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—— Abstract

We investigate the problem of testing the equivalence between two discrete histograms. A k-

histogram over [n] is a probability distribution that is piecewise constant over some set of k
intervals over [n]. Histograms have been extensively studied in computer science and statistics.
Given a set of samples from two k-histogram distributions p, g over [n], we want to distinguish
(with high probability) between the cases that p = ¢ and ||p — ¢||1 > e. The main contribution
of this paper is a new algorithm for this testing problem and a nearly matching information-
theoretic lower bound. Specifically, the sample complexity of our algorithm matches our lower
bound up to a logarithmic factor, improving on previous work by polynomial factors in the
relevant parameters. Our algorithmic approach applies in a more general setting and yields
improved sample upper bounds for testing closeness of other structured distributions as well.
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1 Introduction

In this work, we study the problem of testing equivalence (closeness) between two discrete
structured distributions. Let D be a family of univariate distributions over [n] (or Z). The
problem of closeness testing for D is the following: Given sample access to two unknown
distribution p, ¢ € D, we want to distinguish between the case that p = g versus ||p—g¢l|j1 > €.
(Here, ||p—q||1 denotes the ¢;-distance between the distributions p, ¢.) The sample complexity
of this problem depends on the underlying family D.

For example, if D is the class of all distributions over [n], then it is known [13] that
the optimal sample complexity is ©(max{n?/?/e*/3 nl/2/e%}). This sample bound is best
possible only if the family D includes all possible distributions over [n], and we may be able
to obtain significantly better upper bounds for most natural settings. For example, if both
p, ¢ are promised to be (approximately) log-concave over [n], there is an algorithm to test

* A full version of this paper is available at https://arxiv.org/abs/1703.01913.

t I.D. was supported by NSF Award CCF-1652862 (CAREER) and a Sloan Research Fellowship. D. K.
was supported by NSF Award CCF-1553288 (CAREER) and a Sloan Research Fellowship. V.N. was
supported by a University of Edinburgh PCD Scholarship.

© Ilias Diakonikolas, Daniel M. Kane, and Vladimir Nikishkin;
37 licensed under Creative Commons License CC-BY
44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).

Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 8; pp. 8:1-8:15

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany



http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.8
https://arxiv.org/abs/1703.01913
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

8:2

Near-Optimal Closeness Testing of Discrete Histogram Distributions

equivalence between them using O(1/€/4) samples [25]. This sample bound is independent
of the support size n, and is dramatically better than the worst-case tight bound [13] when
n is large.

More generally, [25] described a framework to obtain sample-efficient equivalence testers
for various families of structured distributions over both continuous and discrete domains.
While the results of [25] are sample-optimal for some families of distributions (in particular,
over continuous domains), it was not known whether they can be improved for natural
families of discrete distributions. In this paper, we work in the framework of [25] and obtain
new nearly-matching algorithms and lower bounds.

Before we state our results in full generality, we describe in detail a concrete application
of our techniques to the case of histograms — a well-studied family of structured discrete
distributions with a plethora of applications.

Testing Closeness of Histograms. A k-histogram over [n] is a probability distribution
p: [n] — [0, 1] that is piecewise constant over some set of k intervals over [n]. The algorithmic
difficulty in testing properties of such distributions lies in the fact that the location and “size”
of these intervals is a priori unknown. Histograms have been extensively studied in statistics
and computer science. In the database community, histograms [37, 14, 46, 33, 35, 36, 1]
constitute the most common tool for the succinct approximation of data. In statistics, many
methods have been proposed to estimate histogram distributions [44, 32, 45, 40, 21, 48, 38|
in a variety of settings.

In recent years, histogram distributions have attracted renewed interested from the
theoretical computer science community in the context of learning [18, 10, 11, 12, 23, 2, 3, 27|
and testing [36, 17, 26, 8, 9]. Here we study the following testing problem: Given sample
access to two distributions p, ¢ over [n] that are promised to be (approximately) k-histograms,
distinguish between the cases that p = ¢ versus ||p — ¢||1 > €. As the main application of our
techniques, we give a new testing algorithm and a nearly-matching information-theoretic
lower bound for this problem.

We now provide a summary of previous work on this problem followed by a description
of our new upper and lower bounds. We want to e-test closeness in ¢;-distance between two
k-histograms over [n], where k < n. Our goal is to understand the optimal sample complexity
of this problem as a function of k,n,1/e. Previous work is summarized as follows:

In [25], the authors gave a closeness tester with sample complexity

O(max{k*/5/e0/5 k1/2/e2}).

