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Abstract
In the 2-reachability problem we are given a directed graph G and we wish to determine if
there are two (edge or vertex) disjoint paths from u to v, for given pair of vertices u and v.
In this paper, we present an algorithm that computes 2-reachability information for all pairs of
vertices in O(nω logn) time, where n is the number of vertices and ω is the matrix multiplication
exponent. Hence, we show that the running time of all-pairs 2-reachability is only within a log
factor of transitive closure. Moreover, our algorithm produces a witness (i.e., a separating edge
or a separating vertex) for all pair of vertices where 2-reachability does not hold. By processing
these witnesses, we can compute all the edge- and vertex-dominator trees of G in O(n2) additional
time, which in turn enables us to answer various connectivity queries in O(1) time. For instance,
we can test in constant time if there is a path from u to v avoiding an edge e, for any pair of
query vertices u and v, and any query edge e, or if there is a path from u to v avoiding a vertex
w, for any query vertices u, v, and w.
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1 Introduction

The all-pairs reachability problem consists of preprocessing a directed graph (digraph)
G = (V,E) so that we can answer queries that ask if a vertex y is reachable from a vertex x.
This problem has many applications, including databases, geographical information systems,
social networks, and bioinformatics [11]. A classic solution to this problem is to compute
the transitive closure matrix of G, either by performing a graph traversal (e.g., depth-first
or breadth-first search) once per each vertex as source, or via matrix multiplication. For a
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digraph with n vertices and m edges, the former solution runs in O(mn) time, while the
latter in O(nω), where ω is the matrix multiplication exponent [4, 13, 17]. Here we study
a natural generalization of the all-pairs reachability problem, that we refer to as all-pairs
2-reachability, where we wish to preprocess G so that we can answer fast the following type
of queries: For a given vertex pair x, y ∈ V , are there two edge-disjoint (resp., internally
vertex-disjoint) paths from x to y? Equivalently, by Menger’s theorem [15], we ask if there is
an edge e ∈ E (resp., a vertex z ∈ V ) such that there is no path from x to y in G \ e (resp.,
G \ z). We call such an edge (resp., vertex) separating for the pair x, y.

One solution to the all-pairs 2-reachability problem is to compute all the dominator trees
of G, with each vertex as source. The dominator tree of G with start vertex s is a tree rooted
at s, such that a vertex v is an ancestor of a vertex w if and only if all paths from s to w
include v [14]. All the separating edges and vertices for a pair s, v, appear on the path from
s to v in the dominator tree rooted at s, in the same order as they appear in any path from s

to v in G. Given all the dominator trees, we can process them to compute the 2-reachability
information for all pairs of vertices (see Section 6). Since a dominator tree can be computed
in O(m) time [2, 3], the overall running time of this algorithm is O(mn).

Our Results. In this paper, we show how to beat the O(nm) bound for dense graphs.
Specifically, we present an algorithm that computes 2-reachability information for all pairs of
vertices in O(nω) time in a strongly connected digraph, and in O(nω logn) time in a general
digraph. Hence, we show that the running time of all-pairs 2-reachability is only within a
log factor of transitive closure. This result is tight up to a log factor, since it can be shown
that all-pairs 2-reachability is at least as hard as computing the transitive closure, which
is asymptotically equivalent to Boolean matrix multiplication [6]. Moreover, our algorithm
produces a witness (separating edge or vertex) whenever 2-reachability does not hold. By
processing these witnesses, we can find all the dominator trees of G in O(n2) additional time.
Thus, we also show how to compute all the dominator trees of a digraph in O(nω logn) time
(in O(nω) time if the graph is strongly connected), which improves the previously known
O(mn) bound for dense graphs. This in turn enables us to answer various connectivity
queries in O(1) time. E.g., we can test in O(1) time if there is a path from u to v avoiding
an edge e, for any pair of query vertices u and v, and any query edge e, or if there is a path
from u to v avoiding a vertex w, for any query vertices u, v, and w. We can also report all
the edges or vertices that appear in all paths from u to v, for any query vertices u and v.

Related Work. To the best of our knowledge, ours is the first work that considers the
all-pairs 2-reachability problem and gives a fast algorithm for it. In recent work Georgiadis
et al. [9] investigate the effect of an edge or a vertex failure in a digraph G with respect to
strong connectivity. Specifically, they show how to preprocess G in O(m+ n) time in order
to answer various sensitivity queries regarding strong connectivity in G under an arbitrary
edge or vertex failure. For instance, they can compute in O(n) time the strongly connected
components (SCCs) that remain in G after the deletion of an edge or a vertex, or report
various statistics such as the number of SCCs in constant time per query (failed) edge or
vertex. This result, however, cannot be applied for the solution of the 2-reachability problem.
The reason is that if the deletion of an edge e leaves two vertices u and v in different SCCs
in G \ e, the algorithm of [9] is not able to distinguish if there is still a path or no path from
u to v in G \ e. Previously, King and Sagert [12] gave an algorithm that can quickly answer
sensitivity queries for reachability in a directed acyclic graph (DAG) [12]. Specifically, they
show how to process a DAG G so that, for any pair of query vertices x and y, and a query
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edge e, one can test in constant time if there is a path from x to y in G \ e. Note that the
result of King and Sagert does not yield an efficient solution to the all-pairs 2-reachability
problem, since we need O(m) queries just to find if there is a separating edge for a single pair
of vertices. Moreover, their preprocessing time is O(n3). Another interesting fact that arises
from our work is that, somewhat surprisingly, computing all dominator trees in dense graphs
is currently faster than computing a spanning arborescence from each vertex. The best
algorithm for this problem is given by Alon et al. [1], who studied the problem of constructing
a BFS tree from every vertex, and gave an algorithm that runs in O(n(3+ω)/2) time.

