
Deleting and Testing Forbidden Patterns in
Multi-Dimensional Arrays
Omri Ben-Eliezer1, Simon Korman2, and Daniel Reichman3

1 Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
omribene@gmail.com

2 Department of Computer Science and Applied Mathematics, Weizmann
Institute of Science, Rehovot, Israel
simon.korman@gmail.com

3 Electrical Engineering and Computer Science, University of California,
Berkeley, CA, USA
daniel.reichman@gmail.com

Abstract
Analyzing multi-dimensional data is a fundamental problem in various areas of computer science.
As the amount of data is often huge, it is desirable to obtain sublinear time algorithms to
understand local properties of the data.

We focus on the natural problem of testing pattern freeness: given a large d-dimensional array
A and a fixed d-dimensional pattern P over a finite alphabet Γ, we say that A is P -free if it does
not contain a copy of the forbidden pattern P as a consecutive subarray. The distance of A to
P -freeness is the fraction of the entries of A that need to be modified to make it P -free.

For any ε > 0 and any large enough pattern P over any alphabet – other than a very small
set of exceptional patterns – we design a tolerant tester that distinguishes between the case that
the distance is at least ε and the case that the distance is at most adε, with query complexity
and running time cdε−1, where ad < 1 and cd depend only on the dimension d. These testers
only need to access uniformly random blocks of samples from the input A.

To analyze the testers we establish several combinatorial results, including the following d-
dimensional modification lemma, which might be of independent interest: For any large enough
d-dimensional pattern P over any alphabet (excluding a small set of exceptional patterns for the
binary case), and any d-dimensional array A containing a copy of P , one can delete this copy by
modifying one of its locations without creating new P -copies in A.

Our results address an open question of Fischer and Newman, who asked whether there exist
efficient testers for properties related to tight substructures in multi-dimensional structured data.
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1 Introduction

Pattern matching is the algorithmic problem of finding occurrences of a fixed pattern in a given
string. This problem appears in many settings and has applications in diverse domains such as
computational biology, computer vision, natural language processing and web search. There
has been extensive research concerned with developing algorithms that search for patterns in
strings, resulting with a wide range of efficient algorithms [12, 24, 19, 14, 26, 25]. Higher-
dimensional analogues where one searches for a d-dimensional pattern in a d-dimensional
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9:2 Deleting and Testing Forbidden Patterns in Multi-Dimensional Arrays

array have received attention as well. For example, the 2D case arises in analyzing aerial
photographs [7, 8] and the 3D case has applications in medical imaging.

Given a string S of length n and a pattern P of length k ≤ n, any algorithm which
determines whether P occurs in S has running time Ω(n) [13, 29] and a linear lower bound
carries over to higher dimensions. For the 2D case, when an n × n image is concerned,
algorithms whose run time is O(n2) are known [8]. These algorithms have been generalized
to the 3D case to yield running time of O(n3) [18] for n × n × n arrays. Finally it is also
known (e.g., [21]) that for the d-dimensional case it is possible to solve the pattern matching
problem in time O(d2nd logm) (where the pattern is an array of size md). It is natural to ask
which tasks of this type can be performed in sublinear (namely o(nd)) time for d-dimensional
arrays.

The field of property testing [20, 30] deals with decision problems regarding discrete
objects (e.g., graphs, functions, images) that either satisfy a certain property P or are far
from satisfying P. Here, the property P consists of all d-dimensional arrays that avoid a
predetermined pattern P . Tolerant property testing [27] is a useful extension of the standard
notion, in which the tester needs to distinguish between objects that are close to satisfying
the property and those that are far from satisfying it.

A d-dimensional k1× . . .×kd array A over an alphabet Γ is a function from [k1]× . . .× [kd]
to Γ, where for an integer k > 0 we let [k] denote the set {0, . . . , k − 1} and write [k]d =
[k]× . . .× [k]. For simplicity of presentation, all results in this paper are presented for square
arrays in which k1 = . . . = kd, but they generalize to non-square arrays in a straightforward
manner. We consider the (tolerant) pattern-freeness problem. An (ε1, ε2)-tester Q for this
problem is a randomized algorithm that is given access to a d-dimensional array A, as well as
its size and proximity parameters 0 ≤ ε1 < ε2 < 1. Q needs to distinguish with probability
at least 2/3 between the case that A is ε1-close to being P -free and the case that A is ε2-far
from being P -free. The query complexity of Q is the number of queries it makes in A.