The best known sample lower bound is Q(max{k?/3/e*/3 k'/2/e?}). This straightfor-
wardly follows from [13], since k-histograms can simulate any support k distribution.
Notably, none of the two bounds depends on the domain size n. Observe that the upper
bound of O(max{k*/5/e8/5 k1/2/e2}) cannot be tight for the entire range of parameters.
For example, for n = O(k), the algorithm of [13] for testing closeness between arbitrary
support n distributions has sample size O(max{k?/3/e*/3 k/2 /e?}), matching the above

sample complexity lower bound, up to a constant factor.

This simple example might suggest that the Q(max{k?/3/e*/3, k'/2/e?}) lower bound is
tight in general. We prove that this is not the case. The main conceptual message of our
new upper bound and nearly-matching lower bound is the following:

The sample complezity of e-testing closeness between two k-histograms over [n] depends
in a subtle way on the relation between the relevant parameters k,n and 1/e.

We find this fact rather surprising because such a phenomenon does not occur for the sample
complexities of closely related problems. Specifically, testing the identity of a k-histogram
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over [n] to a fired distribution has sample complexity ©(k'/2/e?) [26]; and learning a k-
histogram over [n] has sample complexity ©(k/e?) [11]. Note that both these sample bounds
are independent of n and are known to be tight for the entire range of parameters k,n,1/e.

Our main positive result is a new closeness testing algorithm for k-histograms over [n]
with sample complexity O (k*® - log?/3(2 + n/k) log(k)/€e*/?). Combined with the known
upper bound of [25], we obtain the sample upper bound of

O(max (rnirl(k4/5/66/57 k23 10gY3(2 + n/k) log(k) /€*/?), k' /? log? (k) log log(k)/€%)).

As our main negative result, we prove a lower bound of Q(min(k%/31log/3(2 4 n/k)/e*/3,
k*/5/€8/5)). The first term in this expression shows that the “log(2 + n/k)” factor that
appears in the sample complexity of our upper bound is in fact necessary, up to a constant
power. In summary, these bounds provide a nearly-tight characterization of the sample
complexity of our histogram testing problem for the entire range of parameters.
A few observations are in order to interpret the above bounds:
When n goes to infinity, the O(k*/°/€%/%) upper bound of [25] is tight for k-histograms.
When n = poly(k) and e is not too small (so that the k'/2/e? term does not kick in),
then the right answer for the sample complexity of our problem is (k2/3/e*/3)polylog(k).
The terms “k%/3/6/57 and “k%/310og?3(2 + n/k)log(k)/€*/3” appearing in the sample
complexity become equal when n is exponential in k. Therefore, our new algorithm has
better sample complexity than that of [25] for all n < 20().

In the following subsection, we state our results in a general setting and explain how the
aforementioned applications are obtained from them.

1.1  Our Results and Comparison to Prior Work

For a given family D of discrete distributions over [n], we are interested in designing a closeness
tester for distributions in D. We work in the general framework introduced by [26, 25].
Instead of designing a different tester for any given family D, the approach of [26, 25] proceeds
by designing a generic equivalence tester under a different metric than the ¢;-distance. This
metric, termed Ag-distance [20], where k& > 2 is a positive integer, interpolates between
Kolmogorov distance (when k = 2) and the ¢;-distance (when k = n). It turns out that, for
a range of structured distribution families D, the Ag-distance can be used as a proxy for the
{4-distance for a value of k < n [11]. For example, if D is the family of k-histograms over [n],
the As; distance between them is tantamount to their ¢; distance. We can thus obtain an ¢,
closeness tester for D by plugging in the right value of k in a general A closeness tester.

To formally state our results, we will need some terminology.

Notation. We will use p, ¢ to denote the probability mass functions of our distributions.
If p is discrete over support [n] := {1,...,n}, we denote by p; the probability of element
i in the distribution. For two discrete distributions p,q, their £; and ¢ distances are
lp—alls = 3272, Ipi—ai] and [[p—qll2 = /32—, (pi — ¢i)?. Fix a partition of the domain I into
disjoint intervals Z := (I;)¢_,. For such a partition Z, the reduced distribution pZ corresponding
to p and 7 is the discrete distribution over [¢] that assigns the i-th “point” the mass that p
assigns to the interval I;; i.e., for i € [¢], pZ (i) = p(I;). Let Jx be the collection of all partitions
of the domain [ into k intervals. For p,q: I — Ry and k € Z, we define the Ai-distance

def k
between p and ¢ by [p—qlla, = maxz_yr eg, Yoimy [p(l) —q(1i)] = maxzey, |pE—qf |1

i=1
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In this context, [25] gave a closeness testing algorithm under the Ag-distance using
O(max{k*/5/e8/% k1/2 /e2}) samples. It was also shown that this sample bound is information—
theoretically optimal (up to constant factors) for some adversarially constructed continuous
distributions, or discrete distributions of support size n sufficiently large as a function of k.
These results raised two natural questions: (1) What is the optimal sample complexity of
the Aj-closeness testing problem as a function of n, k,1/e? (2) Can we obtain tight sample
lower bounds for natural families of structured distributions?

