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Abstract
The paper develops a new technique to extract a characteristic subset from a random source
that repeatedly samples from a set of elements. Here a characteristic subset is a set that when
containing an element contains all elements that have the same probability.

With this technique at hand the paper looks at the special case of the tournament isomorphism
problem that stands in the way towards a polynomial-time algorithm for the graph isomorphism
problem. Noting that there is a reduction from the automorphism (asymmetry) problem to the
isomorphism problem, a reduction in the other direction is nevertheless not known and remains
a thorny open problem.

Applying the new technique, we develop a randomized polynomial-time Turing-reduction
from the tournament isomorphism problem to the tournament automorphism problem. This is
the first such reduction for any kind of combinatorial object not known to have a polynomial-time
solvable isomorphism problem.
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1 Introduction

The graph automorphism problem asks whether a given input graph has a non-trivial
automorphism. In other words the task is to decide whether a given graph is asymmetric.
This computational problem is typically seen in the context of the graph isomorphism
problem, which is itself equivalent under polynomial-time Turing reductions to the problem
of computing a generating set for all automorphisms of a graph [17]. As a special case of the
latter, the graph automorphism problem obviously reduces to the graph isomorphism problem.
However, no reduction from the graph isomorphism to the graph automorphism problem is
known. In fact, while many computational problems surrounding structural equivalence of
combinatorial objects can all be Turing-reduced to one another, the relationship between the
graph automorphism and the graph isomorphism problem remains a repeatedly posed open
question (see for example [1, 2, 12, 14]).

With Babai’s new ground-breaking algorithm [7] that solves the graph isomorphism
problem and thereby also the graph automorphism problem in quasi-polynomial time, the
question arises whether it is possible to go further and devise a polynomial-time algorithm.

∗ See [23], http://arxiv.org/abs/1704.08529, for the full version of the paper including the missing
proofs.
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66:2 A Poly. Rand. Reduction from Tournament Isomorphism to Tournament Asymmetry

For such an endeavor to succeed, special cases such as the group isomorphism and the
tournament isomorphism problem, for which the currently fastest algorithms have a running
time of nO(logn), should also be solvable in polynomial time. Tournaments, which are
graphs in which between every pair of vertices there exists exactly one directed edge, also
have an automorphism problem associated with them, asking whether a given tournament
is asymmetric1. Again, for this problem the currently best running time is nO(logn) and
analogously to general graphs there is a simple reduction from the automorphism problem to
the isomorphism problem, but no reverse reduction has been known.

In this paper we show that there is a randomized polynomial-time Turing reduction from
the tournament isomorphism problem to the tournament automorphism problem. This is
the first such reduction for any kind of combinatorial object (apart from polynomial-time
solvable cases of course).

The main new technical tool that we develop in the first part of the paper is a technique
to exploit an oracle to the graph automorphism problem in order to obtain a non-trivial
automorphism-invariant partition of a graph that is finer than the orbit partition (Sections 2–
5). We call the parts of such a partition suborbits. This technique is essentially applicable to
all graph classes, not just tournaments. It hinges on a method to extract a characteristic
subset from a random source that repeatedly samples from a set of elements. Here we say
that a set is characteristic if it is a union of level sets of the probability function.

In the second part of the paper we show that, for tournaments, access to suborbits suffices
to compute automorphism groups (Section 6). For this we adapt the group-theoretic divide
and conquer approach of Luks [16] to our situation. We exploit that automorphism groups
of tournaments are solvable and we leave it as an open question whether something similar
can be forged that is applicable to the group isomorphism problem (see Section 7).

It might be worth noting that the techniques actually do not use any of the new structural
insights from the quasi-polynomial-time algorithm of [7]. Rather, the randomized sampling
idea is heavily based on an older practical randomized algorithm designed to quickly detect
non-isomorphism ([15, 21]). It appears to be one of the few cases where randomization helps
to derive a theoretical result for an isomorphism problem. We also borrow some ideas from a
paper of Arvind, Das, and Mukhopadhyay concerned with tournament canonization [4].

The necessity for randomization to obtain theoretical results in the context of isomorphism
checking appears to be quite rare. The earliest result exploiting randomization seems to
go to back to Babai [5] and is a randomized algorithm for checking isomorphism of graphs
of bounded color class size. However that algorithm is actually a Las Vegas algorithm (an
algorithm that does not make errors), and in the meantime deterministic algorithms are
available [11]. However, for the new reduction in this paper it seems unclear how to remove
the use of randomization and even how to remove the possibility for errors.