Our interest in the pattern-freeness problem stems from several applications. In certain
scenarios of interest, we might be interested in identifying quickly that an array is far from not
containing a given pattern. In the one dimensional case, being far from not containing a given
text may indicate a potential anomaly which requires attention (e.g., an offensive word in
social network media), hence such testing algorithms may provide useful in anomaly detection.
Many computer vision methods for classifying images are feature based; being far from not
containing a certain pattern associated with a feature may be useful in rejection methods
that enable us to quickly discard images that do not possess a certain visual property.

Beyond practical applications, devising property testing algorithms for the pattern
freeness problem is of theoretical interest. In the first place, it leads to a combinatorial
characterization of the distance from being P -free. Such a characterization has proved fruitful
in graph property testing [3, 4] where celebrated graph removal lemmas were developed en
route of devising algorithms for testing subgraph freeness. We encounter a similar phenomena
in studying patterns and arrays: at the core of our approach for testing pattern freeness lies
a modification lemma for patterns which we state next. We believe that this lemma may be
of independent interest and find applications beyond testing algorithms.

For a pattern P of size k × k × . . .× k, an entry whose location in P is in {0, k − 1} ×
. . .× {0, k− 1} is said to be a corner of P . We say that P is almost homogeneous if all of its
entries but one are equal, and the different entry lies in a corner of P . Finally, P is removable
(with respect to the alphabet Γ) if for any d-dimensional array A over Γ and any copy of P in
A, one can destroy the copy by modifying one of its entries without creating new P -copies in
A. The modification lemma states that for any d, and any large enough pattern P , when the
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alphabet is binary it holds that P is removable if and only if it is not almost homogeneous,
and when the alphabet is not binary, P is removable provided that it is large enough.

Recent works [10, 11] have obtained tolerant testers for visual properties. As observed in
these works, tolerance is an attractive property for testing visual properties as real-world
images are often noisy. With the modification lemma at hand, we show that when P is
removable, the (relative) hitting number of P in A, which is the minimal size of a set of entries
that intersects all P -copies in A divided by |A|, differs from the distance of A from P -freeness
by a multiplicative factor that depends only on the dimension d of the array. This relation
allows us to devise very fast (5−dε, ε)-tolerant testers for P -freeness, as the hitting number
of P in A can be well approximated using only a very small sample of blocks of entries from
A. The query complexity of our tester is cd/ε, where cd is a positive constant depending
only on d. Note that our characterization in terms of the hitting number is crucial: Merely
building on the fact that A contains many occurrences of P (as can be derived directly from
the modification lemma) and randomly sampling O(1/ε) possible locations in A, checking
whether the sub-array starting at these locations equals P , would lead to query complexity
of O(kd/ε). Note that our tester is optimal (up to a multiplicative factor that depends on d),
as any tester for this problem must make Ω(1/ε) queries.

The one dimensional setting, where one seeks to determine quickly whether a string S is
ε-far from being P -free is of particular interest. We are able to leverage the modification
lemma and show that the distance of a string S from being P -free for a fixed pattern P

(that is not almost homogeneous) is exactly equal to the hitting number of P in A. For an
arbitrary constant 0 < c < 1, this characterization allows us to devise a ((1− c)ε, ε)-tolerant
tester making Oc(1/ε) queries for this case. For the case of almost homogeneous patterns,
and an arbitrary constant c > 0 , we devise a ((1/(16 + c))ε, ε)-tolerant tester that makes
Oc(1/ε) queries. Whether tolerant testers exist for almost homogenous patterns of dimension
larger than 1 is an open question.