We resolve both these open questions. Our main algorithmic result is the following:

» Theorem 1. Given sample access to distributions p and q on [n] and € > 0 there exists an
algorithm that takes

0 (max (min <k4/5/66/5, k2/310g3(2 + n/k) log(2 + k‘)/e4/3) kY% log? (k) log log(k)/62)>

samples from each of p and q and distinguishes with 2/3 probability between the cases that
p=gqand|lp—qla, =€

As explained in [26, 25], using Theorem 1 one can obtain testing algorithms for the ¢4
closeness testing of various distribution families D, by using the Ay, distance as a “proxy” for
the ¢; distance:

» Fact 2. For a univariate distribution family D and € > 0, let k = k(D, €) be the smallest
integer such that for any f1, f2 € D it holds that || f1 — f2|l1 < ||f1 — fall.a, +€/2. Then there
exists an £y closeness testing algorithm for D with the sample complexity of Theorem 1.

Applications

Our upper bound for ¢;-testing of k-histogram distributions follows from the above by noting
that for any k-histograms p,q we have ||p — q|l1 = ||p — ¢|| 4,,- Also note that our upper
bound is robust: it applies even if p, ¢ are O(e)-close in £;-norm to being k-histograms.

Finally, we remark that our general Aj closeness tester yields improved upper bounds
for various other families of structured distributions. Consider for example the case that D
consists of all k-mixtures of some simple family (e.g., discrete Gaussians or log-concave),
where the parameter k is large. The algorithm of [25] leads to a tester whose sample
complexity scales with O(k*/®), while Theorem 1 implies a O(k?/3) bound.

On the lower bound side, we show:

» Theorem 3. Let p and q be distributions on [n] and let € > 0 be less than a sufficiently
small constant. Any tester that distinguishes between p = q and ||p — q||la, > € for some
k < n must use Q(m) samples for m = min(k%/31og?3(2 + n/k)/e*/3 k*/5 /€6/5).
Furthermore, for m = min(k2/31og'/3(2 4+ n/k) /e*/3, k*/5 /e5/5), any tester that distin-
guishes between p = q and ||p — q||la, > € must use Q(m) samples even if p and q are both

guaranteed to be piecewise constant distributions on O(k +m) pieces.

Note that a lower bound of Q(v/k/e?) straightforwardly applies even for p and ¢ being
k-histograms. This dominates the above bounds for e < k=3/8.

We also note that our general lower bound with respect to the Ay distance is somewhat
stronger, matching the term “log*/®(2 + n/k)” in our upper bound.
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1.2 Related Work

During the past two decades, distribution property testing [5] — whose roots lie in statistical
hypothesis testing [41, 39] — has received considerable attention by the computer science
community, see [43, 7] for two recent surveys. The majority of the early work in this
field has focused on characterizing the sample size needed to test properties of arbitrary
distributions of a given support size. After two decades of study, this “worst-case” regime is
well-understood: for many properties of interest there exist sample-optimal testers (matched
by information-theoretic lower bounds) [42, 13, 47, 26, 24, 22].

In many settings of interest, we know a priori that the underlying distributions have
some “nice structure” (exactly or approximately). The problem of learning a probability
distribution under such structural assumptions is a classical topic in statistics, see [4] for
a classical book, and [34] for a recent book on the topic, that has recently attracted the
interest of computer scientists [18, 19, 10, 16, 11, 12, 1, 30, 31, 28, 15, 3, 27, 29].

On the other hand, the theory of distribution testing under structural assumptions is
less fully developed. More than a decade ago, Batu, Kumar, and Rubinfeld [6] considered a
specific instantiation of this question — testing the equivalence between two unknown discrete
monotone distributions — and obtained a tester whose sample complexity is poly-logarithmic
in the domain size. A recent sequence of works [17, 26, 25] developed a framework to leverage
such structural assumptions and obtained more efficient testers for a number of natural
settings. However, for several natural properties of interest there is still a substantial gap
between known sample upper and lower bounds.

1.3 Overview of Techniques

To prove our upper bound, we use a technique of iteratively reducing the number of bins
(domain elements). In particular, we show that if we merge bins together in consecutive pairs,
this does not significantly affect the A distance between the distributions, unless a large
fraction of the discrepancy between our distributions is supported on O(k) bins near the
boundaries in the optimal partition. In order to take advantage of this, we provide a novel
identity tester that requires few samples to distinguish between the cases where p = ¢ and
the case where p and ¢ have a large ¢, distance supported on only k& of the bins. We are able
to take advantage of the small support essentially because having a discrepancy supported
on few bins implies that the £ distance between the distributions must be reasonably large.

