
Linear-Time Kernelization for Feedback Vertex
Set∗

Yoichi Iwata†

National Institute of Informatics, Tokyo, Japan
yiwata@nii.ac.jp

Abstract
In this paper, we give an algorithm that, given an undirected graph G of m edges and an integer
k, computes a graph G′ and an integer k′ in O(k4m) time such that (1) the size of the graph
G′ is O(k2), (2) k′ ≤ k, and (3) G has a feedback vertex set of size at most k if and only if
G′ has a feedback vertex set of size at most k′. This is the first linear-time polynomial-size
kernel for Feedback Vertex Set. The size of our kernel is 2k2 + k vertices and 4k2 edges,
which is smaller than the previous best of 4k2 vertices and 8k2 edges. Thus, we improve the size
and the running time simultaneously. We note that under the assumption of NP 6⊆ coNP/poly,
Feedback Vertex Set does not admit an O(k2−ε)-size kernel for any ε > 0.

Our kernel exploits k-submodular relaxation, which is a recently developed technique for
obtaining efficient FPT algorithms for various problems. The dual of k-submodular relaxation of
Feedback Vertex Set can be seen as a half-integral variant of A-path packing, and to obtain
the linear-time complexity, we give an efficient augmenting-path algorithm for this problem. We
believe that this combinatorial algorithm is of independent interest.

A solver based on the proposed method won first place in the 1st Parameterized Algorithms
and Computational Experiments (PACE) challenge.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases FPT Algorithms, Kernelization, Path Packing, Half-integrality

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.68

1 Introduction

In the theory of parameterized complexity, we introduce parameters to problems and analyze
the complexity with respect to both the input length n = |x| and the parameter value k.
If an algorithm runs in f(k)nO(1) time for any input of length n and a parameter k, it is
called a fixed-parameter tractable (FPT) algorithm. If the nO(1) factor is linear, it is called a
linear-time FPT. The typical goal of parameterized algorithms is to develop FPT algorithms
with a small f(k) (e.g., ck for a small constant c) and a small nO(1) (e.g., linear in n).
Although there are many algorithms that have been developed with smaller f(k) or nO(1),
achieving the smallest f(k) and nO(1) simultaneously is a difficult task, and the smallest f(k)
factors and the smallest nO(1) factors are often achieved by different algorithms. Moreover,
when trying to improve the f(k) factor, the nO(1) factor is often ignored by using the O∗
notation, which hides factors polynomial in n, and when trying to improve the nO(1) factor,
the f(k) factor is often ignored by assuming k is a constant.

For example, in recent papers, Iwata, Oka, and Yoshida [18], and Ramanujan and
Saurabh [27] have independently obtained O(4km)-time algorithms for Almost 2-SAT,

∗ A full version of the paper is available at https://arxiv.org/abs/1608.01463.
† Supported by JSPS KAKENHI Grant Number JP17K12643.

EA
T

C
S

© Yoichi Iwata;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 68; pp. 68:1–68:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.68
https://arxiv.org/abs/1608.01463
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

68:2 Linear-Time Kernelization for Feedback Vertex Set

which is a parameterized version of Max 2-SAT where a parameter is the number of
unsatisfied clauses; on the other hand, when allowing the nO(1) factor to be super-linear,
there exists an O∗(2.32k)-time algorithm [23]. These two algorithms are not comparable: the
former runs faster when the input is large but the latter runs faster when the parameter is
large. Typically, only algorithms with the smallest f(k) factor or the smallest nO(1) factor
have been studied. However, if there were three algorithms running in time O(8kn), O(4kn2),
and O(2kn3), all of them are incomparable: the first is fastest when 4k < n, the second is
fastest when 2k < n < 4k, and the third is fastest when n < 2k. Do we need to develop
algorithms with the smallest possible f(k) factor for each nd? We observe that kernelization,
which is another basic research object of the parameterized complexity, is useful for avoiding
this incomparability.

A kernelization algorithm (or kernel) for a parameterized problem is an algorithm that,
given an instance (x, k) in time polynomial in n = |x| and k, returns an equivalent instance
(x′, k′) of the same problem such that k′ ≤ k and |x′| ≤ g(k) for some function g. When
the nO(1) factor in the running time is linear in n (i.e., kO(1)n), it is called a linear-time
kernel. If there is a kernel (and the problem is decidable), by solving the reduced instance
exhaustively, we can obtain an FPT algorithm. Actually, the converse is also true; if there
exists an f(k)nO(1)-time FPT algorithm, there also exists a kernel of size f(k). On the
other hand, the existence of a polynomial-size (i.e., |x′| ≤ kO(1)) kernel is non-trivial and,
actually, there are known to exist FPT problems which (unconditionally) do not have any
sub-exponential-size kernels [4]. As in the case of FPT algorithms, the typical goal is to
develop kernelization algorithms with a small size g(k) (e.g., linear in k) and a fast running
time (e.g., linear in n).

Compared with linear-time FPT algorithms, the number of studies for linear-time
polynomial-size kernels is small. Examples include d-Hitting Set [29], Dominating Set on
planar graphs [30, 16], n−k Clique Covering [9], and Max Cut Above Edwards-Erdős
Bound [14]. One of the major reasons is that when assuming the parameter k is a constant,
which is often done when studying linear-time FPT algorithms, kernels become uninteresting
because we cannot distinguish between f(k) and kO(1). Nevertheless, improving the nO(1)

factor in the running time of kernels is very important because such kernels can be used as
preprocessing for FPT algorithms. Let us assume that we have a kO(1)nd-time polynomial-
size kernel and an f(k)nO(1)-time FPT algorithm. Then, by applying the FPT algorithm
against the instance reduced by the kernelization, we obtain a kO(1)(f(k) + nd)-time FPT
algorithm. Thus, the nO(1) factor of any FPT algorithm can be replaced by nd. Therefore, if
we have a linear-time polynomial-size kernel, we obtain a linear-time FPT algorithm that
simultaneously achieves the smallest possible f(k) factor (ignoring factors polynomial in k).
This also implies that after obtaining a linear-time polynomial-size kernel, we can safely
ignore the nO(1) factor and focus on improving the f(k) factor only. Moreover, it can also be
combined with another kernel of smaller size. Let us assume that we have a kO(1)nd-time
polynomial-size kernel and a g(k)-size kernel. Then, by applying the second kernel against
the instance reduced by the first kernelization, we obtain a kO(1)nd-time g(k)-size kernel.
Therefore, in contrast to the case of FPT algorithms, we can always achieve the smallest size
and the fastest running time simultaneously.