2 Related Work

The problem of testing pattern freeness is related to the study of testing subgraph freeness
(see, for example, [1, 4, 2]). This line of work examines how one can test quickly whether a
given graph G is H-free or ε-far from being H-free, where H is a fixed subgraph. In this
problem, a graph is ε-far from being H-free if at least an ε-fraction of its edges and non-edges
need to be altered in order to ensure that the resulting graph does not contain H as a
(not necessarily induced) subgraph. A key component in these works are removal lemmas:
typically such lemmas imply that if G is ε-far from being H-free, then it contains a large
number of copies of H. For example, the triangle removal lemma asserts that for every ε > 0,
there exists δ = δ(ε) > 0 such that if an n-vertex graph G is ε-far from being triangle free,
then G contains at least δn3 triangles (see, e.g., [6] and the references within).

Alon et. al. [3] studied the problem of testing regular languages. Testing pattern-freeness
(1-dimensional, binary alphabet, constant pattern length k) is a special case of the former,
since the language L of all strings avoiding a fixed pattern is regular. The query complexity of
their tester is O

(
s3

ε · ln
3( 1
ε )
)
, where s is the minimal size of a DFA that accepts the regular

language L. In the case of the regular language considered here a simple pumping-lemma
inspired argument shows that s ≥ Ω(k). Hence the upper bound on testing pattern freeness
implied by their algorithm is O

(
k3

ε · ln
3( 1
ε )
)
. Our 1D tester solves a very restricted case of

the problem the tester of [3] deals with, but it achieves a query complexity of O(1/ε) in this
setting. Moreover, our tester is much simpler and can be applied in the more general high
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9:4 Deleting and Testing Forbidden Patterns in Multi-Dimensional Arrays

dimensional setting, or when the pattern length k is allowed to grow as a function of the
string length n.

The problem of testing submatrix freeness is investigated in [15, 16, 5, 17, 2]. As opposed to
our case, which is concerned with tight submatrices, all of these results deal with submatrices
that are not necessarily tight (i.e. the rows and the columns need not be consecutive).
Quantitatively, the submatrix case is very different from our case: in our case P -freeness can
be testable using O(ε−1) queries, while in the submatrix case, for a binary submatrix of size
k× k a lower bound of ε−Ω(k2) on the needed number of queries is easy to obtain, and in the
non-binary case there exist 2× 2 matrices for which there exists a super polynomial lower
bound of ε−Ω(log 1/ε).

The 2D part of our work adds to a growing literature concerned with testing properties of
images [28, 31, 10]. Ideas and techniques from the property testing literature have recently
been used in the fields of computer vision and pattern recognition [22, 23].

3 Notation and definitions

An (n, d)-array A over an alphabet Γ is a function from [n]d to Γ. The x = (x1, . . . , xd) entry
of A, denoted by Ax, is the value of the function A at location x. Let P be a (k, d)-array
over an alphabet Γ of size at least two. We say that a d-dimensional array A contains a
copy of P (or a P -copy) starting in location x = (x1, . . . , xd) if for any y ∈ [k]d we have
Ax+y = Py. Finally, A is P -free if it does not contain copies of P .

A property P of d-dimensional arrays is simply a family of such arrays over an alphabet
Γ. For an array A and a property P, the absolute distance dP(A) of A to P is the minimal
number of entries that one needs to change in A to get an array that satisfies P . The relative
distance of A to P is δP(A) = dP(A)/|A|, where clearly 0 ≤ δP(A) ≤ 1 for any nontrivial P
and A. We say that A is ε-close to P if δP(A) ≤ ε, and ε-far if δP(A) ≥ ε. In this paper we
consider the property of P -freeness, which consists of all P -free arrays. The absolute and
relative distance to P -freeness are denoted by dP (A) and δP (A), respectively.

For an array A and a pattern P , a deletion set is a set of entries in A whose modification
can turn it to be P -free, and dP (A) is called the deletion number, since it is the size of a
minimal deletion set. Similarly, a given set of entries in A is a hitting set if every P -copy in
A contains at least one of these entries. The hitting number hP (A) is the size of the minimal
hitting set for P in A. For all notation here and above, in the 1-dimensional case we replace
A by S (for String).