Our new lower bounds are somewhat more involved. We prove them by exhibiting explicit
families of pairs of distributions, where in one case p = ¢ and in the other p and ¢ have large
Ay, distance, but so that it is information-theoretically impossible to distinguish between
these two families with a small number of samples. In both cases, p and ¢ are explicit
piecewise constant distributions with a small number of pieces. In both cases, our domain is
partitioned into a small number of bins and the restrictions of the distributions to different
bins are independent, making our analysis easier. In some bins we will have p = ¢ each with
mass about 1/m (where m is the number of samples). These bins will serve the purpose of
adding “noise” making harder to read the “signal” from the other bins. In the remaining bins,
we will have either that p = ¢ being supported on some interval, or p and ¢ will be supported
on consecutive, non-overlapping intervals. If three samples are obtained from any one of these
intervals, the order of the samples and the distributions that they come from will provide us
with information about which family we came from. Unfortunately, since triple collisions are
relatively uncommon, this will not be useful unless m > max(k*/5/%/% k/2 /€2). Bins from
which we have one or zero samples will tell us nothing, but bins from which we have exactly
two samples may provide information.

8:5
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For these bins, it can be seen that we learn nothing from the ordering of the samples,
but we may learn something from their spacing. In particular, in the case where p and ¢
are supported on disjoint intervals, we would suspect that two samples very close to each
other are far more likely to be taken from the same distribution rather than from opposite
distributions. On the other hand, in order to properly interpret this information, we will
need to know something about the scale of the distributions involved in order to know when
two points should be considered to be “close”. To overcome this difficulty, we will stretch
each of our distributions by a random exponential amount. This will effectively conceal any
information about the scales involved so long as the total support size of our distributions is
exponentially large.

2 A Near-Optimal Closeness Tester over Discrete Domains

2.1 Warmup: A Simpler Algorithm

We start by giving a simpler algorithm establishing a basic version of Theorem 1 with slightly
worse parameters:

» Proposition 4. Given sample access to distributions p and q on [n] and € > 0 there exists
an algorithm that takes

0 (k2/3 log*/?(3 4+ n/k)loglog(3 + n/k)/e*® + Vklog?(3 4+ n/k)loglog(3 + n/k:)/eQ)

samples from each of p and q and distinguishes with 2/3 probability between the cases that
p=qand |p—qlla, =€

The basic idea of our algorithm is the following: From the distributions p and ¢ construct
new distributions p’ and ¢’ by merging pairs of consecutive buckets. Note that p’ and
¢’ each have much smaller domains (of size about n/2). Furthermore, note that the A
distance between p and ¢ is ) ;. [p(1) — q(I)| for some partition Z into k intervals. By
using essentially the same partition, we can show that ||p’ — ¢'|| 4, should be almost as large
as ||p — ¢l a,,- This will in fact hold unless much of the error between p and ¢ is supported at
points near the endpoints of intervals in Z. If this is the case, it turns out there is an easy
algorithm to detect this discrepancy. We require the following definitions:

» Definition 5. For a discrete distribution p on [n], the merged distribution obtained from
p is the distribution p’ on [n/2], so that p'(4) % p(2i) + p(2i + 1). For a partition Z of [n] ,
define the divided partition I' of domain [n/2], so that I/ € 7’ has the points obtained by
point-wise gluing together odd points and even points.

Note that one can simulate a sample from p’ given a sample from p by letting p’ = [p/2].

» Definition 6. Let p and ¢ be distributions on [n]. For integers k > 1, let ||p — ¢l|1,5x be the
sum of the largest k values of |p(i) — ¢q(4)| over i € [n].

We begin by showing that either ||p’ — ¢'|| 4, is close to ||p — gl|.4, or |lp — ¢ll1,x is large.

» Lemma 7. For any two distributions p and q on [n], let p’ and ¢’ be the merged distributions.
Then,

Il —alla, <llp" —d'lla. +2llp —qllix -
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Proof. Let 7 be the partition of [n] into k intervals so that ||p — ¢4, = > ;c7 [p(I) — q(1)].
Let Z' be obtained from Z by rounding each upper endpoint of each interval except for the
last down to the nearest even integer, and rounding the lower endpoint of each interval up to
the nearest odd integer. Note that

Yoo —a@) =" 1'(1/2) = I/2) < P — ol 4, -

Ie1’ IeT’

The partition Z' is obtained from Z by taking at most k points and moving them from one
interval to another. Therefore, the difference

Do IpD) =) = > () —a(D)]} ,

IeT Ie1’

is at most twice the sum of |p(i) — ¢(¢)| over these k points, and therefore at most 2||p — g||1 x-
Combing this with the above gives our result. |

Next, we need to show that if two distributions have ||p — ¢||1 x large that this can be
detected easily.