Our Techniques. Our result is based on two novel approaches, one for DAGs and one for
strongly connected digraphs. For DAGs we develop an algebra that operates on paths. We
then use some version of 1-superimposed coding to apply our path algebra in a divide and
conquer approach. This allows us to use Boolean matrix multiplication, in a similar vein
to the computation of transitive closure. Unfortunately, our algebraic approach does not
work for strongly connected digraphs. In this case, we exploit dominator trees in order
to transform a strongly connected digraph G into two auxiliary graphs, so as to reduce
2-reachability queries in G to 1-reachability queries in those auxiliary graphs. This reduction
works only for strongly connected digraphs and does not carry over to general digraphs. Our
algorithm for general digraphs is obtained via a careful combination of those two approaches.

2 Preliminaries

We assume that the reader is familiar with standard graph terminology, as contained for
instance in [5]. Let G = (V,E) be a directed graph (digraph). Given an edge e = (x, y) in E,
we denote x (resp., y) as the tail (resp., head) of e. A directed path in G is a sequence of
vertices v1, v2, . . ., vk, such that edge (vi, vi+1) ∈ E for i = 1, 2, . . . , k − 1. The path is said
to contain vertex vi, for i = 1, 2, . . . , k, and edge (vi, vi+1), for i = 1, 2, . . . , k− 1. The length
of a directed path is given by its number of edges. As a special case, there is a path of length
0 from each vertex to itself. We write u v to denote that there is a path from u to v, and
u6 v if there is no path from u to v. A directed cycle is a directed path, with length greater
than 0, starting and ending at the same vertex. A directed acyclic graph (in short DAG)
is a digraph with no cycles. A DAG has a topological ordering, i.e., a linear ordering of its
vertices such that for every edge (u, v), u comes before v in the ordering (denoted by u < v).
A digraph G is strongly connected if there is a directed path from each vertex to every other
vertex. The strongly connected components of a digraph are its maximal strongly connected
subgraphs. Given a subset of vertices V ′ ⊂ V , we denote by G \ V ′ the digraph obtained
after deleting all the vertices in V ′, together with their incident edges. Given a subset of
edges E′ ⊂ E, we denote by G \ E′ the digraph obtained after deleting all the edges in E’.

2-Reachability and 2-Reachability closure. We write u 2ev (resp., u 2vv) to denote that
there are two edge-disjoint (resp., internally vertex-disjoint) paths from u to v, and u6 2ev

(resp., u6 2vv) otherwise. As a special case, we assume that v 2ev (resp., v 2vv) for each
vertex v in G. We define an abstract set E+ = E ∪ {>,⊥}. The semantic of this set is as
follows: e ∈ E corresponds to an edge e separating two vertices, > corresponds to  2e (there
is no single separating edge) and ⊥ corresponds to 6 (there is no path). Given a digraph G,
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Figure 1 A graph and its (not unique) 2-reachability closure matrix.

we define a 2-reachability closure of G, denoted by G 2e , to be a matrix such that:

G 2e [u, v] def=


> if u 2ev

⊥ if u6 v
e where e is any separating edge for u and v.

Since v 2ev for each v ∈ V , G 2e [v, v] = >. An example of a graph with a 2-reachability
closure matrix is given in Figure 1. Note that a 2-reachability closure matrix is not necessarily
unique, as there might be multiple separating edges for a given vertex pair. We define the
2-reachability left closure G 2e

L by replacing any separating edge with first separating edge
and the 2-reachability right closure G 2e

R by replacing it with last separating edge.
Note that if there is only one edge separating u and v, then G 2e [u, v] = G 2e

L [u, v] =
G 2e

R [u, v]. Given any 2-reachability closure matrix, one can compute efficiently the 2-
reachability left and right closure matrices. We sketch below the basic idea for the left
closure (the right closure is completely symmetric). Let u and v be any two vertices. If
G 2e [u, v] is either > or ⊥, then G 2e

L [u, v] = G 2e [u, v]. Otherwise, let G 2e [u, v] = (x, y):
if u 2ex (i.e., if G 2e [u, x] = >) then (x, y) is the first separating edge for u and v and
G 2e

L [u, v] = (x, y); otherwise, u 6 2ex (i.e., G 2e [u, x] 6= >) and G 2e
L [u, v] = G 2e

L [u, x].
We show how to compute G 2e

L and G 2e
R from G 2e in a total of O(n2) worst-case time.