We use several definitions from [27]. Let P be a property of arrays and let h1, h2 : [0, 1]→
[0, 1] be two monotone increasing functions. An (h1, h2)-distance approximation algorithm
for P is given query access to an unknown array A. The algorithm outputs an estimate δ̂
to δP (A), such that with probability at least 2/3 it holds that h1(δP (A)) ≤ δ̂ ≤ h2(δP (A)).
For a property P and for 0 ≤ ε1 < ε2 ≤ 1, an (ε1, ε2)-tolerant tester for P is given query
access to an array A. The tester accepts with probability at least 2/3 if A is ε1-close to P,
and rejects with probability at least 2/3 if A is ε2-far from P. In the “standard” notion of
property testing, ε1 = 0. Thus, any tolerant tester is also a tester in the standard notion.
Finally, we define the additive (multiplicative) tolerance of the tester above as ε2 − ε1 (ε2/ε1
respectively).
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Table 1 Summary of results. 0 < τ < 1 and c > 0 are arbitrary constants. αc is a constant that
depends only on c. βd,τ is a constant that depends only on d and τ . ’modification lemma’ specifies
if patterns are classified as removable or not. The ’tester tolerance’ is multiplicative.

dim. template type modification lemma tester query
tolerance complexity

1D general removable for any k 1/(1 − τ) O(1/ετ3)
almost homog. not removable for any k 16 + c αc/ε

2+D general removable for k > 3 · 2d (1 − τ)−dαd βd,τ/ε

almost homog. not removable for any k − −

4 Main Results

The modification lemma presented is central in the study of minimal deletion sets. It classifies
the possible patterns into ones that are removable and ones that are not. The result that
the vast majority of patterns are removable is used extensively throughout the paper in
the design and proofs of algorithms for efficient testing of pattern freeness (in 1 and higher
dimensions).

Our 1-dimensional modification lemma (Lemma 1) gives the following full characterization
of 1-dimensional patterns (i.e. strings). A binary pattern is removable if and only if it is
not almost homogeneous, while any pattern over a larger alphabet is removable. The
multidimensional version of the lemma (Lemma 2) makes the exact same classification, but
for (k, d)-arrays for which k ≥ 3 · 2d.

The fact that most patterns are removable is very important for analyzing the deletion
number. For example, observe that a removable pattern appears at least dP (A) times
(possibly with overlaps) in the array A, so an ε-tester can simply check for the presence of
the d-dimensional pattern in 1/ε random locations in the array, using O(kd/ε) queries.

Another important part of our work makes explicit connections between the deletion
number and the hitting number for both 1 and higher dimensions. These are needed in order
to get improved testers (e.g. for getting rid of k in the sample complexity) in d-dimensions.

In the 1-dimensional removable case we show that the deletion number dP (S) equals the
hitting number hP (S). We derive a ((1− τ)ε, ε)-tolerant tester for any fixed τ > 0 and any
0 < ε ≤ 1, whose number of queries and running time are O(ε−1τ−3) (Corollary 13).

For higher dimensions, we show (Lemma 11) that hP (A) ≤ dP (A) ≤ αdhP (A) ≤ αdk−d,
where αd = 4d + 2d depends only on the dimension d. This bound gives a ((1− τ)dα−1

d ε, ε)-
tolerant tester making Cτ ε−1 queries, where Cτ = O(1/τd(1 − (1 − τ)d)2) (Theorem 15).
The running time here is C ′τ ε−1 where C ′τ depends only on τ .

In the full version of the paper [9], for the 1-dimensional setting we also provide dedicated
algorithms to handle the almost homogeneous (non-removable) patterns, obtaining an O(n)
algorithm for computing the deletion number as well as an (ε/(16 + c), ε)-tolerant tester, for
any constant c > 0, using αcε−1 queries, where αc depends only on c.

Finally, we provide a lower bound of Ω(1/ε) (full proof in can be found in [9]) for any
general tester of pattern freeness. Our main results are summarized in Table 1.