» Lemma 8. Let p and q be distributions on [n]. Let k > 0 be a positive integer, and € > 0.
There exists an algorithm which takes O(k2/3/64/3+\/E/62) samples from each of p and q and,
with probability at least 2/3, distinguishes between the cases that p = q and ||p — q||1,x > €.

Note that if we needed to distinguish between p = ¢ and ||p — ¢||1 > €, this would require
Q(n?/3 /43 4+ \/n/e?) samples. However, the optimal testers for this problem are morally
{o-testers. That is, roughly, they actually distinguish between p = ¢ and ||p — ¢||2 > €¢/+/n.
From this viewpoint, it is clear why it would be easier to test for discrepancies in || — ||1 -
distance, since if |[p — g||1.x > €, then ||p— g||2 > ¢/v/k, making it easier for our f»-type tester
to detect the difference.

Our general approach will be by way of the techniques developed in [24]. We begin by
giving the definition of a split distribution coming from that paper:

» Definition 9. Given a distribution p on [n] and a multiset S of elements of [n], define the
split distribution pg on [n+ |S|] as follows: For 1 < i < n, let a; denote 1 plus the number of
elements of S that are equal to i. Thus, >."" ; a; = n + |S|. We can therefore associate the
elements of [n + | S]] to elements of the set B = {(4,4) : i € [n],1 <j < a;}. We now define
a distribution pg with support B, by letting a random sample from pg be given by (4, 7),
where i is drawn randomly from p and j is drawn randomly from [a;].

We now recall two basic facts about split distributions:

» Fact 10 ([24]). Let p and q be probability distributions on [n], and S a given multiset of

[n]. Then:

(i) We can simulate a sample from ps or qs by taking a single sample from p or q, respect-
wvely.

(ii) 1t holds |lps — qsllx = llp — qllx-

» Lemma 11 ([24]). Let p be a distribution on [n]. Then:

(i) For any multisets S C S’ of [n], |lps/ll2 < llpsllz, and
(ii) If S is obtained by taking m samples from p, then E[||ps|/3] < 1/m.

We also recall an optimal £5 closeness tester under the promise that one of the distributions
has smal /5 norm:

8:7
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» Lemma 12 ([13]). Let p and q be two unknown distributions on [n]. There exists an
algorithm that on input n, b > min{||p||2, l¢ll2} and 0 < € < V/2b, draws O(b/e?) samples
from each of p and q and, with probability at least 2/3, distinguishes between the cases that

p=qand |p—ql2 > e

Proof of Lemma 8: We begin by presenting the algorithm:

Algorithm Small-Support-Discrepancy-Tester
Input: sample access to pdf’s p,q: [n] = [0,1], k € Z,, and € > 0.
Output: “YES” if ¢ = p; “NO” if ||¢ — p|l1,x > €.

1. Let m = min(k%/3/e*/3 k).

2. Let S be the multiset obtained by taking m independent samples from p.

3. Use the /5 tester of Lemma 12 to distinguish between the cases that pg = gg
and ||ps — gs||3 > k~'€%/2 and return the result.

The analysis is simple. By Lemma 11, with 90% probability ||ps|l2 = O(m~'/2), and
therefore the number of samples needed (using the ¢5 tester from Lemma 12) is O(m +
Em=12/e2) = O(k*/3Je*/? + Vk/e?). If p = q, then pg = ¢g and the algorithm will return
“YES” with appropriate probability. If ||g — p|l1,x > €, then ||ps — gsll1,k+m > €. Since
k 4+ m elements contribute to total ¢; error at least €, by Cauchy-Schwarz, we have that
llps — qsl|32 > €2/(k +m) > k~1e2/2. Therefore, in this case, the algorithm returns “NO”
with appropriate probability. <

Proof of Proposition 4: The basic idea of our algorithm is the following: By Lemma 8, if
llp — ¢l 4, is large, then so is either ||p — ¢ll1,x or ||p" — ¢||l.a,. Our algorithm then tests
whether ||p — ¢||1,x is large, and recursively tests whether ||p’ — ¢'|| 4, is large. Since p', ¢’
have half the support size, we will only need to do this for log(n/k) rounds, losing only a
poly-logarithmic factor in the sample complexity. We present the algorithm here:

Algorithm Small-Domain-Aj-tester
Input: sample access to pdf’s p,q: [n] — [0,1], k € Z,, and € > 0.
Output: “YES” if ¢ = p; “NO” if ||g — p|| 4, > €.

1. Fori:=0tot% [logy(n/k)], let p, ¢ be distributions on [[27*n]] defined
by p = [27%p] and ¢ = [27q].

2. Take Ck?/31og*3(3+ n/k)loglog(3 +n/k)/e*/3 samples, for C sufficiently large,
and use these samples to distinguish between the cases p(9 = ¢(¥) and ||p(i) —
D |1k > €/ (4logy(3+n/k)) with probability of error at most 1/(10logy(3+n/k))
for each ¢ from 0 to ¢, using the same samples for each test.