Related work

With respect to related work, we focus on results concerning graph automorphism as well as
results concerning tournaments and refer the reader to other texts (for example [6, 7, 14, 18,

1 Many publications in the context of graph isomorphism use the term rigid graph. However, the
literature is inconsistent on the notion of a rigid graph, which can for example refer to having no
non-trivial automorphism or no non-trivial endomorphism. We will use the notion asymmetric, which
only ever means the former. Furthermore, we suggest the name graph asymmetry problem over
graph automorphism problem, so as not to confuse it with the computational problem to compute the
automorphism group.
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22]) for a general introduction to the graph isomorphism problem, current algorithms and
overviews over complexity theoretic results.

Tournament automorphism. Let us start by highlighting two results specifically concerned
with the tournament automorphism problem. Arvind, Das, and Mukhopadhyay [4] show
that if tournament isomorphism is polynomial-time solvable then tournament canonization
can be reduced in polynomial time to canonization of asymmetric tournaments. This
implies now, with the result of the current paper, that from a canonization algorithm for
asymmetric tournaments we can obtain a randomized canonization algorithm for tournaments
in general. (In other words, the main theorem of our paper transfers to canonization.) On
the hardness side, Wager [25, 27] shows that tournament automorphism is hard for various
circuit complexity classes (NL, C=L, PL, DET, MODkL) under AC0 reductions.

Graph automorphism A lot of information on the complexity of graph automorphism can
be found in the book by Köbler, Schöning, and Torán [14]. Concerning hardness of the
automorphism problem, improving previous results of Torán [24], Wagner shows hardness
results for graphs of bounded maximum degree [26, 27]. Agrawal and Arvind show truth
table equivalence of several problems related to graph automorphism [1] and Arvind, Beigel,
and Lozano study modular versions of graph automorphism [3] which for k ∈ N ask whether
the number of automorphisms of a given graph is divisible by k.

The graph automorphism problem is of interest in quantum computing since it can be
encoded as a hidden shift problem, as opposed to the graph isomorphism problem that is
only known to be encodable as a hidden subgroup problem [10, 13].

Recently, Allender, Grochow, and Moore [2] developed a zero-error randomized reduction
from graph automorphism to MKTP, the problem of minimizing time-bounded Kolmogorov
complexity, a variant of the minimum circuit size problem. In that paper they also extend
this to a bounded-error randomized reduction from graph isomorphism to MKTP.

Tournament isomorphism. Concerning the tournament isomorphism problem, the currently
fastest algorithm [8] has a running time of nO(logn). With respect to hardness, Wagner’s
results for tournament automorphism also apply to tournament isomorphism [25].

Ponomarenko showed that isomorphism of cyclic tournaments can be decided in polynomial
time [19], where a cyclic tournament is a tournament that has an automorphism that is
a permutation with a single cycle spanning all vertices. Furthermore he showed that
isomorphism of Schurian tournaments can be decided in polynomial time [20].

2 Sampling characteristic subsets

Let M be a finite set. We define a sampler S over M to be a probability measure PrS : M →
[0, 1] on the elements of M . We think of a sampler as an oracle that we can invoke in
order to obtain an element of M . That is, given a sampler, we can sample a sequence of
elements m1, . . . ,mt where each mi is sampled independently from M according to PrS.

We call a subset M ′ of M characteristic with respect to S if for all m,m′ ∈M it holds
that m ∈ M ′ and PrS(m′) = PrS(m) implies m′ ∈ M ′. Another way of formulating this
condition is that M ′ is invariant under all probability-preserving bijections ϕ : M →M , that
is, those bijections that satisfy PrS(m) = PrS(ϕ(m)) for all m ∈M .

When considering sampling algorithms we will not assume that we know the size of the
set M . Our goal is to repeatedly invoke a sampler M so as to find a characteristic subset.

ICALP 2017
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The main difficulty in this is that we can never precisely determine the probability PrS(m)
of an element m. Indeed, the only thing we can hope for is to get a good estimate for such
a probability. The following lemma indicates that this might be helpful since the set of
probabilities cannot be arbitrarily dense.

I Lemma 1. Let PrS be a discrete probability measure on the set M . Let P = {PrS(m) |
m ∈ M} be the set of probabilities that occur. For every positive integer i there is a j ∈
{6i+ 1, . . . , 8i} such that [(j − 1/4)/(8i2), (j + 1/4)/(8i2)] ∩ P = ∅.

Using the lemma we can design an algorithm that, with high probability, succeeds at
determining a characteristic set.

I Theorem 2. There is a deterministic algorithm that, given ε > 0 and given access to
a sampler S over an unknown set M of unknown size, runs in expected time polynomial
in 1/(maxm∈M PrS(m)) ≤ |M | and ln 1/ε and outputs a non-empty subset of M that is
characteristic with probability 1− ε.

The proof of the theorem makes repeated use of Chernoff bounds. The main difficulty
is that |M | is not known to the algorithm. The lengthy proof can be found in the full
version [23].

We note several crucial observations about any algorithm solving the problem just
described. There is no algorithm that for every set M and sampler S always outputs the
same set M ′ with high probability.