3 All-pairs 2-reachability in DAGs

In this section we present our O(nω logn) time algorithm for all-pairs 2-reachability in DAGs.
The high-level idea is to mimic the way Boolean matrix multiplication can be used to compute
the transitive closure of a graph: recursively along a topological order, combine the transitive
closure of the first and the second half of the vertices in a single matrix multiplication.
However, while in transitive closure for each pair (i, j) we have to store only information on
whether there is a path from i to j, for all-pairs 2-reachability this is not enough. First, we
describe a path algebra, used by our algorithm to operate on paths between pairs of vertices in
a concise manner. We then continue with the description of a matrix product-like operation,
which is the backbone of our recursive algorithm. Finally, we show how to implement those
operations efficiently using some binary encoding and decoding at every step of the recursion.

Before introducing our new algorithm, we need some terminology. Let G = (V,E) be a
DAG, and let E1, E2 be a partition of its edge set E, E = E1∪E2. We say that a partition is
an edge split if there is no triplet of vertices x, y, z in G such that (x, y) ∈ E2 and (y, z) ∈ E1
simultaneously. Informally speaking, under such split, any path in G from a vertex u to
a vertex v consists of a sequence of edges from E1 followed by a sequence of edges from
E2 (as a special case, any of those sequences can be empty). We denote the edge split by
G = (V,E1, E2) (See Figure 2). We say that vertex x in G = (V,E1, E2) is on the left (resp.,
right) side of the partition if x is adjacent only to edges in E1 (resp., E2). We assume without
loss of generality that the vertices of G are given in a topological ordering v1, v2, . . . , vn.
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E1 E2
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Q1

v1
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P2 Q2u v

Pn Qn

v3

v4 Q4
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Figure 2 An edge split of a DAG G = (V, E1, E2).

3.1 Algebraic approach
Consider a family of paths P = {P1, P2, . . . , P`}, all sharing the same starting and ending
vertices u and v. We would like to distinguish between the following three possibilities: (i) P
is empty; (ii) at least one edge e belongs to every path Pi ∈ P; or (iii) there is no edge that
belongs to all paths in (nonempty) P. To do that, we define the representation repr(P):

repr(P) def=
⋂̀
i=1

Pi =


U if P = ∅
∅ if no edge belongs to all Pi

{e ∈ E : e ∈ Pi, 1 ≤ i ≤ `} otherwise.

where U denotes the top symbol in the Boolean algebra of sets (i.e., the complement of ∅).
We also define a left representation reprL(P) ∈ E+, where E+ = E ∪ {>,⊥}, as follows:

reprL(P) def=


⊥ if P = ∅
> if no edge belongs to all Pi

e such that e ∈ Pi, 1 ≤ i ≤ `, and tail(e) is minimum
in the topological order

A right representation reprR(P) ∈ E+ is defined symmetrically to reprL(P), by replacing
minimum with maximum. If reprL(P) ∈ E (resp., reprR(P) ∈ E), we say that reprL(P)
(resp., reprR(P)) is the first (resp., last) common edge in P . Note that if P is the set of all the
paths from u to v, then repr(P) contains all the information about G 2e [u, v]. Additionally,
G 2e

L [u, v] = reprL(P) and G 2e
R [u, v] = reprR(P). With a slight abuse of notation we also

say that G 2e [u, v] ∈ repr(P).

I Observation 1. Let G = (V,E1, E2) be an edge split of a DAG, and let u and v be two
arbitrary vertices in G. For 1 ≤ i ≤ n, let Pi = {P ⊆ E1 : P is a path from u to vi}, and
Qi = {Q ⊆ E2 : Q is a path from vi to v} (See Figure 2) and let S be the family of all paths
from u to v. Then: repr(S) =

⋂n
i=1

(
repr(Pi) ∪ repr(Qi)

)
A straightforward application of Observation (1) yields immediately a polynomial time
algorithm for computing G 2e . However, this algorithm is not very efficient, since the size
of repr(P) can be as large as (n− 1). In the following we will show how to obtain a faster
algorithm, by replacing repr(P) with a suitable combination of reprL(P) and reprR(P).

We next define two operations, denoted as serial and parallel. Although those operations
are formally defined on E+ = E ∪ {>,⊥}, they have a more intuitive interpretation as
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operations on path families. We start with the serial operation ⊗. For a, b ∈ E+, we define:

a⊗ b def=
{

(⊥,⊥) if a = ⊥ or b = ⊥
(a, b) otherwise.