In this paper, we give a linear-time quadratic-size kernel for Feedback Vertex Set.
This is the first linear-time polynomial-size kernel for this problem. Feedback Vertex Set
is a problem to decide whether a given undirected graph has a vertex set of size at most a
given parameter k whose removal makes the graph a forest. Feedback Vertex Set is one
of the most comprehensively studied problems in the field of parameterized complexity and

Y. Iwata 68:3

many different FPT algorithms and kernels have been developed. Moreover, the problem
was chosen as a target problem of the 1st Parameterized Algorithms and Computational
Experiments (PACE) challenge1. Actually, this research is strongly motivated by the PACE
challenge. The proposed methods are easy to implement, and a solver2 based on the proposed
methods won first place in the challenge.

The first FPT algorithm for Feedback Vertex Set was given by Downey and Fel-
lows [13]. This algorithm and subsequent improved algorithms [21, 26] use the strategy to
branch on short cycles and the f(k) factor of the running time is not a single exponential in k.
The first single-exponential FPT algorithms were obtained independently by Dehne et al. [11]
and Guo et al. [15], and several improved algorithms have been obtained [8, 7, 22]. The
current smallest f(k) factor for deterministic algorithms is 3.62k given by Kociumaka and
Pilipczuk [22]. These single-exponential FPT algorithms use the iterative compression
technique. For a graph with n vertices and m edges3, a naive implementation of iterative
compression requires n iterations and each iteration takes f(k)Ω(m) time. Therefore, the
total running time is f(k)Ω(nm). For the case of Feedback Vertex Set, by combining
it with 2-approximation algorithms [1, 3], we can solve the problem using only a single
iteration; however, this increases the running time for one iteration to f(2k)Ω(m). Thus, for
obtaining a linear-time FPT algorithm, the f(k) factor needs to grow from 3.62k to 3.622k.
When allowing randomness, a simple O(4kkm)-time FPT algorithm using random sampling
of edges was given by Becker et al. [2]. The current smallest f(k) factor for randomized
FPT algorithms is 3k given by Cygan et al. [10]. This algorithm uses dynamic programming
on tree-decompositions and takes 3kkO(1)n2 time after obtaining a tree-decomposition of
width at most k. As discussed above, by using our linear-time polynomial-size kernel, we
can obtain a kO(1)(3.62k +m)-time deterministic FPT algorithm and a kO(1)(3k +m)-time
randomized FPT algorithm.

The first polynomial-size kernel was given by Burrage et al. [6]. The size of this kernel
is O(k11), which was improved to O(k3) by Bodlaender and Van Dijk [5], and to O(k2) by
Thomassé [28]. Finally, Dell and Van Melkebeek [12] showed that there are no kernels of size
O(k2−ε) for any constant ε > 0 unless NP ⊆ coNP/poly. The size of the current smallest
kernel by Thomassé is 4k2 vertices and 8k2 edges. Although the precise running time of each
of these kernels was not analyzed, we can easily check that all of them take at least kO(1)nm

time. As discussed above, if there is a linear-time polynomial-size kernel, by combining it
with the smallest kernel, we can achieve the linear running time and the smallest kernel
size simultaneously. However, our linear-time quadratic-size kernel does not rely on such a
combination.

Before providing a description of our kernel, we first give a brief description of a key idea
behind the existing kernels. All the existing kernels for Feedback Vertex Set exploit
s-flowers. A set of simple cycles is called an s-flower if each cycle contains the vertex s and
no two cycles share any vertex other than s. If the degree of s is large and the graph is
well-connected, there exists a large s-flower. Because the size of an s-flower (i.e., the number
of cycles) gives a lower bound of the size of the minimum feedback vertex set that does not
contain s, if it is larger than the parameter k, we can remove s and decrement k. Otherwise,
the degree of s is small, or the graph is not well-connected. In the former case, we know that
the graph is small, and in the latter case, we can apply another reduction rule.

1 https://pacechallenge.wordpress.com/
2 https://github.com/wata-orz/fvs
3 If a graph has a feedback vertex set of size at most k, we have m = O(kn).

ICALP 2017

https://pacechallenge.wordpress.com/
https://github.com/wata-orz/fvs

68:4 Linear-Time Kernelization for Feedback Vertex Set

In our kernel, instead of s-flowers, we exploit k-submodular relaxation, which is a recently
developed technique for obtaining efficient FPT algorithms for various problems. The concept
of k-submodular relaxation was introduced by Iwata, Wahlström, and Yoshida [19]. The
k-submodular relaxation is a technique to obtain half-integral and persistent relaxations and
many existing half-integral LP relaxations (e.g., the LP relaxation of Vertex Cover [24])
can be re-derived by this technique. If a problem admits such a relaxation, the branch-and-
bound method gives an FPT algorithm. By applying k-submodular relaxation, they obtained
an O∗(4k)-time FPT algorithm for Feedback Vertex Set. A detailed description of the
k-submodular for Feedback Vertex Set is given in Section 2. By exploiting k-submodular
relaxation, we obtain a very simple kernel for Feedback Vertex Set, which is described
in Section 3. The size of our kernel is 2k2 + k vertices and 4k2 edges, which is smaller than
the previous best of 4k2 vertices and 8k2 edges [28].