A natural question is what happens if one is concerned with pattern freeness with respect
to several patterns simultaneously. Namely, testing quickly whether an array satisfies the
property of not containing a fixed set of patterns P1, . . . , Pr with r > 1, or is far from
satisfying this property. Our results do not apply to this setting, with the main obstacle
being our modification lemmas. Namely, the difficulty is that for several distinct patterns
P1 . . . Pr, modifying an occurrence of Pi may create an new occurrence of Pj (where i 6= j).

ICALP 2017



9:6 Deleting and Testing Forbidden Patterns in Multi-Dimensional Arrays

5 Modification Lemma

We begin with the proof of the 1-dimensional modification lemma. The main strategy here is
to consider the longest streaks of zeros and ones (0s and 1s) in the pattern - a strategy that
cannot be used in higher dimensions.

I Theorem 1 (1D Modification Lemma). For a 1-dimensional pattern P over an alpha-
bet Γ:
1. If |Γ| = 2 then P is removable if and only if it is not almost homogeneous.
2. If |Γ| ≥ 3 then P is removable.

I Remark. The second statement of the theorem can be easily derived from the first statement.
If P does not contain all letters in Γ then it is clearly removable, as changing any of its
entries to any of the missing letters cannot create new P -copies. Otherwise, we can reduce
the problem to the binary case: let σ1, σ2 be the letters in Γ that appear the smallest number
of times in P (specifically, if P is of length 3 and has exactly three different letters, we pick
σ1 and σ2 to be the first letter and the last letter in P , respectively). Consider the following
pattern P ′ over {0, 1}: P ′x = 0 if Px ∈ {σ1, σ2} and P ′x = 1 otherwise. Observe that P ′ is
not almost homogeneous, implying that it is removable. It is not hard to verify now that P
is removable as well.

Proof of Theorem 1. As discussed above, it is enough to consider the binary case. Let
P = P0 . . . Pk−1 be a binary pattern of length k that is not almost homogeneous, and let S
be an arbitrary binary string containing P . We need to show that one can flip one of the
bits of P without creating a new P -copy in S. We assume that P contains both 0s and 1s
(i.e. it is not homogeneous) otherwise flipping any bit would work. We may assume that
k ≥ 3 (since for k = 1, 2 all patterns are homogeneous or almost homogeneous). Let us also
assume that P starts with a 1, i.e. P0 = 1 and let t ≤ k − 1 be the length of the longest
0-streak (sub-string of consecutive 0s) in P . Let i > 0 be the leftmost index in which such a
0-streak of length t begins. Clearly, Pi−1 = 1 and Pi = . . . = Pi+t−1 = 0.

If i+ t ≤ k − 1 (i.e. the streak is not at the end of P ) then Pi+t = 1 and in such a case
if we modify Pi+t to 0, the copy of P is removed without creating new P -copies in S. To
see this, observe that a new copy cannot start at the bit flip location i + t or within the
0-streak at any of its locations i, . . . , i+ t− 1 since the bits in these locations are 0 while the
starting bit of P is 1. Note that flipping Pi+t does not create new P -copies starting after the
location of Pi+t in S. Furthermore, no new copy starting before Pi is created since otherwise
it would contain a 0-streak of length t+ 1.

Thus, we may assume that P contains exactly one 0-streak of length t, lying at its last t
locations, so Pk−1 = 0. Denote by s the length of the longest 1-streak in P ; a symmetric
reasoning shows that P begins with its only 1-streak of length s. If P is not of the form 1s0t,
it can be verified that flipping Ps (the leftmost 0 in P ) to 1 does not create any P -copy. The
only case left is P = 1s0t, where s, t ≥ 2 since P is not almost homogeneous. Consider the
bit of the string S that is to the left of P . If it is a 0 then we flip P1 to 0 and otherwise, we
flip P0 to 0, where in both cases no new copy is created. J

We now turn to proving the high dimensional version of the modification lemma. Here,
as opposed to the 1-dimensional case, there exist patterns that are neither removable nor
almost-homogeneous. However, we show that if a pattern is large enough and not almost
homogeneous then it is removable.
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I Theorem 2 (Modification Lemma). Let d > 1 and let P be a (k, d)-array over the alphabet
Γ where k ≥ 3 · 2d.
1. If |Γ| = 2 then P is removable if and only if it is not almost homogeneous.
2. If |Γ| ≥ 3 then P is removable.