3. If any test yields that p® # ¢, return “NO?”. Otherwise, return “YES”.

We now show correctness. In terms of sample complexity, we note that by taking a
majority over O(loglog(3 + n/k)) independent runs of the tester from Lemma 8 we can run
this algorithm with the stated sample complexity. Taking a union bound, we can also assume
that all tests performed in Step 2 returned the correct answer. If p = ¢ then p( = ¢ for
all 7 and thus, our algorithm returns “YES”. Otherwise, we have that |p — ¢||4, > €. By
repeated application of Lemma 7, we have that

t—1

t
Ip = alla, <D 20p — ¢k + 2 — ¢4, <2 1P = ¢k,
=0 =0
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where the last step was because p(*) and ¢(*) have a support of size at most k and so
Ip® — ¢4, = Ip® — D]y = [|p® — ¢'D||1 5. Therefore, if this is at least e, it must be
the case that ||p® — ¢ ||, > €/(4logy(3 +n/k)) for some 0 < i < ¢, and thus our algorithm
returns “NO”. This completes our proof. |

2.2 Full Algorithm

The improvement to Proposition 4 is somewhat technical. The key idea involves looking
into the analysis of Lemma 8. Generally speaking, choosing a larger value of m (up to
the total sample complexity), will decrease the ¢5 norm of p, and thus the final complexity.
Unfortunately, taking m > k might lead to problems as it will subdivide the k original bins
on which the error is supported into w(k) bins. This in turn could worsen the lower bounds
on ||p — q||2. However, this will only be the case if the total mass of these bins carrying the
difference is large. Thus, we can obtain an improvement to Lemma 8 when the mass of bins
on which the error is supported is small. The details are deferred to the full version.

3 Nearly Matching Information-Theoretic Lower Bound

We give a lower bound for k-histograms (k-flat distributions), postponing our slightly stronger
construction to the full version. Before moving to the discrete setting, we first establish a
lower bound for continuous histogram distributions. Our bound on discrete distributions
will follow from taking the adversarial distribution from this example and rounding its
values to the nearest integer. In order for this to work, we will need ensure to that our
adversarial distribution does not have its Ag-distance decrease by too much when we apply
this operation. To satisfy this requirement, we will guarantee that our distributions will be
piecewise constant with all the pieces of length at least 1.

» Proposition 13. Let k € Z, € > 0 sufficiently small, and W > 2 . Fix
m = min(k*/* log!/* (W) /e*/%,14/° 1e5/°).

There exist distributions D, D’ over pairs of distributions p and q on [0,2(m + k)W], where p
and q are O(m + k)-flat with pieces of length at least 1, so that: (a) when drawn from D,
we have p = q deterministically, (b) when drawn from D', we have ||p — q|| 4, > € with 90%
probability, and so that o(m) samples are insufficient to distinguish whether or not the pair
is drawn from D or D' with better than 2/3 probability.

At a high-level, our lower bound construction proceeds as follows: We will divide our
domain into m + k bins so that no information about which distributions had samples drawn
from a given bin or the ordering of these samples will help to distinguish between the cases
of p = ¢ and otherwise, unless at least three samples are taken from the bin in question.
Approximately k of these bins will each have mass €/k and might convey this information if
at least three samples are taken from the bin. However, the other m bins will each have mass
approximately 1/m and will be used to add noise. In all, if we take s samples, we expect to
see approximately s3¢3/k? of the lighter bins with at least three samples. However, we will
see approximately s3/m? of our heavy bins with three samples. In order for the signal to
overwhelm the noise, we will need to ensure that we have (s%¢3/k?)? > s3/m?.

The above intuitive sketch assumes that we cannot obtain information from the bins in
which only two samples are drawn. This naively should not be the case. If p = ¢, the distance
between two samples drawn from that bin will be independent of whether or not they are
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drawn from the same distribution. However, if p and ¢ are supported on disjoint intervals,
one would expect that points that are close to each other should be far more likely to be
drawn from the same distribution than from different distributions. In order to disguise this,
we will scale the length of the intervals by a random, exponential amount, essentially making
it impossible to determine what is meant by two points being close to each other. In effect,
this will imply that two points drawn from the same bin will only reveal O(1/log(W)) bits of
information about whether p = g or not. Thus, in order for this information to be sufficient,
we will need that (s2€2/k)?/log(W) > (s?/m). We proceed with the formal proof below.

Proof of Proposition 13: We use ideas from [24] to obtain this lower bound using an in-
formation theoretic argument.

We may assume that ¢ > k'/2, because otherwise we may employ the standard lower
bound that Q(v/k/e?) samples are required to distinguish two distributions on a support of
size k.

