exist at least ck
intervals at the same level that have greater `2 mass than this interval.

ICALP 2017
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We now proceed by induction on the number of levels. The base case l = log k is trivial.
We focus on some level l and assume that the induction hypothesis holds for all previous
levels l. We prove the first bullet. Let i be a coordinate such that |xi|22 > 1

Chk
‖xtail(k)‖22.

By the induction hypothesis we get that Lb
l(i)
l ∈ Sl. From Lemma 14 we know that for any

l,m, Eml will classify a type 1 interval as good with constant probability > 2
3 . Moreover,

it will not classify any type 2 interval as good, again with constant probability > 2
3 . This

implies that after repeating the same scheme C2∆′ = C2 log( 1
∆ ) times, we will know, with

probability at least 1−∆, if a specific interval is a type-1 interval or a type-2 interval or none
of these. Because ∆ = Θ( 1

k log(n/k) ) we can take a union-bound over all possible intervals
we might consider (O(k) at each of the log(n/k) levels), we can guarantee that every type-1
interval will remain in Sl, while any type-2 interval will be discarded from Sl. This implies
that at any step we have at most ck intervals in Sl with every type-1 inteval belonging to
Sl. J

We are now ready to prove the main result of this section.

Proof. By running OneBitCS(y), we obtain a set S that satisfies the guarantees of Lemma 14.
Then, y = sign(Ax) = sign(AxS + Ax[n]−S) = sign(ASxS + v), where v is a vector each
entry of which follows normal distribution with variance ‖x[n]−S‖22 ≤ 1. Clearly, AS and
v are independent and hence Theorem 3 applies. The number of rows needed equals
Ω(δ−2k log(ck/k)) = Ω(δ−2k). The convex program of 3 outputs a vector x̂ such that
‖x̂− xS‖22 ≤ δ. Since every coordinate i with |xi|2 ≥ 1

Chk
‖xtail(k)‖22 is contained in S,

‖x[n]−S‖22 ≤ ‖xtail(k)‖22 + ck
1
Chk
‖xtail(k)‖22 = (1 + c

Ch
)‖xtail(k)‖22.

This implies that ‖x− x̂‖22 ≤ (1 + c
Ch

)‖xtail(k)‖22 + δ, as desired. J
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