Indeed, consider the set M = {a, b}. Choosing PrS(a) = PrS(b) = 1/2 means that M ′
must be {a, b}. Choosing PrS(a) = 1 and PrS(b) = 0 implies that M ′ must be {a}. However,
there is a continuous deformation between these two samplers, while possibilities for the
set M ′ are discrete. It is not difficult to see that the probability distribution of the output
set M ′ must be continuous in the space of samplers, and thus, whatever the algorithm may
be, there must be samplers for which the algorithm sometimes outputs {a} and sometimes
outputs {a, b}.

The theorem only establishes polynomial running time. If we are however interested in
small running times, one might even ask whether it is possible to devise an algorithm running
in time sublinear in |M |. However, recalling the coupon collector theorem and considering
uniform samplers one realizes that one cannot expect to make do with o(|M | log |M |) sam-
plings. However, if the set M is of algebraic nature, for example forms a group, then there
might be meaningful ways to sample characteristic substructures (see Section 7).

3 Gadget constructions for asymmetric tournaments

There are several computational problems fundamentally related to the graph isomorphism
problem. This relation manifests formally as polynomial-time Turing (or even many-one)
reductions between the computational tasks. Such reductions are typically based on gadget
constructions which we revisit in this section.

While the graph isomorphism problem GI asks whether two given graphs are isomorphic, in
the search version of this decision problem an explicit isomorphism is to be found, whenever
one exits. The graph automorphism problem GA asks whether a given graph has a non-trivial
automorphism (i.e., an automorphism different from the identity). In other words the task
is to decide whether the given graph is asymmetric. Two other related problems are the
task AUT to determine generators for the automorphism group Aut(G) and the task to
determine the size of the automorphism group |Aut(G)|.
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For all named problems there is a colored variant, where the given graphs are vertex
colored and isomorphisms are restricted to be color preserving. We denote the respective
problems by col-GI, col-GA and col-AUT.

It is well known that between all these computational problems – except GA – there
are polynomial-time Turing reductions (we refer for example to [9], [14], [17]). Concerning
the special case of GA, while there is a reduction from GA to the other problems, a reverse
reduction is not known.

The reductions are typically stated for general graphs, but many of the techniques are
readily applicable to restricted graph classes. By a graph class we always mean a collection of
possibly directed graphs closed under isomorphism. The isomorphism problem for graphs in C,
denoted GIC , is the computational task to decide whether two given input graphs from C are
isomorphic. If one of the input graphs is not in C the answer of an algorithm may be arbitrary,
in fact the algorithm may even run forever. Analogously, for each of the other computational
problems that we just mentioned, we can define a problem restricted to C giving us for
example GAC , and AUTC and the colored versions col-GIC , col-GAC , and col-AUTC .

As remarked in [4], most of the reduction results for general graphs transfer to the
problems for a graph class C if one has, as essential tool, a reduction from col-GIC to GIC .

I Theorem 3 (Arvind, Das, Mukhopadhyay [4]). Suppose that for a graph class C there is a
polynomial-time many-one reduction from col-GIC to GIC (i.e., col-GIC ≤pm GIC)2. Then
1. GAC polynomial-time Turing-reduces to GIC (i.e., GAC ≤pT GIC),
2. The search version of GIC polynomial-time Turing-reduces to the decision version of GIC,

and
3. AUTC polynomial-time Turing-reduces to GIC (i.e., AUTC ≤pT GIC).

In this paper we are mainly interested in two classes of directed graphs, namely the class
of tournaments Tour and the class of asymmetric tournaments AsymTour. For the former
graph class, a reduction from the colored isomorphism problem to the uncolored isomorphism
problem is given in [4].

I Theorem 4 (Arvind, Das, Mukhopadhyay [4]). The colored tournament isomorphism problem
is polynomial-time many-one reducible to the (uncolored) tournament isomorphism problem
(i.e., col-GITour ≤pm GITour).

However, for our purposes we also need the equivalent statement for asymmetric tourna-
ments. Taking a closer look at the reduction described in [4] yields the desired result. In
fact it also shows that the colored asymmetry problem reduces to the uncolored asymmetry
problem. Denoting for a graph class C by AsymC the class of those graphs in C that are
asymmetric (i.e., have a trivial automorphism group), we obtain the following.

I Lemma 5.
1. The isomorphism problem of colored asymmetric tournaments is polynomial-time many-

one reducible to the isomorphism problem for (uncolored) asymmetric tournaments
(i.e., col-GIAsymTour ≤pm GIAsymTour).

2. The colored tournament asymmetry problem is polynomial-time many-one reducible to the
(uncolored) tournament asymmetry problem (i.e., col-GATour ≤pm GATour).

2 Let us remark for completeness that a Turing reduction assumption col-GIC ≤p
T GIC actually suffices for

the theorem.