First, we note that it is sufficient to take D and D’ be distributions over pairs of non-
negative, piecewise constant distributions with total mass ©(1) with 90% probability so that
running a Poisson process with parameter o(m) is insufficient to distinguish a pair from D
from a pair from D’ [24].

We construct these distributions as follows: We divide the domain into m + k bins of
length 2W. For each bin i, we independently generate a random ¢;, so that log(¢;/2) is
uniformly distributed over [0,21log(WW)/3]. We then produce an interval I; within bin ¢ of
total length ¢; and with random offset. In all cases, we will have p and ¢ supported on the
union of the I;’s.

For each ¢ with probability m/(m+k), we have the restrictions of p and ¢ to I; both uniform
with p(I;) = ¢(I;) = 1/m. The other k/(m + k) of the time we have p(I;) = q(I;) = ¢/k. In
this latter case, if p and ¢ are being drawn from D, p and ¢ are each constant on this interval.
If they are being drawn from D’, then p + ¢ will be constant on the interval, with all of that
mass coming from p on a random half and coming from ¢ on the other half.

Note that in all cases p and ¢ are piecewise constant with O(m + k) pieces of length at
least 1. It is easy to show that with high probability the total mass of each of p and ¢ is
O(1), and that if drawn from D’ that ||p — ¢||4, > € with at least 90% probability.

We will now show that if one is given m samples from each of p and ¢, taken randomly
from either D or D', that the shared information between the samples and the source family
will be small. This implies that one is unable to consistently guess whether our pair was
taken from D or D’.

Let X be a random variable that is uniformly at random either 0 or 1. Let A be obtained
by applying a Poisson process with parameter s = o(m) on the pair of distributions p, g
drawn from D if X = 0 or from D’ if X = 1. We note that it suffices to show that the shared
information I(X : A) = o(1). In particular, by Fano’s inequality, we have:

» Lemma 14. If X is a uniform random bit and A is a correlated random variable, then if
f is any function so that f(A) = X with at least 51% probability, then (X : A) > 2-1074,

Let A; be the samples of A taken from the i** bin. Note that the A; are conditionally
independent on X. Therefore, we have that I(X : A) <>, I(X : 4;)) = (m+k)[(X : Ay) .
We will proceed to bound I(X : A;).

We note that I(X : Ay) is at most the integral over pairs of multisets a (representing a
set of samples from ¢ and a set of samples from p), of

O ((Pr(Al =alX :PS()A—1 Pr(c;;ll =alX = 1))2> .
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Thus,

. O (Pr(A; = alX =0) — Pr(4; = a|X =1))2
I(X.A1)—h§_:0/la_h0< Pr(Alza)l )

We will split this sum up based on the value of h.

For h = 0, we note that the distributions for p + g are the same for X =0 and X = 1.

Therefore, the probability of selecting no samples is the same. Therefore, this contributes 0
to the sum.

For h = 1, we note that the distributions for p + ¢ are the same in both cases, and
conditioning on I; and (p+ ¢)(I1) that E[p] and E[g] are the same in each of the cases X =0
and X = 1. Therefore, again in this case, we have no contribution.

For h > 3, we note that I(X : Ay) < I(X : Ay, 1) < I(X : A1|l1) , since I; is independent

of X. We note that Pr(A; = a|X = 0,p(l;) = 1/m) = Pr(A; = o|X = 1,p(I;) = 1/m).

Therefore, we have that

Pr(4; = a|X =0) — Pr(4; =a|X =1)
=Pr(A; =alX =0,p(I1) = ¢/k) = Pr(A; = a|X = 1,p(I1) = €/k).

If p(I7) = €/k, the probability that exactly h elements are selected in this bin is at most
k/(m-+k)(2se/k)" /h!, and if they are selected, they are uniformly distributed in I; (although
which of the sets p and ¢ they are taken from is non-uniform). However, the probability
that h elements are taken from I; is at least Q(m/(m + k)(sm)~"/h!) from the case where
p(I1) = 1/m, and in this case the elements are uniformly distributed in I; and uniformly
from each of p and ¢q. Therefore, we have that this contribution to our shared information
is at most k2/(m(m + k))O(se*>m/k%)" /h! . We note that e?m/k* < 1. Therefore, the sum
of this over all h > 3 is k2/(m(m + k))O(se?>m/k?)3. Summing over all m + k bins, this is
k=%5s3m? = o(1).

It remains to analyze the case where h = 2. Once again, we have that ignoring which of p
and ¢ elements of A; came from, A; is identically distributed conditioned on p(I;) = 1/m and
|A1] = 2 as it is conditioned on p(I1) = ¢/k and |A;| = 2. Since once again, the distributions
D and D’ are indistinguishable in the former case, we have that the contribution of the h = 2
terms to the shared information is at most

(k/(k + m)es/1)*)?
X ( mf (5 + m)(s/m)?