We define ⊕ as the parallel operator. Namely, for arbitrary a ∈ E+: a⊕⊥ def= a, ⊥⊕ a def= a,
a⊕> def= >, >⊕ a def= >, and otherwise, for e, e′ ∈ E:

e⊕ e′ def=
{
> if e 6= e′

e if e = e′

We extend the definition of ⊕ to operate on elements of E+ × E+, as follows: (a1, b1) ⊕
(a2, b2) def= (a1⊕a2, b1⊕b2). Ideally, we want the operator ⊕ either to preserve consistently the
first common edge or to preserve consistently the last common edge, under the union of path
families. If for instance we preserve the first common edge, that means that if P and P ′ are two
path families sharing the same endpoints then we want reprL(P ∪P ′) = reprL(P)⊕ reprL(P ′)
to hold. However, this is not necessarily the case, as for example both P and P ′ could
consist of a single path, with both paths sharing an intermediate edge e′, but both with two
different initial edges, respectively e1 and e2. Thus reprL(P) ⊕ reprL(P ′) = e1 ⊕ e2 = >
while reprL(P ∪ P ′) = e′. As shown in the following lemma, this is not an issue if the path
families considered are exhaustive in taking every possible path between a pair of vertices.

I Lemma 2. Let G,Pi,Qi and S be as in Observation 1. Then:
(a)

⊕n
i=1(reprL(Pi)⊗ reprR(Qi)) = (⊥,⊥) iff repr(S) = U;

(b) if
⊕n

i=1(reprL(Pi)⊗ reprR(Qi)) = (e1,>) then repr(S) 3 e1;
(c) if

⊕n
i=1(reprL(Pi)⊗ reprR(Qi)) = (>, e2) then repr(S) 3 e2;

(d) if
⊕n

i=1(reprL(Pi)⊗ reprR(Qi)) = (e1, e2) then repr(S) 3 e1, e2;
(e)

⊕n
i=1(reprL(Pi)⊗ reprR(Qi)) = (>,>) iff repr(S) = ∅.

We now consider the special case where one side of the partition defined in Observation 1
contains only paths of length one. In particular, we say that the edge set E′ ⊆ E is thin, if
there exists no triplet of vertices x, y, z such that (x, y) ∈ E′ and (y, z) ∈ E′.

I Lemma 3. Let G,Pi,Qi and S be as in Observation 1. Additionally, let E1 be thin.
Then
(a)

⊕n
i=1(reprL(Pi)⊗ reprR(Qi)) = (⊥,⊥) iff reprR(S) = ⊥;

(b) if
⊕n

i=1(reprL(Pi)⊗ reprR(Qi)) = (e1,>) then reprR(S) = e1;
(c) if

⊕n
i=1(reprL(Pi)⊗ reprR(Qi)) = (>, e2) then reprR(S) = e2;

(d) if
⊕n

i=1(reprL(Pi)⊗ reprR(Qi)) = (e1, e2) then reprR(S) = e2;
(e)

⊕n
i=1(reprL(Pi)⊗ reprR(Qi)) = (>,>) iff reprR(S) = >.

We define the following projection operator π: π(⊥,⊥) def= ⊥, π(>,>) def= >, π(e′, e) =
π(>, e) = π(e,>) def= e. With this new terminology, Lemma 2 and Lemma 3 can be simply
restated as follows:

I Corollary 4. Let G,Pi,Qi and S be as in Observation 1. Then
(i) π(

⊕n
i=1(reprL(Pi)⊗ reprR(Qi))) = > iff repr(S) = ∅,

(ii) π(
⊕n

i=1(reprL(Pi)⊗ reprR(Qi))) = ⊥ iff repr(S) = U, and
(iii) π(

⊕n
i=1(reprL(Pi)⊗ reprR(Qi))) ∈ repr(S) otherwise.

I Corollary 5. Let G,Pi,Qi and S be as in Observation 1, and let E1 be thin. Then
π(
⊕n

i=1(reprL(Pi)⊗ reprR(Qi))) = reprR(S).
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Matrix product. Now we define a path-based matrix product based on the previously defined
operators: (A ◦B)[i, j] def= π

(⊕
k A[i, k]⊗B[k, j]

)
. Throughout, we assume that the vertices

of G are sorted according to a topological ordering. In the following lemma B represents a
thin set of edges (i.e., the set of edges from a subset of vertices to another disjoint subset of
vertices).

I Lemma 6. Let
[
A B

0 C

]
be the adjacency matrix of a DAG G = (V,E), where A,B and

C are respectively k × k, k × (n− k) and (n− k)× (n− k) submatrices. If B is the matrix
containing ⊥ for every 0 in B and the appropriate e ∈ E for every 1 in B, then:[

A 2e
L A 2e

L ◦ (B ◦ C 2e
R )

⊥ C 2e
R

]
is a 2-reachability closure of G (not necessarily unique).

By Lemma 6, the 2-reachability closure can be computed by performing path-based
matrix products on the left and right 2-reachability closures of smaller matrices. This gives
immediately a recursive algorithm for computing the 2-reachability closure: indeed, as already
shown in Section 2, one can compute the left and right 2-reachability closures in O(n2) time
from any 2-reachability closure. In the next section we show how to implement this recursion
efficiently by describing how to compute efficiently path-based matrix products.

3.2 Encoding and decoding for Boolean matrix product
We start this section by showing how to efficiently compute path-based matrix products
using Boolean matrix multiplications. The first step is to encode each entry of the matrix as
a bitword of length 8k where k = dlog2(n+ 1)e. We use Boolean matrix multiplication of
matrices of bitwords, with bitwise AND/OR operations, denoted respectively with symbols
∧ and ∨. Our bitword length is O(logn), so matrix multiplication takes O(nω logn) time by
performing Boolean matrix multiplication for each coordinate separately.