We observe that there is a strong relationship between the k-submodular relaxation of
Feedback Vertex Set and s-flowers; the problem of computing a maximum s-flower is the
integral dual of the k-submodular relaxation of Feedback Vertex Set. This resembles the
situation for Almost 2-SAT. For Almost 2-SAT, Raman et al. [25] obtained an O∗(9k)-
time FPT algorithm by a reduction to Vertex Cover above Maximum Matching, and
then both the f(k) factor [23] and nO(1) factor [18, 27] were improved by a reduction to
Vertex Cover above LP. Here, the maximum matching is the integral dual of the LP
relaxation of Vertex Cover. Because the fractional minimum of the primal LP is always
at least the integral maximum of the dual LP, by using the half-integral relaxation instead of
the integral dual, we can obtain a better lower bound. Moreover, by using the half-integral
relaxations, we can directly exploit the persistency of the relaxations.

For obtaining linear-time kernel, we give a max-flow-like augmenting-path algorithm for
solving the k-submodular relaxation of Feedback Vertex Set in Section 4. This is the
most technical part of the paper. Our algorithm can compute a minimum solution in O(km)
time. By combining this algorithm with the simple kernel, we give a linear-time kernel in
Section 5. Due to space limitations, some of the proofs are omitted. Lemmas with omitted
proofs are marked with (?) and these proofs can be found in the full version [17].

We note that this algorithm can be used not only for the linear-time kernel but also for
improving the nO(1) factor of the O∗(4k)-time FPT branch-and-bound algorithm for Feed-
back Vertex Set. By applying k-submodular relaxations, O∗(4k)-time FPT algorithms
for two general versions, Subset Feedback Vertex Set and Group Feedback Vertex
Set, have been obtained [19]. Following up our work, Iwata, Yamaguchi, and Yoshida [20]
obtained linear-time FPT algorithms for many problems including these general versions
of Feedback Vertex Set by developing efficient augmenting-path algorithm for solving
k-submodular relaxations in general.

2 Preliminaries

2.1 Definitions
A multiplicity function of a multiset S is denoted by 1S ; e.g., when S = {a, a, b}, 1S(a) = 2,
1S(b) = 1, and 1S(c) = 0. Let f : U → R be a function. For a multiset S, we write the sum
of f(a) over a ∈ S as f(S) =

∑
a∈S f(a); e.g., when S = {a, a, b}, f(S) = 2f(a) + f(b). We

denote the preimage of i ∈ R under f by f−1(i) = {a ∈ U | f(a) = i}.
Let G = (V,E) be an undirected graph. We assume that G may contain a self-loop and

multiple edges. We will often denote the number of vertices by n and the number of edges
by m. We denote the set of edges incident to a vertex v by δG(v) and define the degree

Y. Iwata 68:5

of v as dG(v) = |δG(v)|. Here, we note that multiple edges contribute to the degree by its
multiplicity, and we never refer to the degree of a vertex having a self-loop. We omit the
subscript G if it is clear from the context. An edge e ∈ E is called a bridge if its removal
increases the number of connected components.

For a vertex set S, we denote the graph obtained by removing S and their incident edges
by G− S. When S is a singleton {v}, we simply write G− v. A vertex set S ⊆ V is called a
feedback vertex set if G− S is a forest. We denote the size of the minimum feedback vertex
set of G by fvs(G).

A walk is an ordered list (v0, e1, v1, e2, . . . , v`−1, e`, v`) such that ` ≥ 1 and each edge
ei connects vertices vi−1 and vi. Note that it may contain a vertex or an edge multiple
times. For a walk W = (v0, e1, . . . , v`), we denote the multiset of vertices appearing on W
by V (W) = {v0, . . . , v`} and the multiset of edges appearing on W by E(W) = {e1, . . . , e`}.

2.2 Basic Reductions
We introduce basic reductions that have been commonly used in kernelization algorithms for
Feedback Vertex Set [6, 5, 28]. The correctness of these reductions is almost trivial.

1. If there is a vertex v containing a self-loop, remove v and decrease k by one.
2. If there is a vertex of degree at most one, remove it.
3. If there is a vertex of degree two, remove it and connect its two neighbors by an edge.
4. If two vertices are connected by more than two edges, replace these edges with a double

edge.

Note that rule 3 can remove a vertex that is only incident to a double edge; in this case,
it creates a self-loop on its neighbor. These basic reductions never increase the degree of any
vertex and can be fully applied in O(m) time. After the reduction, the obtained graph has
no self-loops and has minimum degree at least three.

We will use the following lemma to bound the size of the kernel. This is a general version
of the lemma in [28], and a modified proof can be found in the full version [17].

I Lemma 1 (Thomassé [28]). If a graph without self-loops satisfies both of the following for
an integer d, the size of the minimum feedback vertex set is larger than k:

At least one of n > dk + k or m > 2dk holds; and
for any v ∈ V , it holds that 3 ≤ d(v) ≤ d.

In [28], a kernel of 4k2 vertices and 8k2 edges is obtained by applying the lemma against
d = 4k − 1. In the next section, we obtain a kernel of 2k2 + k vertices and 4k2 edges by
applying the lemma against d = 2k.