ICALP 2017



66:6 A Poly. Rand. Reduction from Tournament Isomorphism to Tournament Asymmetry

As mentioned above, reductions for computational problems on general graphs can often
be transferred to the equivalent problems restricted to a graph class C. However, let us
highlight a particular reduction where this is not the case. Indeed, it is not clear how to
transfer the reduction from GI to AUT (which involves taking unions of graphs) to a reduction
from GIC to AUTC, even when provided a reduction of col-GAC to GIC. For the class of
tournaments however, we can find such a reduction, of which we can make further use.

I Lemma 6.
1. The isomorphism problem for tournaments polynomial-time Turing-reduces to the task to

compute a generating set for the automorphism group of a tournament (i.e., col-GITour ≤pT
AUTTour).

2. The isomorphism problem for colored asymmetric tournaments is polynomial-time many-
one reducible to tournament asymmetry (i.e., col-GIAsymTour ≤pm GATour).

3. The search version of the isomorphism problem for colored asymmetric tournaments
Turing-reduces to tournament asymmetry.

Proof. Suppose we are given two tournaments T1 and T2 on the same number of vertices n
for which isomorphism is to be decided. By Theorem 4 we can assume that the tournaments
are uncolored. Let Tri(T1, T2) be the tournament obtained by forming the disjoint union of
the three tournaments T1, T ′1 and T2 where T1 ∼= T ′1. We add edges from all vertices of T1 to
all vertices of T ′1, from all vertices of T ′1 to all vertices of T2 and from all vertices of T2 to
all vertices of T1. We observe that two vertices that are contained in the same of the three
sets V (T1), V (T2), V (T ′1) have n common out-neighbors. However, two vertices that are not
contained in the same of these three sets have at most n − 1 common out-neighbors. We
conclude that an automorphism of Tri(T1, T2) preserves the partition of V (Tri(T1, T2)) into
the three sets V (T1), V (T ′1) and V (T2).

Given a generating set for Aut(Tri(T1, T2)) it holds that there is some generator that
maps a vertex from V (T1) to a vertex from V (T2) if and only if T1 and T2 are isomorphic.
This proves the first part of the lemma.

Suppose additionally that T1 and T2 are asymmetric. We then further conclude that
the tournament Tri(T1, T2) has a non-trivial automorphism if and only if T1 and T2 are
isomorphic. This shows that the decision version of asymmetric tournament isomorphism
reduces to tournament asymmetry. Since the search version is Turing-reducible to the decision
version of isomorphism (Theorem 3) this finishes the proof. J

For Turing reductions, the converse of the previous lemma also holds. In fact the converse
holds for arbitrary graph classes. The first part of this converse is a well known techniques
that goes back to Mathon [17].

I Lemma 7. Let C be a graph class.
1. The task to compute a generating set for the automorphism group of graphs in C Turing-

reduces to the isomorphism problem for colored graphs in C (i.e., AUTC ≤pT col-GIC).
2. Asymmetry checking for graphs in C polynomial-time Turing-reduces to isomorphism

checking of asymmetric colored graphs in C (i.e., GAC ≤pT col-GIAsymC).

4 Invariant automorphism samplers from asymmetry tests

As discussed before, the asymmetry problem of a class of graphs reduces to the isomorphism
problem of graphs in this class. However, whether there is a reduction in the reverse, or
whether the asymmetry problem may actually be computationally easier than the isomorphism
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Algorithm 1 An invariant automorphism sampler for tournaments using an asymmetry
oracle.
Input: A tournament T that is not asymmetric and an oracle O for tournament asymmetry.
Output: An automorphism ϕ ∈ Aut(T ) \ {id}. As a random variable, the outputs of the

algorithm form an invariant automorphism sampler for T .

1: Tnext ← T

2: while Aut(Tnext) 6= {id} do
3: Pick a vertex v independently, uniformly at random among all non-singleton color

classes in Tnext.
4: T ← Tnext
5: Tnext ← T(v) // individualize v
6: end while // at this point Tnext is asymmetric
7: Let V ′ be the set of those vertices that have the same color in T as v.
8: Let V ′′ be the set of those vertices v′′ in V ′ \ {v} for which Aut(T(v′′)) = {id}.
9: Let V ′′′ be the set of those vertices v′′′ in V ′′ for which Tnext ∼= T(v′′′).

// use Part 2 of Lemma 6
10: Pick a vertex u ∈ V ′′′ uniformly at random.
11: Compute an isomorphism ϕ from Tnext to T(u). // there is only one such isomorphism
12: return ϕ

problem is not known. To approach this question, we now explore what computational power
we could get from having available an oracle for the asymmetry problem.

An invariant automorphism sampler for a graph G is a sampler over Aut(G) \ {id} which
satisfies the property that if PrS(ϕ) = p then PrS(ψ−1 ◦ ϕ ◦ ψ) = p for all ψ ∈ Aut(G). We
first show how to use an oracle for asymmetry to design an invariant automorphism sampler
for a tournament T .