I Remark. Theorem 2 states that any large enough binary pattern which is not almost
homogeneous is removable. The requirement that the pattern is large enough is crucial, as
can be seen from the following 2-dimensional example. The 2× 2 pattern P = [01; 01] is in
the center of the 4× 4 matrix A = [0101; 0011; 0011; 0101] . Flipping any bit in P creates a
new P -copy in A. This example easily generalizes to a 2× . . .× 2 pattern in a 4× . . .× 4
array, while the dependence of k on d is exponential in the statement of Theorem 2. It will
be interesting to understand what is the correct order of magnitude of this dependence.

Proof of Theorem 2. The reduction from a general alphabet to a binary one, described after
the statement of Theorem 1, can be used here as well. Thus, it is enough to prove the first
statement of the theorem. If P is binary and almost homogeneous then it is not removable:
Without loss of generality P(0,...,0) = 1 and Px = 0 for any x 6= (0, . . . , 0). Consider a
(2k, d)-array A such that M(0,...,0) = M(1,...,1) = 1 and A = 0 elsewhere. Modifying any bit
of the P -copy starting at (1, . . . , 1) creates a new P -copy in A, hence P is not removable.

The rest of the proof is dedicated to the other direction. Suppose that P is a binary
(k, d)-array that is not removable. We would like to show that P must be almost homogeneous.
As P is not removable, there exists a binary array A containing a copy of P such that flipping
any single bit in this copy creates a new copy of P in A. This copy of P will be called the
template of P in A.

Clearly, all of the new copies created by flipping bits in the template must intersect the
template, so we may assume that A is of size (3k − 2)d and that the template starts in
location k̃ = (k − 1, . . . , k − 1). For convenience, let I = [k]d denote the set of indices of P .
For any x ∈ I let x̄ = x+ k̃; x̄ is the location in A of bit x of the template.

Roughly speaking, our general strategy for the proof is to show that there exist at most
two “special” entries in P such that when we flip a bit in the template (creating a new copy
of P in A) the flipped bit usually plays the role of one of the special entries in the new copy.
We then show that in fact, there must be exactly one special entry, which must lie in a
corner of P , and that all non-special entries are equal while the special entry is equal to their
negation. This will finish the proof that P is almost homogeneous.

I Definition 3. Let i ≤ d and let δ be positive integers. Let x = (x1, . . . , xd) and y =
(y1, . . . , yd) be d-dimensional points. The pair (x, y) is (i, δ)-related if yi−xi = δ and yj = xj
for any j 6= i. An (i, δ)-related pair (x, y) is said to be an (i, δ)-jump in P if Px 6= Py.

In other words, (x, y) is (i, δ)-related if there is an increasing path of length δ along
coordinate i in the hypergrid graph on [n]d.

I Lemma 4. For any 1 ≤ i ≤ d there exists 0 < ∆i < k/3 such that at most two of the
(i,∆i)-related pairs of points from I are (i,∆)-jumps in P .

Proof. Recall that, by our assumption, flipping any of the K = kd bits of the template creates
a new copy of P in A. Consider the following mapping m : I → [2k−1]d. m(x1, . . . , xd) is the
starting location of a new copy of P created in A as a result of flipping bit x = (x1, . . . , xd)
of the template (which is bit x̄ of A). If more than one copy is created by this flip, then we
choose the starting location of one of the copies arbitrarily.

ICALP 2017



9:8 Deleting and Testing Forbidden Patterns in Multi-Dimensional Arrays

Figure 1 Illustration for Lemma 4. A 2-dimensional example, where i is the vertical coordinate:
Flipping the bit (of the template P ) at location ā creates the P -copy Qa at location m(a). Similarly,
the copy Qb is created at location m(b). Note that the pair of points (x̄, ȳ) (which is (x, y) in P )
and the copy locations pair (m(a),m(b)) are both (i,∆i)-related. The values Px and Py (Mx̄ and
Mȳ) must be equal.