2.3 k-submodular Relaxation of Feedback Vertex Set
A walk W = (v0, e1, . . . , v`) is called an s-cycle if v0 = v` = s, vi 6= s for all i ∈
{1, . . . , ` − 1}, ei 6= ei+1 for any i ∈ {1, . . . , ` − 1} (i.e., there are no U-turns), and each
edge is contained in the walk at most twice. For example, walks (s, e1, u, e2, v, e3, s) and
(s, e1, u, e2, v, e3, w, e4, u, e1, s) are s-cycles but a walk (s, e1, u, e2, v, e2, u, e1, s) is not. Note
that in this definition, we distinguish each of multiple edges; e.g., if there is only a single
edge e between s and v, a walk (s, e, v, e, s) is not an s-cycle; however, if there is a double
edge {e1, e2} between s and v, a walk (s, e1, v, e2, s) is an s-cycle.

For a graph G = (V,E) without self-loops and a vertex s ∈ V , a function x : V → R≥0 is
called an s-cycle cover if it satisfies that (1) x(s) = 0 and (2) for any s-cycle C, x(V (C)) ≥ 1.

ICALP 2017

68:6 Linear-Time Kernelization for Feedback Vertex Set

Note that V (C) is the multiset of vertices on C, and therefore if x(v) = 1
2 holds for a vertex

v contained twice in C, we have x(V (C)) ≥ 1. The size of an s-cycle cover x is defined as
x(V), and when the size x(V) is minimum among all the possible s-cycle covers, it is called
a minimum s-cycle cover.

By introducing the idea of k-submodular relaxation, Iwata, Wahlström, and Yoshida [19]
obtained the following lemma.

I Lemma 2 (Iwata, Wahlström, and Yoshida [19]). For any graph G = (V,E) without self-loops
and s ∈ V , the following holds:

The size of any feedback vertex set of G that does not contain s is at least the size of the
minimum s-cycle cover.
There exists a minimum s-cycle cover that takes values {0, 1

2 , 1} (half-integrality).
If there exists a minimum feedback vertex set that does not contain s, then for any
half-integral minimum s-cycle cover x, there also exists a minimum feedback vertex set S
such that x−1(1) ⊆ S and s 6∈ S (persistency).

3 Simple Quadratic-size Kernel

In this section, we give a simple polynomial-time quadratic-size kernel for Feedback Vertex
Set. By exploiting the persistency of the k-submodular relaxation, we give the following
reduction rule called s-cycle cover reduction.

For a graph G = (V,E), a vertex s ∈ V , and a half-integral minimum s-cycle cover x,
create a graph G′ = (V,E′) as follows. Let X = x−1(1) and let B ⊆ δ(s) be the set of bridges
of G−X connecting s and tree components of G−X − s. Then, G′ is obtained from G by
inserting a double edge between s and each of v ∈ X and removing the edges B.

I Lemma 3. For a graph G = (V,E), a vertex s ∈ V , and a half-integral minimum s-cycle
cover x, let G′ = (V,E′) be a graph obtained by applying the s-cycle cover reduction. Then,
fvs(G) = fvs(G′) holds.

Proof. (≥) Let S be a minimum feedback vertex set of G. Observe that all the inserted edges
are between s and X = x−1(1). If s ∈ S, S is also a feedback vertex set of G′. Otherwise,
from the persistency, we can assume that S contains all the vertices of X. Thus, S is also a
feedback vertex set of G′.

(≤) Let S be a minimum feedback vertex set of G′. If s ∈ S, S is also a feedback vertex
set of G. Otherwise, because all the vertices of X are connected to s by double edges in G′,
S must contain all of X. Because all the deleted edges are bridges in G −X, S is also a
feedback vertex set of G. J

After applying this reduction, the degree of s can be bounded as the following shows.

I Lemma 4. For a graph G = (V,E), a vertex s ∈ V , and a half-integral minimum s-cycle
cover x, let G′ = (V,E′) be a graph obtained by applying the s-cycle cover reduction. Then,
dG′(s) ≤ 2x(V) holds.

Proof. First, we show that x is also an s-cycle cover of G′. Let us assume that there is an
s-cycle C of G′ such that x(C) < 1. Because x(v) = 1 for v ∈ X = x−1(1), C contains none
of X. Because all the inserted edges are incident to X, C is also an s-cycle of G, which is a
contradiction.

For i ∈ {1, 2}, let Ni denote the set of vertices that are connected to s by edges of
multiplicity i in G′. For each vi ∈ N1, we define a vertex wi as follows.

Y. Iwata 68:7

Algorithm 1 Simple quadratic-size kernelization for Feedback Vertex Set.
1: procedure Kernelize(G, k)
2: while true do
3: Apply the basic reductions
4: if k < 0 then return NO
5: if n ≤ 2k2 + k and m ≤ 4k2 then return (G, k)
6: if ∀v ∈ V, d(v) ≤ 2k then return NO
7: Pick a vertex s of degree larger than 2k
8: Compute a half-integral minimum s-cycle cover x
9: if x(V) > k then G← G− s; k ← k − 1

10: else apply the s-cycle cover reduction

If the edge svi is a bridge in G′ −X, let Ci be the connected component of G′ −X − s
containing vi. Because the reduction removes all the bridges between s and tree components,
Ci is not a tree. Thus, there exists an s-cycle contained in Ci ∪ {s} and, therefore, there
must exist a vertex wi ∈ Ci with x(wi) = 1

2 .
If svi is not a bridge in G′ −X, there exists a path Pi from vi to N1 \ {vi} in G′ −X − s.

Fix an arbitrary path Pi and let wi be the first vertex on the path such that x(wi) = 1
2 .