) dry (4] X = 0,p(11)e /. | Ay | = 2),
(A1|X =1,p(11) = €/k,|A1] = 2))

O (Ska72€4/(k + m)) dry ((A1]X = 0,p(Ih) = €/k, |A1] = 2),
(A1|1X = 1,p(I1) = €/k,[A1] = 2)) .

It will suffice to show that conditioned upon p(I;) = €¢/k and |A;| = 2 that
drv ((A1]X = 0), (A1|X = 1)) = O(1/log(W)).

Let f be the order preserving linear function from [0, 2] to I;. Notice that conditional on
|A1] = 2 and p(I1) = €/k that we may sample from A; as follows:

Pick two points z > y uniformly at random from [0, 2].

Assign the points to p and ¢ as follows:
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If X = 0 uniformly randomly assign these points to either distribution p or q.
If X =1 randomly do either:
Assign points in [0, 1] to ¢ and other points to p.
Assign points in [0, 1] to p and other points to q.
Randomly pick I; and apply f to x and y to get outputs z = f(x),w = f(y).

Notice that the four cases:
(i) both points coming from p,
(ii) both points coming from g,
(iii) a point from p preceding a point from ¢,
(iv) a point from ¢ preceding a point from p,
are all equally likely conditioned on either X = 0 or X = 1. However, we will note that this
ordering is no longer independent of the choice of x and y.

Therefore, we can sample from A; subject to X = 0 and from A; subject to X =1 in
such a way that this ordering is the same deterministically. We consider running the above
sampling algorithm to select (z,y) while sampling from X = 0 and (2’,y’) when sampling
from X =1 so that we are in the same one of the above four cases. We note that

dry (A1 X =0), (A1 X =1)) < Eoy o yeldrv ((£(2), £ (), (f (=), @]

where the variation distance is over the random choices of f.

To show that this is small, we note that |f(x) — f(y)| is distributed like ¢1(z — y).
This means that log(|f(z) — f(y)|) is uniform over [log(f(z) — f(y)),log(f(z) — f(y)) +
2log(W)/3]. Similarly, log(|f' (") — f/(y')|) is uniform over [log(f(z") — f(v')),log(f(z") —
f@W')) + 2log(W)/3]. These differ in total variation distance by

|log(f(x) — f(y)| + [log(f(z') — f(¥'))|
O( log (W) > '

Taking the expectation over x,y,z’,y" we get O(1/log(W)). Therefore, we may further
correlate the choices made in selecting our two samples, so that z — w = 2’ — w’ except
with probability O(1/log(W)). We note that after conditioning on this, z and z’ are
both uniformly distributed over subintervals of [0,2W¥] of length at least 2(W — W?2/3).
Therefore, the distributions on z and 2z’ differ by at most O(W~1/3). Hence, the total
variation distance between A; conditioned on |A;| = 2,p(I1) = ¢/k, X = 0 and conditioned
on |A;| =2,p(I1) = ¢/k, X = 1 is at most O(1/log(W)) + O(W~/3) = O(1/log(W)). This
completes our proof. <

We can now turn this into a lower bound for testing Aj distance on discrete domains.

Proof of second half of Theorem 3: Assume for sake of contradiction that this is not the
case, and that there exists a tester taking o(m) samples. We use this tester to come up with
a continuous tester that violates Proposition 13.

We begin by proving a few technical bounds on the parameters involved. Firstly, note
that we already have a lower bound of Q(k'/2/€?), so we may assume that this is much
less than m. We now claim that m = O(min(k2/3 log'/3(3 +n/(m + k))/e*/3, k4/5 /€6/5). 1f
m < k, there is nothing to prove. Otherwise,

E2/310gY3(3 + n/(m + k) /> > m(m/k) "3 log(3 + n/(m + k))*/>.

Thus, there is nothing more to prove unless log(3 +n/(m + k)) > m/k. But, in this case,
log(3 + n/(m + k)) > log(m/k) and thus log(3 4+ n/(m + k)) = ©(log(3 + n/k)), and we are
done.
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We now let W =n/(6(m + k)), and let D and D’ be as specified in Proposition 13. We

claim that we have a tester to distinguish a p, ¢ from D from ones taken from D’ in o(m)
samples. We do this as follows: By rounding p and ¢ down to the nearest third of an integer,
we obtain p’,q’ supported on set of size n. Since p and g were piecewise constant on pieces of

size at least 1, it is not hard to see that ||p’ — ¢'||.4, > |lp — ¢l|.4, /3. Therefore, a tester to

distinguish p’ = ¢’ from ||p’ —¢’|| 4, > € can be used to distinguish p = ¢ from ||p—ql|.4, > 3e.

This is a contradiction and proves our lower bound. <
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