We make use of the fact that after each multiplication we can afford a post-processing
phase, where we perform actions which guarantee that the resulting bitwords represent a
valid 2-reachability closure.

First, we note that when encoding a specific matrix, we know whether it is used as a
left-side or a right-side component of multiplication. The main idea is to encode left-side and
right-side ⊥ as {0}8k, left-side and right-side > as {1}8k. For any other value, append {1}4k

as a prefix or suffix (depending on whether it is used as a left-side or right-side component),
to the encoding of an edge. The encoding of an edge is a simple 1-superimposed code:
concatenation of the edge ID and complement of the edge ID. To be more precise, whenever
a bitword represents an edge e in a left-closure, then it is of the form IDeIDe{1}4k; whenever
a bitword represents an edge e in a right-closure, then it is of the form {1}4kIDeIDe, where
w denotes the complement of bitword w.

The serial operator ⊗ is implemented by coordinate-wise AND over two bitwords. Recall
that the operator ⊗ always has as its first (left) operand an element from a left-closure
matrix and as its second (right) operand an element from a right-closure. It is easy to verify
that result of AND is a concatenation of two bitwords of length 4k encoding either ⊥,> or
e ∈ E. We observe that ⊗ is calculated properly in all cases: (let e, e1, e2 ∈ E, e1 6= e2)
1. e⊗> = (e,>) since IDeIDe{1}4k ∧ {1}8k = IDeIDe{1}4k,
2. >⊗ e = (e,>) since {1}8k ∧ {1}4kIDeIDe = {1}4kIDeIDe,
3. e1 ⊗ e2 = (e1, e2) since IDe1IDe1{1}4k ∧ {1}4kIDe2IDe2 = IDe1IDe1IDe2IDe2 ,
4. e⊗⊥ = >⊗⊥ = ⊥⊗⊥ = ⊥⊗ e = ⊥⊗> = (⊥,⊥) since {0, 1}8k ∧ {0}8k = {0}8k,
5. >⊗> = (>,>) since {1}8k ∧ {1}8k = {1}8k.
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The parallel operator ⊕ is implemented as coordinate-wise OR over bitwords of length
8k. Note that all bitwords can be binary representations of pairs of elements in E+ of the
form (e1, e2), (e1,>), (>, e2), (⊥,⊥), (>,>), since only those forms appear as a result of an
⊗ operation. Recall that ⊕ satisfies (a1, b1) ⊕ (a2, b2) = (a1 ⊕ a2, b1 ⊕ b2), thus w.l.o.g. it
is enough to verify the correctness of the implementation over the first 4k bits of encoding.
Observe that all cases, except when both bitwords include encoded edges, are managed
correctly by the execution of coordinate-wise OR: (let e ∈ E)
1. ⊥⊕⊥ = ⊥ since {0}4k ∨ {0}4k = {0}4k,
2. ⊥⊕ e = e⊕⊥ = e since IDeIDe ∨ {0}4k = IDeIDe,
3. ⊥⊕> = >⊕⊥ = > since {1}4k ∨ {0}4k = {1}4k,
4. e⊕> = >⊕ e = > since IDeIDe ∨ {1}4k = {1}4k.

We are only left to take care of operations of the form e1 ⊕ e2 for e1, e2 ∈ E. According
to the definition of the parallel operator ⊕, we would like e1 ⊕ e2 = e ∈ E iff e1 = e2 = e

and otherwise e1 ⊕ e2 = >. This special case is handled by the fact that we encode edges
using 1-superimposed codes. That is, the binary representation of IDe has the property that
IDe[1 .. 2k] = IDe[2k + 1 .. 4k]. Moreover, the coordinate-wise OR of two encodings of edges,
that is X = IDe1 ∨ IDe2 , has such property iff e1 = e2. Thus in order to successfully decode
the result of chained ⊕ from coordinate-wise OR, we need to distinguish the following cases
(our result is encoded as X = X[1 .. 2k]X[2k + 1 .. 4k]):
1. X = {0}4k, then the result is ⊥,
2. X[1 .. 2k] = X[2k + 1 .. 4k], then X is the encoding of the resulting edge,
3. otherwise the result is >.
The implementation of a projection operator follows trivially.

The operations needed to compute the l-th coordinate of all entries of the final path-based
matrix product (before decoding of entries) can be implemented as a Boolean matrix product
of the l-th coordinate of the entries of A 2e

L and B 2e
R . All the tools developed in this section

allow us to compute the 2-reachability closure for DAGs. Our recursive algorithm follows
closely Lemma 6.

I Lemma 7. Given a DAG with n vertices, its 2-reachability closure can be computed in
time O(nω logn).