Because x is an s-cycle cover, there always exists such a vertex.
If wi = wj holds for some i 6= j, there exists an s-cycle C such that x(C) = 1

2 , which
is a contradiction. Therefore, all wi are distinct. Thus, we have dG′(s) = |N1| + 2|N2| ≤
|x−1(1

2)|+ 2|x−1(1)| = 2x(V). J

Now, we describe our simple quadratic-size kernelization algorithm (see Algorithm 1).
First, we apply the basic reductions. If k becomes negative, we return a NO instance. If the
graph becomes small enough, we return it. If all the vertices have degree at most 2k, we
return a NO instance. Otherwise, pick an arbitrary vertex s of degree larger than 2k, and
compute a half-integral minimum s-cycle cover x. If the size of the s-cycle cover is larger
than k, we remove s and decrement k. Otherwise, we apply the s-cycle cover reduction.

I Lemma 5. Algorithm 1 runs in (k+m)O(1) time and correctly computes (G′, k′) satisfying
k′ ≤ k and fvs(G) ≤ k ⇔ fvs(G′) ≤ k′. The size of G′ is at most 2k2 + k vertices and 4k2

edges.

Proof. It obviously holds that k′ ≤ k and the size of G′ is at most 2k2 + k vertices and 4k2

edges. From Lemma 4, after applying the s-cycle cover reduction, the degree of s changes
from more than 2k to at most 2k. Therefore, the number of edges strictly decreases for each
iteration. Thus, it stops in at most m iterations. Because each iteration can be done in time
polynomial in k and m, the total running time is also polynomial in k and m.

Next, we show the correctness. By applying Lemma 1 against d = 2k, when the maximum
degree is at most 2k and at least one of n > 2k2 + k and m > 4k2 holds, fvs(G) > k holds.
Thus, we can safely return a NO instance (line 6). From Lemma 2, if x(V) > k, there is no
feedback vertex set of size at most k that does not contain s. Thus, we can safely remove s
(line 9). The correctness of the s-cycle cover reduction follows from Lemma 3. J

ICALP 2017

68:8 Linear-Time Kernelization for Feedback Vertex Set

type-O type-I type-H type-T

Figure 1 Four types of vertices.

s T

T

T
T

H H

I

I

I

I

I

H

I

Figure 2 Example of the basic s-cycle packing.

4 Efficient Computation of a Half-integral Minimum s-cycle Cover

In this section, we prove the following theorem.

I Theorem 6. Given a graph G = (V,E) without self-loops, a vertex s ∈ V , and an integer
k, in O(km) time, we can compute a half-integral minimum s-cycle cover or conclude that
there are no s-cycle covers of size at most k

2 .

First, we give several definitions. Let Cs denote the set of all s-cycles. A function
y : Cs → R is called an s-cycle packing if for any vertex v ∈ V \ {s}, it holds that∑
C∈Cs

1V (C)(v)y(C) ≤ 1. The size of an s-cycle packing y is defined as y(Cs), and when the
size y(Cs) is the maximum among all the possible s-cycle packings, it is called a maximum
s-cycle packing. Because the problem of finding a maximum s-cycle packing is the LP dual
of the problem of finding a minimum s-cycle cover, the size of the minimum s-cycle cover is
equal to the size of the maximum s-cycle packing. Thus, if we can find a pair of an s-cycle
cover x and an s-cycle packing y of the same size, we can confirm that x is a minimum
s-cycle cover and y is a maximum s-cycle packing.

I Definition 7. A function f : E → {0, 1
2 , 1} is called a basic s-cycle packing if it satisfies

the following three conditions.
1. For any e ∈ δ(s), f(e) ∈ {0, 1}.
2. Each vertex v ∈ V \{s} satisfies exactly one of the following four conditions (see Figure 1):

a. f(e) = 0 for all edges e ∈ δ(v) (called type-O);
b. f(e) = 1 for exactly two edges e ∈ δ(v) and f(e) = 1

2 for none of e ∈ δ(v) (called
type-I);

c. f(e) = 1 for none of e ∈ δ(v) and f(e) = 1
2 for exactly two edges e ∈ δ(v) (called

type-H);
d. f(e) = 1 for exactly one edge e ∈ δ(v) and f(e) = 1

2 for exactly two edges e ∈ δ(v)
(called type-T).

3. For each vertex v ∈ V \ {s} of type-H or type-T, the cycle obtained by following edges of
value 1

2 from v contains an odd number of type-T vertices.

We call the cycle in the third condition the half-integral cycle of v. The size of a basic
s-cycle packing f is defined as 1

2f(δ(s)). Figure 2 illustrates an example of the basic s-cycle
packing, where solid lines denote edges of value 1, and dotted lines denote edges of value 1

2 .

I Lemma 8 (?). If there exists a basic s-cycle packing of size k, there also exists an s-cycle
packing of size k.

Note that this lemma only says that the size of the maximum basic s-cycle packing is
always at most the size of the maximum s-cycle packing and does not imply these two are
equal. The equality is shown at the end of this section.

Y. Iwata 68:9

sO

I

I

I
O

sI

I

O

I
I

s

I IO

O

II

s

T TT

H

TT

s

T H

T

T H

I

s

I I

I

I O

I

s

T H

T

T H

I

O

s

I I

I

O O

I

I

(a) (b) (c) (d)

Figure 3 Examples of augmenting walks.

I Definition 9. For a basic s-cycle packing f , a walk W = (v0, e1, . . . , v`) is called an
f -augmenting walk if it satisfies all the following conditions.
1. We have v0 = s.
2. We have f(e1) = 0.
3. All the edges {e1, . . . , e`} are distinct.
4. The vertices {v0, . . . , v`−1} are distinct (the last vertex v` can be identical to vi for some

i < `).
5. For each i ∈ {1, . . . , `− 1}, exactly one of the following holds:

a. vi is type-O;
b. vi is type-I and f(e) = 1 holds for at least one of e ∈ {ei, ei+1}.

6. If v` = vi for some i < `, exactly one of the following holds:
a. v` = s and f(e`) = 0;
b. v` is type-O;
c. v` is type-I and f(e) = 1 holds for at least one of e ∈ {ei, e`}.