I Lemma 8. Given an oracle for asymmetry of tournaments (GATour) we can construct
for every given colored (or uncolored) tournament T that is not asymmetric an invariant
automorphism sampler. The computation time (and thus the number of oracle calls) required
to sample once from S is polynomial in |V (T )|.

Proof. Let O1 be an oracle for uncolored tournament asymmetry. By Lemma 5, we can
transform the oracle O1 for the asymmetry of uncolored tournaments into an oracle O2 for
asymmetry of colored tournaments. By Lemma 6 Part 2, we can also assume that we have an
oracle O3 that decides the isomorphism problem of colored asymmetric tournaments. More
strongly, Lemma 6 Part 3 makes a remark on the search version, thus we can assume that O3
also solves the isomorphism search problem for asymmetric tournaments.

To obtain the desired sampler S we proceed as follows. In the given tournament T we
repeatedly fix (by individualization, i.e., giving it a special color) uniformly, independently at
random more and more vertices until the resulting tournament is asymmetric. This gives us
a sequence of colored tournaments T = T0, T1, . . . , Tt such that Aut(Tt) = {id}, Aut(Tt−1) 6=
{id} and such that Tt = (Tt−1)(v) for some vertex v. In other words, Tt is obtained from Tt−1
by individualizing v which makes the graph asymmetric. Using the available oracle O2, we
can compute the set V ′′ of those vertices v′′ in V (T ) \ {v} that have the same color as v
such that Aut((Tt−1)(v′′)) = {id}. There must be at least one vertex in V ′′ since Tt−1 is
not asymmetric. Using the oracle O3, we can then compute the subset V ′′′ ⊆ V ′′ of those
vertices v′′′ for which (Tt−1)(v′′′) and Tt are isomorphic. Next, we pick a vertex u ∈ V ′′′

ICALP 2017
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uniformly at random. Since both (Tt−1)(u) and Tt are asymmetric, using the oracle O3 for
the isomorphism search problem we can compute an isomorphism ϕ from (Tt−1)(u) to Tt.
This isomorphism ϕ is unique and it is a non-trivial automorphism of Aut(T ). Algorithm 1
gives further details.

Invariance. he invariance follows directly from the fact that all steps of the algorithm either
consist of choosing a vertex uniformly at random or computing an object that is invariant
with respect to all automorphisms fixing all vertices that have been randomly chosen up to
this point.

Running time. Concerning the running time, one call of Algorithm 1 uses less than 2n calls
to oracle O2 and at most n calls to oracle O3. The overall running time is thus polynomial. J

Let us comment on whether the technique of the lemma can be applied to graph classes
other than tournaments. For the technique to apply to a graph class C, we require the
oracle O2, which solves colored asymmetry C, and the oracle O3 which solves the isomorphism
search problem for asymmetric colored objects in C. (The oracle O1 is a special case of O2.)
In the case of tournaments, having an oracle O1 (i.e., an oracle for uncolored asymmetry)
is sufficient to simulate the oracles O2 and O3, but this is not necessarily possible for all
graph classes C. It is however possible to simulate such oracles for every graph class that
satisfy some suitable (mild) assumptions, as can be seen from the discussion in Section 3.
In particular, given an oracle for asymmetry of all graphs we can construct an invariant
automorphism sampler for all graphs that are not asymmetric.

5 Invariant suborbits from invariant automorphism samplers

Let G be a directed graph. Let S be an invariant automorphism sampler for G. We now
describe an algorithm that, given access to an asymmetry oracle, constructs a non-discrete
partition of V (G) which is finer than or at least as fine as the orbit partition of G under Aut(G)
and invariant under Aut(G). Here, a partition π is invariant under Aut(G) if π = ψ(π) for
all ψ ∈ Aut(G). (A partition is discrete if it consists only of singletons.)

I Theorem 9. For every c ∈ N, there is a randomized polynomial-time algorithm that, given
a graph G and an invariant automorphism sampler S for G constructs with error probability
at most 1

|G|c a non-discrete partition π of V (G) such that
1. π is finer than or at least as fine as the orbit partition of V (G) under Aut(G) and
2. π is invariant under Aut(G).
The algorithm also provides a set of certificates Φ = {ϕ1, . . . , ϕm} ⊆ Aut(G) such that
for every pair of vertices v, v′ ∈ V (G) that lie in the same class of π there is some ϕi
with ϕi(v) = v′.