Observe that m is injective, and let S be the image of m, where |S| = K. Let 1 ≤ i ≤ d
and consider the collection of (1-dimensional) lines

Li =
{
{x1} × . . .× {xi−1} × [2k − 1]× {xi+1} × . . .× {xd} | ∀j 6= i : xj ∈ [2k − 1]

}
.

Clearly
∑
`∈Li
|S∩`| = K. On the other hand, |Li| =

∏
j 6=i(2k−1) < 2d−1∏

j 6=i k = 2d−1K/k,
so there exists a line ` ∈ Li for which |S ∩ `| > k/2d−1 ≥ 6. Hence |S ∩ `| ≥ 7. Let
α1 < . . . < α7 be the smallest i-indices of elements in S ∩ `. Since α7 − α1 < 2k − 1 there
exists some 1 ≤ l ≤ 6 such that αl+1 − αl < k/3. That is, S contains an (i,∆i)-related pair
with 0 < ∆i < k/3. In other words, there are two points a, b ∈ I such that flipping ā (b̄)
would create a new P -copy, denoted by Qa (Qb respectively), which starts in location m(a)
(m(b) respectively) in A, and (m(a),m(b)) is an (i,∆i)-related pair.

The following claim finishes the proof of the lemma and will also be useful later on.

I Claim 5. For a and b as above, let (x, y) be a pair of points from I that are (i,∆i)-related
and suppose that y 6= ā−m(a) and that x 6= b̄−m(b). Then Px = Py.

Proof. The bits that were flipped in A to create Qa and Qb are ā, b̄ respectively. Since
y + m(a) 6= ā, the entry My+m(a) serves as the entry of the P -copy Qa in location y, so
Py = My+m(a). Similarly, since x+m(b) 6= b̄, we have Px = Mx+m(b). But since both pairs
(x, y) and (m(a),m(b)) are (i,∆i)-related, we get that m(b)−m(a) = y − x, implying that
x+m(b) = y +m(a), and therefore Px = Mx+m(b) = My+m(a) = Py, as desired. J

Clearly, the number of (i,∆i)-related pairs that do not satisfy the conditions of the claim
is at most two, finishing the proof of Lemma 4. J

Let ∆ = (∆1, . . . ,∆d) where for any 1 ≤ i ≤ d, we take ∆i that satisfies the statement of
Lemma 4 (its specific value will be determined later).

I Definition 6. Let x ∈ I. The set of ∆-neighbours of x is

Nx =
{
y ∈ I

∣∣ ∃i : (x, y) is (i,∆i)-related or (y, x) is (i,∆i)-related
}
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Figure 2 Illustration for Definition 8. Recall that flipping a bit ā in A creates a new P -copy Qa
(which contains ā), located at the point m(a) in the coordinates of A. The bits x and a are mapped
to y and f(a) respectively.

and the number of ∆-neighbours of x is nx = |Nx|, where d ≤ nx ≤ 2d. We say that x
is a ∆-corner if nx(∆) = d and that it is ∆-internal if nx(∆) = 2d. Furthermore, x is
(∆, P )-isolated if Px 6= Py for any y ∈ Nx, while it is (∆, P )-generic if Px = Py for any
y ∈ Nx.

When using the above notation, we sometimes omit the parameters (e.g. simply writing
isolated instead of (∆, P )-isolated) as the context is usually clear.

The definition imposes a symmetric neighborhood relation, that is, x ∈ Ny holds if
and only if y ∈ Nx. If x ∈ Ny we say that x and y are ∆-neighbours. Note that a point
x = (x1, . . . , xd) ∈ I is a ∆-corner if xi < ∆i or xi ≥ k −∆i for any 1 ≤ i ≤ d, and that x is
∆-internal if ∆i ≤ xi < k −∆i for any 1 ≤ i ≤ d.

I Claim 7. Two (∆, P )-isolated points in I cannot be ∆-neighbors.