7. If v` 6∈ {v0, . . . , v`−1}, v` is type-H or type-T.

For a basic s-cycle packing f and an f -augmenting walk W = (v0, e1, . . . , v`), let fW :
E → {0, 1

2 , 1} be a function defined as follows. First, set fW (e) = f(e) for all edges e ∈ E. If
v` 6= s and v` = vi holds for some i < `, let h = i; otherwise, let h = `. Then, for each edge
e ∈ {e1, . . . , eh}, set fW (e) = 1− f(e). If v` = s, we finish (see Figure 3-(a)). Otherwise, we
further modify fW depending on the type of v`.

(Case 1) If v` is type-O or type-I, for each edge e ∈ {eh+1, . . . , e`}, set fW (e) = 1
2 (see

Figure 3-(b)).
(Case 2) If v` is type-H, let C be the half-integral cycle of v` and let {t0 = v`, t1, . . . , tq−1}

be the vertex set consisting of the vertex v` and the type-T vertices on C ordered along C
(i.e., v` is located on the path from tq−1 to t1 along the cycle C). We use the notation tq = t0.
Let Pi be the path from ti to ti+1 along the cycle C. For each even i, set fW (e) = 0 for all
the edges on Pi, and for each odd i, set fW (e) = 1 for all the edges on Pi (see Figure 3-(c)).

(Case 3) If v` is type-T, let C be the half-integral cycle of v` and let {t0 = v`, t1, . . . , tq−1}
be the type-T vertices on C ordered along C. Then, we proceed in exactly the same way as
in case 2 (see Figure 3-(d)). We note that, in case 2, q is even; thus, v` is connected to tq−1
by edges of value one in fW . On the other hand, in case 3, q is odd; thus, v` is connected to
none of t1 and tq−1.

We call this operation that creates fW from f as augmenting f along W .

ICALP 2017

68:10 Linear-Time Kernelization for Feedback Vertex Set

Algorithm 2 Algorithm for computing an f -augmenting walk.
1: procedure FindAugmentingWalk(G, s, f)
2: S ← {s}
3: prev(v) = ε for all v ∈ V
4: while S 6= ∅ do
5: Pick a vertex u ∈ S and remove u from S

6: for e = uv ∈ δ(u) do
7: if e = prev(u) then continue
8: if e ∈ δ(s) and f(e) = 1 then continue
9: if u is type-I and f(prev(u)) = f(e) = 0 then continue

10: if v is type-H or type-T then
11: prev(v)← e

12: return the walk from s to v along the search tree
13: else if prev(v) = ε then
14: prev(v)← e; S ← S ∪ {v}
15: else if v is type-O or f(prev(v)) + f(e) ≥ 1 then
16: return the walk s→ u→ v → w along the search tree
17: return NO

I Lemma 10 (?). For a basic s-cycle packing f and an f -augmenting walkW = (v0, e1, . . . , v`),
let fW : E → {0, 1

2 , 1} be the function obtained by augmenting f along W . Then, fW is
a basic s-cycle packing. Moreover, if v` = s, the size of fW is the size of f plus one; and
otherwise, the size of fW is the size of f plus 1

2 .

Now, we give an algorithm to compute an f -augmenting walk (see Algorithm 2). First,
we initialize a set S and a table prev : V → E ∪ {ε}. The set S stores vertices we need to
process and is initialized to {s}. We ensure that only the vertex s and vertices of type-O or
type-I are stored in S. The table prev(v) represents an edge to the parent of v in the search
tree and initialized to the dummy edge ε, which indicates that the vertex is not visited (or
the vertex is the root s). Then, while S is not empty, pick up an arbitrary vertex u from S

and process each incident edge e = uv ∈ δ(u) as described below. If S becomes empty, the
algorithm returns NO.

First, we check whether the edge e = uv is valid by testing the following three conditions.
If e = prev(u), because we have already processed this edge, we skip it. If e is incident to
s and f(e) = 1, because such an edge cannot be used in an augmenting walk, we skip it.
Note that, when v = s, at least one of these two conditions are satisfied. Similarly, if u is
type-I and both of f(prev(u)) and f(e) are zero, because we cannot use both of prev(u) and
e simultaneously, we skip it.

If v is type-H, or type-T, we return the walk from s to v in the search tree by using the
table prev. If prev(v) = ε, we set prev(v) = e and insert it to S. If v is already visited and v
is type-O, let w be the lowest common ancestor of u and v in the search tree. Then, we return
the walk obtained by going down from s to u along the search tree, jumping from u to v by
the edge e, and then by going up from v to w along the search tree. If v is already visited
and v is type-I, we basically do the same; however, we need one additional constraint. If both
of f(prev(v)) and f(e) are zero, the walk created as above does not satisfy the condition 6(c)
of Definition 9; thus, we skip the edge without returning the walk.

From the construction of our algorithm, we obtain the following lemma.

Y. Iwata 68:11

I Lemma 11. A walk returned by Algorithm 2 is an f -augmenting walk.

Note that this lemma does not say that Algorithm 2 returns an f -augmenting walk
whenever there exists an f -augmenting walk; it only says that if the algorithm returns a
walk, it is an f -augmenting walk, and the algorithm might return NO even when there exists
an f -augmenting walk. We now show that, if the algorithm returns NO, we can construct
an s-cycle cover x whose size is equal to the size of f . From Lemma 8 and the LP duality
of s-cycle packings and s-cycle covers, the size of a basic s-cycle packing is always at most
the size of an s-cycle cover. Therefore, this equality implies that the current basic s-cycle
packing f is the maximum and the constructed s-cycle packing x is the minimum. This also
implies that when the algorithm returns NO, there are no f -augmenting walks.