Proof. Let M = {(v, w) | v, w ∈ V (G), v 6= w,∃ϕ ∈ Aut(G) : ϕ(v) = w} be the set of
pairs of two distinct vertices lying in the same orbit. With the sampler S we can simulate
a sampler S′ over M invariant under Aut(G) as follows. To create an element for S′ we
sample an element ϕ from S and uniformly at random choose an element v from the
support supp(ϕ) = {x ∈ V (G) | ϕ(x) 6= x} of ϕ. Then the element for S′ is (v, ϕ(v)). It
follows form the construction that S′ is a sampler for M . Moreover, since all random choices
are independent and uniform, S′ is invariant under automorphisms.

Using the algorithm from Theorem 2 we can thus compute a characteristic subset M ′
of M . Since S′ is Aut(G)-invariant, the fact that M ′ is characteristic implies that it is also
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Aut(G)-invariant. For the given c ∈ N, to obtain the right error bound, we choose ε to
be 1
|G|c for the algorithm from Theorem 2. Then the error probability is at most ε = 1

|G|c and
the running time is polynomial in |M | = O(|G|2) and ln |G|c = O(|G|) and thus polynomial
in the size of the graph.

Regarding M ′ as a binary relation on V (G) we compute the transitive closure and let π
be the partition of V (G) into equivalence classes of said closure, where vertices that do not
appear at all as entries in M ′ form their own class. By construction, elements that are in
the same class of π are in the same orbit under Aut(G). Moreover π is Aut(G)-invariant
since M ′ is Aut(G)-invariant.

To provide certificates for the elements in M ′ we store all elements given to us by S. For
each (v, w) ∈M ′ we can thus compute an automorphism of ϕv,w ∈ Aut(G) with ϕv,w(v) = w.
For pairs in the transitive closure of M ′ we then multiply suitable automorphisms. J

If a partition π satisfies the conclusion of the lemma, we call it an invariant collection
of suborbits. We call the elements of Φ the certificates. Let us caution the reader that the
set Φ returned by the algorithm is not necessarily characteristic. Moreover, the orbits of the
elements in Φ might not necessarily be contained within classes of π. An oracle for invariant
suborbits returns (π,Φ), where for asymmetric inputs π is discrete and Φ = {id} .

6 Computing the automorphism group from invariant suborbits

To exploit invariant suborbits we make use of the powerful group-theoretic technique to
compute stabilizer subgroups.

I Theorem 10 (Luks [16]). There is an algorithm that, given a permutation group Γ
on {1, . . . , n} and subset B ⊆ {1, . . . , n}, computes (generators for) the setwise stabilizer
of B. If Γ is solvable, then this algorithm runs in polynomial time.

We will apply the theorem in the following form: Let G be a graph and Γ a solvable
permutation group on V (G). Then Γ ∩Aut(G) can be computed in polynomial time. This
follows directly from the theorem by considering the induced action of Γ on pairs of vertices
from V (G) and noting that Γ ∩Aut(G) consists of those elements that stabilize the edge set.

In our algorithm we will also use the concept of a quotient tournament (that can for
example implicitly be found in [4], see also [22]). Let T be a tournament and let π be
a partition of V (T ) in which all parts have odd size. We define T/π, the quotient of T
modulo π, to be the tournament on π (i.e., the vertices of T/π are the parts of π) where for
distinct C,C ′ ∈ V (T/π) = π there is an edge from C to C ′ if and only if in T there are more
edges going from C to C ′ than edges going from C ′ to C. Note that since both |C| and |C ′|
are odd there are either more edges going from C to C ′ or more edges going from C ′ to C.
This implies that T/π is a tournament.

I Theorem 11. Suppose we are given as an oracle a randomized Las Vegas algorithm that
computes invariant suborbits for tournaments in polynomial time. Then we can compute the
automorphism group of tournaments in polynomial time.

Proof. We describe an algorithm that computes the automorphism group of a colored
tournament given a randomized oracle that provides invariant suborbits.

ICALP 2017
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Algorithm 2 Computing the automorphism of a tournament using invariant suborbits.
Input: A (colored) tournament T and an oracle O for invariant suborbits with certificates.
Output: A generating set for the automorphism group Aut(T ).

1: if T is not monochromatic then // Case 0
2: Let Col be the set of vertex colors of T .
3: for c ∈ COL do
4: Let V c be the set vertices in T of color c.
5: Ψc ← Aut(T [V c]) // recursion
6: Let Ψ̂c be the set of extensions of Ψc to V (T ) obtained by fixing vertices outside V c.
7: end for
8: Ψ =

⋃
c∈Col Ψ̂c

9: return 〈Ψ〉 ∩Aut(T ) // solvable group stabilizer
10: end if
11: (π,Φ)← O(T ) // π forms invariant suborbits of T , Φ the set of certificates
12: if π is discrete then // T is asymmetric
13: return {id}
14: else if π = {V (T )} then // Case 1
15: Choose v ∈ V (T ) arbitrarily.
16: Let T ′ be obtained from T by coloring v with 1, all in-neighbors of v with 2 and other

vertices with 3.
17: return Φ ∪Aut(V (T ′)) // recursion
18: else if ∃C,C ′ ∈ π : |C| 6= |C ′| then // Case 2
19: Let T ′ be obtained from T by coloring each vertex v with color |[v]π|.
20: return Aut(V (T ′)) // recursion
21: else // Case 3
22: For C ∈ π we let TC be the graph obtained from T [C] by picking an arbitrary

vertex v ∈ C and coloring v with 1, all in-neighbors of v with 2 and other vertices
with 3.