4 All-pairs 2-reachability in strongly connected graphs

In this section we focus on strongly connected graphs. In this case reachability is simple: for
any pair of vertices (u, v) ∈ V × V we have u v in G. But in case that u 6 2ev in G, finding
a separating edge that appears in all paths from u to v in G can still be a challenge. We
show that we can report such an edge in constant time after O(nω) preprocessing. The main
result of this section is the following theorem.

I Theorem 8. The 2-reachability closure of a strongly connected graph can be computed in
time O(nω).

Our construction is based on the notion of auxiliary graph and it will be given in
Section 4.3. Its running time will be analyzed in Lemma 13 and its correctness hinges on
Lemma 15.
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4.1 Reduction to two single-source problems

Let G = (V,E) be a strongly connected digraph. Let s be a fixed but arbitrary vertex of G.
The proof of the following lemma is immediate.

I Lemma 9. For any pair of vertices u and v: If there is an edge e ∈ E(G) such that u6 v
in G \ e, then either u6 s in G \ e or s6 v in G \ e.

Let Pu,s be the family of all paths from u to s and let Ps,v be the family of all paths
from s to v. We denote by eu the first edge on all paths in Pu,s, and by ev the last edge on
all paths in Ps,v. Note that there might be no edge that is on all paths of Pu,s: in this case
we say that eu does not exist. If there are several edges on all paths in Pu,s, then they are
totally ordered, so it is clear which is the first edge (similarly for ev and Ps,v). We now show
that in order to search for a separation witness for (u, v), it suffices to focus on eu and ev.

I Lemma 10. If there is some e such that u6 v in G \ e, then at least one of the following
statements is true:

eu exists and u6 v in G \ eu.
ev exists and u6 v in G \ ev.

Hence, in order to check whether there is an edge that separates u from v in G, it suffices
to look at the reachability information in G \ eu (a graph which does not depend on u) and at
the reachability information in G \ ev (a graph which does not depend on v). Unfortunately,
this is not enough to derive an efficient algorithm, since we would have still to look at as
many as 2n different graphs (as we explain later, and as it was first shown in [10], there can
be at most 2n− 2 edges whose removal can affect the strong connectivity of the graph). As a
result, computing the transitive closures of all those graphs would require O(nω+1) time. The
key insight to reduce the running time to O(nω) is to construct an auxiliary graph H, whose
reachability is identical to G \ ev for any query pair (u, v), and a second auxiliary graph H ′

whose reachability is identical to G \ eu for any query pair (u, v). Note that the edge that is
missing from the graph depends always on one of the two endpoints of the reachability query.
As a consequence, we have to consider only n2 and not n3 different queries for H and H ′.

4.2 Strong bridges and dominator tree decomposition

Before we construct these auxiliary graphs, we need some more terminology and prior results.

Flow graphs, dominators, and bridges. A flow graph Gs = (V,E, s) is a digraph with a
distinguished start vertex s. We denote by GR

s = (V,ER, s) the reverse flow graph of Gs; the
graph resulted by reversing the direction of all edges e ∈ E. Vertex u is a dominator of a
vertex v (u dominates v) if every path from s to v in Gs contains u; u is a proper dominator
of v if u dominates v and u 6= v. The dominator relation is reflexive and transitive. Its
transitive reduction is a rooted tree, the dominator tree D: u dominates v if and only if u
is an ancestor of v in D. If v 6= s, the parent of v in D, denoted by d(v), is the immediate
dominator of v: it is the unique proper dominator of v that is dominated by all proper
dominators of v. For any vertex v, we let D(v) denote the set of descendants of v in D, i.e.,
the vertices dominated by v. Dominators can be computed in linear time [2, 3, 7]. An edge
(x, y) is a bridge of the flow graph Gs if all paths from s to y include (x, y).
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Strong bridges. Let G = (V,E) be a strongly connected digraph. An edge e of G is a
strong bridge if G \ e is no longer strongly connected. Let s be an arbitrary start vertex of G.
Since G is strongly connected, all vertices are reachable from s and reach s, so we can view
both G and GR as flow graphs with start vertex s, denoted respectively by Gs and GR

s .

I Property 11 ([10]). Let s be an arbitrary start vertex of G. An edge e = (x, y) is a strong
bridge of G if and only if it is a bridge of Gs or a bridge of GR

s (or both).

As a consequence of Property 11, all the strong bridges of the digraph G can be obtained
from the bridges of the flow graphs Gs and GR

s , and thus there can be at most (2n−2) strong
bridges in a digraph G. Using the linear time algorithms for computing dominators, we
can thus compute all strong bridges of G in time O(m+ n) ⊆ O(nω). We use the following
lemma from [8] that holds for a flow graph Gs of a strongly connected digraph G.

I Lemma 12 ([8]). Let G be a strongly connected digraph and let (x, y) be a strong bridge
of G. Also, let D and DR be the dominator trees of the corresponding flow graphs Gs and
GR

s , respectively, for an arbitrary start vertex s.
(a) Suppose x = d(y). Let w be any vertex that is not a descendant of y in D. Then there

is a path from w to x in G avoiding all proper descendants of y in D. Moreover, all
paths in G from w to any descendant of y in D contain the edge (d(y), y).