To construct such an s-cycle cover x, we first prove a property of the table prev. We call
a vertex v ∈ V reachable if v = s or prev(v) 6= ε. For each edge e ∈ δ(s) with f(e) = 1, by
following edges of value 1 from e, we can obtain a simple cycle returning to s or a simple
path to a type-T vertex. We denote such a cycle or a path by We. Note that when We is a
cycle, We = We′ for another edge e′ ∈ δ(s).

I Lemma 12 (?). If Algorithm 2 returns NO, exactly one of the following holds for each
edge e ∈ δ(s) with f(e) = 1:
1. prev(v) = ε for any vertex v ∈ V (We);
2. We is a cycle, all the vertices on We are reachable, and exactly one vertex v ∈ V (We)\{s}

satisfies prev(v) 6∈ E(We).

When Algorithm 2 returns NO, by using the obtained table prev, we construct a function
x : V → {0, 1

2 , 1} as follows. For each edge e = su ∈ δ(s) with f(e) = 1, if We is a cycle
satisfying the second condition of Lemma 12, we set x(v) = 1 for the unique vertex v

satisfying prev(v) 6∈ E(We). Otherwise, we set x(u) = 1
2 . If x(u) is already set to 1

2 , e.g.,
We1 = We2 = (s, e1, u, e2, s) for a double edge {e1, e2}, we set x(u) = 1.

I Lemma 13 (?). If Algorithm 2 returns NO, the function x is a minimum s-cycle cover.

Proof of Theorem 6. Because each augmentation increases the size of f by at least 1
2 , after

k+1 steps, we can obtain a half-integral minimum s-cycle cover of size at most k2 , or conclude
that there are no s-cycle covers of size at most k

2 . Because Algorithm 2 runs in O(m) time,
the total running time is O(km). J

5 Linear-time Quadratic-size Kernel

In this section, we improve the running time of the quadratic-size kernel presented in Section 3
to O(k4m). By using the O(km)-time algorithm for computing the minimum s-cycle cover
presented in Section 4, each iteration can be done in O(km) time. However, because the
number of iterations is only bounded by O(m), the total running time becomes O(km2). We
show that, by a slight modification to Algorithm 1, the number of iteration can be bounded
by O(k3); thus, the total running time becomes O(k4m).

We add the following two rules just after line 6 of Algorithm 1. The safeness of these two
rules is almost trivial.

If there is a vertex v incident to more than k double edges, remove v, decrement k, and
continue the iteration.
If there are more than k2 double edges, return NO.

For bounding the number of iterations, we use the following lemma.

ICALP 2017

68:12 Linear-Time Kernelization for Feedback Vertex Set

I Lemma 14. For a graph G = (V,E) of minimum degree at least three, a vertex s ∈ V ,
and a half-integral minimum s-cycle cover x, if 2x(V) < dG(s) holds, then x−1(1) 6= ∅.

Proof. From Lemma 4, for a graph G′ obtained by applying the s-cycle cover reduction, it
holds that dG′(s) ≤ 2x(V). When x−1(1) = ∅, the reduction inserts no new edges and only
removes the bridges of G connecting s and tree components of G − s. Because the graph
G− s has minimum degree at least two, it has no tree components. Thus, we have G′ = G,
which is a contradiction. J

Now, we can prove the upper bound on the number of iterations.

I Lemma 15. The modified Algorithm 1 stops in O(k3) iterations.

Proof. Initially, all the double edges are blue, and after applying the s-cycle cover reduction,
we color all the double edges incident to s red (not only newly inserted double edges but
also blue colored edges are recolored to red). The other double edges, which are created by
the deletion of degree two vertices in the basic reductions, are colored blue. Let α denote
the number of red double edges and β denote the number of vertices of degree larger than
2k and incident to at least one red double edge. Let k0 be the initial value of k and φ be a
potential defined as φ = (2k2

0 + 4k0 + 3)k − 2α+ β. Observe that, because red double edges
are created only by the s-cycle cover reduction, each vertex can be incident to at most k0 + 1
red double edges, and that the number of red double edges is always at most k2

0 + k0 (at
most k2

0 edges before applying the s-cycle cover reduction and the reduction can create at
most k0 red double edges).

Initially, there are no red edges; thus, the initial potential is (2k2
0 + 4k0 + 3)k0 = O(k3

0).
If φ becomes negative, we have k < 0 or α > k2

0k ≥ k2. Thus, the algorithm returns NO.
When k is decremented, α can decrease by at most k0 + 1. Because there are at most

k2
0 + k0 red double edges, β can increase by at most 2k2

0 + 2k0. Thus, φ decreases by at least
(2k2

0 + 4k0 + 3)− 2(k0 + 1)− (2k2
0 + 2k0) ≥ 1.

When applying the s-cycle cover reduction, if the reduction creates c (≥ 1) new red
double edges, α increases by c and β can increase by at most c. Thus, φ decreases by at least
2c− c = c ≥ 1. After applying the s-cycle cover reduction, from Lemma 14, s is incident to
at least one double edge. Thus, if the reduction does not create any new red double edges, s
must be incident to at least one red double edge before the reduction. From 4, the degree of
s becomes at most 2k after the reduction. Therefore β decreases by at least one; thus, φ
decreases by at least one.

Now, we have shown that each iteration decreases the potential φ by at least one. Because
φ is initially O(k3) and is always non-negative, the number of iterations is O(k3). J

References
1 Vineet Bafna, Piotr Berman, and Toshihiro Fujito. A 2-approximation algorithm for the

undirected feedback vertex set problem. SIAM J. Discrete Math., 12(3):289–297, 1999.
2 Ann Becker, Reuven Bar-Yehuda, and Dan Geiger. Randomized algorithms for the loop

cutset problem. J. Artif. Intell. Res., 12:219–234, 2000.
3 Ann Becker and Dan Geiger. Optimization of Pearl’s method of conditioning and greedy-like

approximation algorithms for the vertex feedback set problem. Artif. Intell., 83(1):167–188,
1996.