23: for {(C,C ′) ∈ π | C 6= C ′} do
24: Compute Aut(Tri(TC , T ′C)) and extract an isomorphism ϕ(C,C′) : T [C] → T [C ′]

whenever such an isomorphism exists. // recursion
25: end for
26: if ∃C,C ′ ∈ π : T [C] � T [C ′] then // Case 3a
27: Let T ′ be obtained from T by coloring V (T ) so that v and v′ have the same color if

and only if T [([v])] ∼= T [([v′])].
28: return Aut(T ′) // recursion
29: else // Case 3b
30: Ψ← Aut(T/π) // recursion on the quotient
31: Ψ̂← {ĝ | g ∈ Ψ}, where ĝ(v) = ϕ([v],g([v]))(v).
32: for {C ∈ π} do
33: ΥC ← Aut(T [C]) // recursion
34: Compute Υ̂C the lifts of elements in ΥC by fixing vertices outside C.
35: end for
36: return 〈Ψ̂ ∪

⋃
C∈π Υ̂C〉 ∩Aut(T ) // solvable group stabilizer

37: end if
38: end if
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Description of the algorithm. Let T be a given colored tournament.

Case 0: T is not monochromatic. If T is not monochromatic then we proceed as follows:
Let Col be the set of colors that appear in T . For c ∈ Col, let V c be the set of vertices of
color c and let T c = T [V c] be the subtournament induced by the vertices in V c.
We recursively compute Aut(T c) for all c ∈ Col. Let Ψc be the set of generators obtained
as an answer. We lift every generator to a permutation of V (T ) by fixing all vertices
outside of V c. Let Ψ̂c be the set of lifted generators of Ψc and let Ψ =

⋃
c∈Col Ψ̂c be the

set of all lifted generators. Since Aut(T c) = 〈Ψc〉 is solvable, we conclude that 〈Ψ〉 is a
direct product of solvable groups and thus solvable. We can thus compute 〈Ψ〉 ∩Aut(T )
using Theorem 10 and return the answer.
This concludes Case 0.
In every other case we first compute a partition π into suborbits using the oracle and a
corresponding set of certificates Φ. For a partition π of some set V we denote for v ∈ V
by [v]π the element of π containing v. We may drop the index when it is obvious from
the context. If |T | = 1 then we simply return the identity.

Case 1: π is trivial. In case π is trivial (i.e., π = {V (T )}), we know that T is transitive. We
choose an arbitrary vertex v ∈ V (T ). Let λ be the coloring of V (T ) satisfying λ(u) = 1
if u = v, λ(u) = 2 if (u, v) ∈ E(T ), and λ(u) = 3 otherwise. We recursively compute a
generating set Ψ for Aut(T ′), where T ′ is T recolored with λ. We then return Ψ ∪ Φ.

Case 2: not all classes of π have the same size. We color every vertex with the size of
the class of π in which it is contained. Now T is not monochromatic anymore and we
recursively compute Aut(T ) with T having said coloring. (In other words, we proceed as
in Case 0.)

Case 3: all classes of π have the same size but π is non-trivial. We compute for each pair
of distinct equivalence classes C and C ′ of π an isomorphism ϕ(C,C′) from T [C] to T [C ′]
or determine that no such isomorphism exists, as follows: We choose for each C an
arbitrary vertex v ∈ C. We let TC be the tournament obtained from T [C] by coloring v
with 1, all in-neighbors of v with 2 and other vertices with 3. We let TC,C′ = Tri(TC , TC′)
be the triangle tournament of TC and TC′ where (TC)′ is an isomorphic copy of TC (as
defined in Section 3 in the proof of Lemma 6).
Using recursion we compute Aut(TC,C′). From the result we can extract an isomorphism
from T [C] to T [C ′] since V (T [C]) and V (T [C ′]) are blocks of TC,C′ .
Case 3a: If it is not the case that for every pair C,C ′ of color classes there is an
isomorphism from T [C] to T [C ′] then we color the vertices of T so that v, v′ have the
same color if and only if there is an isomorphism from T [([v])] to T [([v′])], where as before
for every vertex u we denote by [u] the class of π containing u. With this coloring, T
is not monochromatic anymore and we recursively compute Aut(T ) with T having said
coloring. (In other words, we proceed as in Case 0.)
Case 3b: Otherwise, for every pair C,C ′ of color classes, there is an isomorphism from T [C]
to T [C ′]. Note that all color classes are of odd size since T [C] is transitive (as dictated
by π). Thus, we can compute the quotient tournament T/π. We recursively compute a
generating set Ψ = {g1, . . . , gt} for the automorphism group of T/π.
We lift each gi to a permutation ĝi of V (T ) as follows. The permutation ĝi maps each
vertex v to ϕ([v],gi([v]))(v). Since gi is a permutation and each ϕ(C,C′) is a bijection, the
map ĝi is a permutation of V (T ). Let Ψ̂ = {ĝ1, . . . , ĝt} be the set of lifted generators.
As next step, for each class C we recursively compute a generating set ΥC for Aut(T [C]).
We lift each generator in ΥC to a permutation of V (T ) by fixing all vertices outside of C
obtaining the set Υ̂C of lifted generators.
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Consider the group Γ generated by the set Ψ̂∪
⋃
C∈π Υ̂C . As a last step, using Theorem 10