(b) Suppose y = dR(x). Let w be any vertex that is not a descendant of x in DR. Then
there is a path from x to w in G avoiding all proper descendants of x in DR. Moreover,
all paths in G from any descendant of x in DR to w contain the edge (x, dR(x)).

Bridge decomposition. After deleting from the dominator trees D and DR respectively
the bridges of Gs and GR

s , we obtain the bridge decomposition of D and DR into forests
D and DR. Throughout this section, we denote by Tv (resp., TR

v ) the tree in D (resp.,
DR) containing vertex v, and by rv (resp., rR

v ) the root of Tv (resp., TR
v ). Given a digraph

G = (V,E), and a set of vertices S ⊆ V , we denote by G[S] the subgraph induced by S. In
particular, G[D(r)] denotes the subgraph induced by the descendants of vertex r in D.

4.3 Overview of the algorithm and construction of auxiliary graphs
The high-level idea of our algorithm is to compute two auxiliary graphs H and H ′ from G

and GR, respectively, with the following property: Given two vertices u and v, we have that
u 2ev in G if and only u v in H and v u in H ′. To construct the auxiliary graphs H and
H ′, we use the bridge decompositions of D and DR, respectively.

The two extremal edges eu and ev, defined in Section 4.1, can be also defined in terms of
the bridge decompositions. In particular, ev is the bridge entering the tree Tv of the bridge
decomposition of D, so ev = (d(rv), rv), and eu is the reverse bridge entering the tree DR

u of
the bridge decomposition of DR, so eu = (rR

u , d
R(rR

u )). Hence if there exists a path from
u to v avoiding each of the strong bridges ev and eu, then u 2ev in G. By Lemma 10, it
is enough if H models the reachability of G \ ev and H ′ the reachability of G \ eu. So H is
responsible for answering whether u has a path to v avoiding ev, while H ′ is responsible for
answering whether u has a path to v avoiding eu. Then, if any of the reachability queries in
H and H ′ returns false, we immediately have an edge that appears in all paths from u to v.

We next show to compute the auxiliary graphs H and H ′ in O(n2) time. In particular,
the auxiliary graph H = (V,E′) of the flow graph Gs = (V,E, s) is constructed as follows.
Initially, E′ = E \BR, where BR is the set of bridges of Gs. For all bridges (p, q) of Gs do
the following: For each edge (x, y) ∈ E such that x ∈ D(q), y /∈ D(q), we add the edge (p, y)



L. Georgiadis, D. Graf, G. F. Italiano, N. Parotsidis, and P. Uznański 74:11

a

s

c

d

b

e

g

f

h

Gs

a

s

c

d

b

e

g

f

h

H

a

s

c

d

b

e

g

f

h

GR
s

a

s

c

d

b

e

g

f

h

H′

Figure 3 Auxiliary graphs H and H ′ which are derived from Gs and GR
s , respectively. The

deleted edges, the bridges of Gs and GR
s , are shown in red, the newly added edges are shown in

blue. The blue edges are drawn along the green edges from Gs and GR
s which are the reason for

their insertion. Here we see, that for example b is 2-reachable from e, since there are two (edge and
vertex) disjoint paths (e, g, c, d, b) and (e, f, h, s, b) in G. In H, e reaches b through the path (e, c, b),
and in H ′, b reaches e through the path (b, s, h, e). We also see, that edge (c, d) separates a and f

in G, and even though f reaches a in H ′ through the path (f, d, c, a), a does not reach f in H. To
illustrate why both H and H ′ are relevant in Lemma 15, consider the following example: vertex c is
unreachable from b in G \ (b, c), which we also detect as there is no c-b path in H ′ (even though
there is a b-c path in H).

in E′, i.e., we set E′ = E′ ∪ (p, y). A detailed implementation can be found in full version of
the paper. Together with graph H, the algorithm outputs an array of edges (“witnesses”)
W , such that for each vertex v 6= s, W [v] = (d(rv), rv) is a candidate separating edge for v
and any other vertex. The computation of H ′ is completely analogous.

Once H and H ′ are computed, their transitive closure can be computed in O(nω) time,
after which reachability queries can be answered in constant time. Thus, we can preprocess
a strongly connected digraph G in total time O(nω) and answer 2-reachability queries in
constant time, as claimed by Theorem 8.

I Lemma 13. The auxiliary graph H can be computed in O(n2) time and space.

I Lemma 14. For all w ∈ V , no edge (x, y) ∈ E(H) exists with x /∈ D(rw) and y ∈ D(rw).

To show the correctness of our approach, we consider queries where we are given an
ordered pair of vertices (u, v), and we wish to return whether there exists an edge e such
that u6 v in G \ e. We can answer this query in constant time by answering the queries
u v in H and v u in H ′. Given Lemma 10, it is sufficient to prove the following:

I Lemma 15. The auxiliary graphs H and H ′ satisfy these two conditions:
If ev exists, then u v in G \ ev if and only if u v in H.
If eu exists, then u v in G \ eu if and only if v u in H ′.