4 Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin. On
problems without polynomial kernels. J. Comput. Syst. Sci., 75(8):423–434, 2009.

Y. Iwata 68:13

5 Hans L. Bodlaender and Thomas C. van Dijk. A cubic kernel for feedback vertex set and
loop cutset. Theory Comput. Syst., 46(3):566–597, 2010.

6 Kevin Burrage, Vladimir Estivill-Castro, Michael R. Fellows, Michael A. Langston, Shev
Mac, and Frances A. Rosamond. The undirected feedback vertex set problem has a poly(k)
kernel. In IWPEC 2006, pages 192–202, 2006.

7 Yixin Cao, Jianer Chen, and Yang Liu. On feedback vertex set: New measure and new
structures. Algorithmica, 73(1):63–86, 2015.

8 Jianer Chen, Fedor V. Fomin, Yang Liu, Songjian Lu, and Yngve Villanger. Improved
algorithms for feedback vertex set problems. J. Comput. Syst. Sci., 74(7):1188–1198, 2008.

9 Benny Chor, Mike Fellows, and David W. Juedes. Linear kernels in linear time, or how to
save k colors in O(n2) steps. In WG 2004, pages 257–269, 2004.

10 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van Rooij,
and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth
in single exponential time. In FOCS 2011, pages 150–159, 2011.

11 Frank K.H.A. Dehne, Michael R. Fellows, Michael A. Langston, Frances A. Rosamond,
and Kim Stevens. An O(2O(k)n3) FPT algorithm for the undirected feedback vertex set
problem. Theory Comput. Syst., 41(3):479–492, 2007.

12 Holger Dell and Dieter van Melkebeek. Satisfiability allows no nontrivial sparsification
unless the polynomial-time hierarchy collapses. J. ACM, 61(4):23:1–23:27, 2014.

13 Rodney G. Downey and Michael R. Fellows. Fixed parameter tractability and completeness.
In Complexity Theory: Current Research, pages 191–225, 1992.

14 Michael Etscheid and Matthias Mnich. Linear kernels and linear-time algorithms for finding
large cuts. In ISAAC 2016, pages 31:1–31:13, 2016.

15 Jiong Guo, Jens Gramm, Falk Hüffner, Rolf Niedermeier, and Sebastian Wernicke.
Compression-based fixed-parameter algorithms for feedback vertex set and edge bipartiza-
tion. J. Comput. Syst. Sci., 72(8):1386–1396, 2006.

16 Torben Hagerup. Simpler linear-time kernelization for planar dominating set. In IPEC
2011, pages 181–193, 2011.

17 Yoichi Iwata. Linear-time kernelization for feedback vertex set. CoRR, abs/1608.01463,
2016. Full version of this paper. URL: https://arxiv.org/abs/1608.01463.

18 Yoichi Iwata, Keigo Oka, and Yuichi Yoshida. Linear-time FPT algorithms via network
flow. In SODA 2014, pages 1749–1761, 2014.

19 Yoichi Iwata, Magnus Wahlström, and Yuichi Yoshida. Half-integrality, LP-branching and
FPT algorithms. SIAM J. Comput., 45(4):1377–1411, 2016.

20 Yoichi Iwata, Yutaro Yamaguchi, and Yuichi Yoshida. Linear-time FPT algorithms via
half-integral non-returning A-path packing. CoRR, abs/1704.02700, 2017.

21 Iyad A. Kanj, Michael J. Pelsmajer, and Marcus Schaefer. Parameterized algorithms for
feedback vertex set. In IWPEC 2004, pages 235–247, 2004.

22 Tomasz Kociumaka and Marcin Pilipczuk. Faster deterministic feedback vertex set. Inf.
Process. Lett., 114(10):556–560, 2014.

23 Daniel Lokshtanov, N. S. Narayanaswamy, Venkatesh Raman, M. S. Ramanujan, and Saket
Saurabh. Faster parameterized algorithms using linear programming. ACM Trans. Al-
gorithms, 11(2):15:1–15:31, 2014.

24 G. Nemhauser and L. Trotter. Vertex Packing: Structural Properties and Algorithms.
Math. Program., 8:232–248, 1975.

25 Venkatesh Raman, M. S. Ramanujan, and Saket Saurabh. Paths, flowers and vertex cover.
In ESA 2011, pages 382–393, 2011.

26 Venkatesh Raman, Saket Saurabh, and C.R. Subramanian. Faster fixed parameter tract-
able algorithms for finding feedback vertex sets. ACM Trans. Algorithms, 2(3):403–415,
2006.

ICALP 2017

https://arxiv.org/abs/1608.01463

68:14 Linear-Time Kernelization for Feedback Vertex Set

27 M.S. Ramanujan and Saket Saurabh. Linear time parameterized algorithms via skew-
symmetric multicuts. In SODA 2014, pages 1739–1748, 2014.

28 Stéphan Thomassé. A 4k2 kernel for feedback vertex set. ACM Trans. Algorithms, 6(2),
2010.

29 René van Bevern. Towards optimal and expressive kernelization for d-hitting set. Algorith-
mica, 70(1):129–147, 2014.

30 René van Bevern, Sepp Hartung, Frank Kammer, Rolf Niedermeier, and Mathias Weller.
Linear-time computation of a linear problem kernel for dominating set on planar graphs.
In IPEC 2011, pages 194–206, 2011.

	Introduction
	Preliminaries
	Definitions
	Basic Reductions
	k-submodular Relaxation of Feedback Vertex Set

	Simple Quadratic-size Kernel
	Efficient Computation of a Half-integral Minimum s-cycle Cover
	Linear-time Quadratic-size Kernel