we compute the subgroup Γ′ = Γ ∩Aut(T ).
The details of this algorithm are given in Algorithm 2. For the running time analysis and
the correctness argument of the algorithm we refer to the full version of the paper [23]. J

We have now assembled all the required parts to prove the main theorem of the paper.

I Corollary 12.
1. There is a randomized (one-sided error) polynomial-time Turing reduction from tourna-

ment isomorphism to asymmetry testing of tournaments (i.e., GITour ≤pr,T GATour).
2. There is a randomized polynomial-time Turing reduction from the computational task to

compute generators of the automorphism group of a tournament to asymmetry testing of
tournaments (i.e., AUTTour ≤pr,T GATour).

Proof. Recall that a two-sided error algorithm for an isomorphism search problem can be
readily turned into a one-sided error algorithm by checking the output isomorphism for
correctness. Thus, by Lemma 6 Part 1 it suffices to prove the second part of the corollary.

Combining Lemma 8 and Theorem 9, from an oracle to tournament asymmetry we obtain
a randomized Monte Carlo (i.e., with possible errors) algorithm that computes invariant
suborbits. Given a Las Vegas algorithm (i.e., no errors) for suborbits, the previous theorem
provides us with a computation of the automorphism group of tournaments.

It remains to discuss the error probability we get from using a Monte Carlo algorithm
instead of a Las Vegas algorithm. Since there is only a polynomial number of oracle calls,
and since the error bound in Theorem 9 can be chosen smaller than 1

|G|c for every fixed
constant c, the overall error can be chosen to be arbitrarily small. J

7 Discussion and open problems

This paper is concerned with the relationship between the asymmetry problem GAC and
isomorphism problem GIC. While under mild assumptions there is a reduction from the
former to the latter, a reduction in the other direction is usually not known. However, for
tournaments we now have such a randomized reduction.

The first question that comes to mind is whether the technique described in this pa-
per applies to other graph classes. While the sampling techniques from Sections 2 to 5
can be applied to all graph classes that satisfy mild assumptions (e.g., col-GIC ≤pt GIC
and col-GIAsymC ≤pt GIAsymC) the algorithm described in Section 6 crucially uses the fact that
automorphism groups of tournaments are solvable. This is not the case for general graphs, so
for the open question of whether GI reduces to GA this may dampen our enthusiasm. However,
what may bring our enthusiasm back up is that there are key classes of combinatorial objects
that share properties similar to what we need.

In particular, this brings us to the question whether the techniques of the paper can
be applied to group isomorphism. Just like for tournament isomorphism, finding a faster
algorithm for group isomorphism (given by multiplication table) is a bottleneck for improving
the run-time bound for isomorphism of general graphs beyond quasi-polynomial. Since
outer-automorphism groups of simple groups are solvable, we ask: Can we reduce the group
isomorphism problem to the isomorphism problem for asymmetric groups? This question is
significant since an asymmetry assumption on groups is typically a strong structural property
and may help to solve the entire group isomorphism problem. However, here one has to be
careful to find the right notion of asymmetry since all groups have inner automorphisms. For
such notions different possibilities come to mind.
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A second natural open question would be whether there is a deterministic version of the
algorithms given in this paper.

As a last open problem recall that it was shown in Section 2 that one can extract a
characteristic subset for a sampler over a set M in time that depends polynomially on M .
Since the automorphism group of a graph can be superpolynomial in the size of the graph,
we had to take a detour via suborbits in Section 5. There can be no general way to extract a
characteristic subset of M in polynomial time if |M | is not polynomially bounded, since we
might never see an element twice. However, if M has an algebraic structure, in particular
if M is a permutation group over a polynomial size set, this is not clear. Thus we ask: Is
there a polynomial-time (randomized) algorithm that extracts a characteristic subgroup
using a sampler Γ over a permutation group?
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