5 All-pairs 2-reachability in general graphs

In this section, we show how to compute the 2-reachability of a general digraph by suitably
combining the previous algorithms for DAGs and for strongly connected digraphs. First,
note that the 2-reachability closure of a strongly connected graph G can be constructed as
follows: G 2e [i, j] = > if i has two edge-disjoint paths to j and G 2e [i, j] ∈ E if there is
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an edge e ∈ E such that i6 j in G \ e. No entry of G 2e contains ⊥ since G is strongly
connected. After O(nω) time preprocessing all the above queries can be answered in constant
time. Therefore, the 2-reachability closure can be computed in O(nω) time.

Let G be a general digraph. The condensation of G is the DAG resulting after the contrac-
tion of every strongly connected component of G into a single vertex. We assume, without
loss of generality, that the vertices are ordered as follows: The vertices in the same strongly
connected component of G appear consecutively in an arbitrary order, and the strongly con-
nected components are ordered with respect to the topological ordering of the condensation
of G. Moreover, we assume that we have access to a function stronglyConnected(u, v) that
answers whether the vertices u and v are strongly connected.

The key insight is that every idea presented in Section 3 never truly used the fact that
the input graph is a DAG, just the properties of an edge split, that is finding edge partition
into two sets so that no vertex has incoming edge from second set and outgoing edge from
first set simultaneously. If we are able to extend the definition of an edge split to a general
graph in a way highlighted above, and the definitions of repr(), reprR() and reprL(), then
all of the results from Section 3 carry over to a general graph G. Note that given arbitrary
path family P , reprL(P) and reprR(P) might be ill-defined, since paths in an arbitrary path
family might not share the order of common edges. However, we are only using this notation
for path families containing exactly all of paths connecting a given pair of vertices in the
graph: for such families, the order of common edges is shared.

The high-level idea behind our approach is to extend the 2-reachability closure algorithm
for DAGs, as follows. At each recursive call, the algorithm attempts to find a balanced
separation of the set of vertices, with respect to their fixed precomputed order, into two sets
such that there is no pair across the two sets that is strongly connected. If such a balanced
separation can be found, then the instance is (roughly) equally divided into two instances.
Otherwise, if there is no balanced separation of the set of vertices into two subsets, then one
of the following properties holds: (i) the larger instance is a strongly connected component, or
(ii) the recursive call on the larger instance separates a large strongly connected component,
on which we can compute the 2-reachability closure in O(nω) time.

I Theorem 16. The 2-reachability closure for general graphs on n vertices can be computed
in time O(nω logn).

6 An application: computing all dominator trees

Let s be an arbitrary vertex of G. Recall the bridge decomposition D of (vertex-)dominator
tree D and its tree Tv and root rv from Section 4.2. We define the edge-dominator tree D̃ of
G with start vertex s, as the tree that results from D after contracting all vertices in each
tree Tv into its root rv. For any vertex v and edge e = (x, y), e is contained in all paths in G
from s to v if and only if (rx, ry) is in the path from s to rv in D̃. We denote by d̃(y) the
parent of a vertex in D̃. (Both y and d̃(y) are roots in D.)

I Theorem 17. We can compute all sources vertex- and edge-dominator trees from G 2e
R in

time O(n2).

We can preprocess each edge-dominator tree D̃ inO(n) so as to answer ancestor-descendant
relations in constant time [16]. We can also compute in O(n) time the number of descendants
in D of every root r in D. This allows us to answer various queries very efficiently:

Given a pair of vertices s and t and an edge e = (x, y), we can test if G \ e contains a
path from s to t in constant time. This is because e is contained in all paths from s to t



L. Georgiadis, D. Graf, G. F. Italiano, N. Parotsidis, and P. Uznański 74:13

in G if and only if the following conditions hold: e is a bridge of flow graph G with start
vertex s (i.e., ry = y and d̃(y) = rx) and y is an ancestor of rt in D̃.
Similarly, given a vertex s and an edge e = (x, y), we can report how many vertices
become unreachable from s if we delete e from G. If e is a bridge of flow graph G with
start vertex s, then this number is equal to the number of descendants of y in D. Hence,
we find the edge whose removal disconnects the most pairs of vertices in time O(n2).

By computing all vertex-dominator trees of G, we can answer analogous queries for
vertex-separators. Moreover, we can answer efficiently queries regarding junctions. A vertex
s is a junction of vertices u and v in G, if G contains a path from s to u and a path from s

to v that are vertex-disjoint (i.e., s is the only vertex in common in these paths). Yuster [18]
gave a O(nω) algorithm to compute a single junction for every pair of vertices in a DAG. By
having all dominator trees of a digraph G, we can also answer the following queries.

Given vertices s, u and v, test if s is a junction of u and v. This is true if and only if
u and v are descendants of distinct children of s in D. Hence, we perform this test in
constant time.
Similarly, we can report all junctions of a given a pair of vertices in O(n) time. Note that
two vertices may have n junctions (e.g., in a complete graph).

Acknowledgments. We would like to thank Paolo Penna and Peter Widmayer for many
useful discussions on the problem.
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