Proof. Suppose towards contradiction that x = (x1, . . . , xd) and y = (y1, . . . , yd) are two
distinct (∆, P )-isolated points and that (x, y) is (i,∆i)-related for some 1 ≤ i ≤ d. Since
∆i < k/3, at least one of x or y participates in two different (i,∆i)-related pairs: if xi < k/3
then yi + ∆i = xi + 2∆i < k so y is in two such pairs, and otherwise xi ≥ ∆i, meaning that x
participates in two such pairs. Assume without loss of generality that the two (i,∆i)-related
pairs are (t, x) and (x, y), then Pt 6= Px and Px 6= Py as x is isolated. By Lemma 4, these
are the only (i,∆i)-jumps in P .

Choose an arbitrary j 6= i and take v = (v1, . . . , vd) where vj = ∆j and vl = 0 for any
l 6= j. Recall that ∆j < k/3, implying that either xj + vj < k or xj − vj ≥ 0. Without
loss of generality assume the former, and let x′ = x+ v and y′ = y + v. Since x and y are
(∆, P )-isolated, and since x′ ∈ Nx and y′ ∈ Ny, we get that Px′ 6= Px 6= Py 6= Py′ , and thus
Px′ 6= Py′ (as the alphabet is binary). Therefore, (x′, y′) is also an (i,∆i)-jump in P , a
contradiction. J

I Definition 8. For three points x, y, a ∈ I, we say that x is mapped to y as a result of
the flipping of a if x̄ = m(a) + y. Moreover, define the function f : I → I as follows:
f(x) = x̄−m(x) is the location to which x is mapped as a result of flipping x.

In other words, x is mapped to y as a result of flipping the bit a if bit x̄ of A “plays the
role” of bit y in the new P -copy Qa that is created by flipping a. Note that

If x̄ −m(a) /∈ I then x is not mapped to any point. However, this cannot hold when
x = a, so the function f is well defined.
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For a fixed a, the mapping as a result of flipping a is linear: if x and y are mapped to x′
and y′ respectively, then y− x = y′ − x′. In particular, if (x, y) is (i,∆i)-related for some
1 ≤ i ≤ d then (x′, y′) is also (i,∆i)-related.
If x is mapped to y as a result of flipping a and x 6= a, then Px = Py.
On the other hand, we always have Px 6= Pf(x).
If x is ∆-internal and (∆, P )-generic, then f(x) must be (∆, P )-isolated.

The first four statements are easy to verify. To verify the last one, suppose that x is internal
and generic and let z ∈ Nf(x); we will show that Pf(x) 6= Pz. Since x is internal, there exists
y ∈ Nx such that y − x = z − f(x). Then y is mapped to z as a result of flipping x, since
ȳ = y+ k̃ = z + (x+ k̃)− f(x) = z + x̄− f(x) = z +m(x). Therefore Py = Pz. On the other
hand, Px = Py as x is generic and Px 6= Pf(x), and we conclude that Pz 6= Pf(x).

I Lemma 9. There is exactly one (∆, P )-isolated point in I.

Proof. Let S be the set of isolated points; our goal is to show that |S| = 1. Consider the set

C = {(x, y) : x, y ∈ I, (x, y) is an (i,∆i)-jump for some 1 ≤ i ≤ d}.

Clearly, each point in S is contained in at least d pairs from C. By claim 7 no pair of
isolated points are ∆-neighbours and therefore every pair in C contains at most one point
from S. By Lemma 4, |C| ≤ 2d which implies that |S| ≤ 2. On the other hand we have
|S| ≥ 1. To see this, observe that the number of (∆, P )-internal points in I is greater than∏d
i=1 k/3 ≥ 2d2 , while the number of non-∆-generic points is at most 2|C| ≤ 4d, implying

that at least 2d2 − 4d > 0 of the internal points are generic. Therefore, pick an internal
generic point z ∈ I. As we have seen before, f(z) must be isolated.

To complete the proof it remains to rule out the possibility that |S| = 2. If two
different (∆, P )-isolated points a = (a1, . . . , ad) and b = (b1, . . . , bd) exist, each of them must
participate in exactly d pairs in C. This implies that both of them are ∆-corners with d
neighbors. It follows that every ∆-internal point z must be generic (since an internal point
and a corner point cannot be neighbours), implying that either f(z) = a or f(z) = b.

Let 1 ≤ i ≤ d and define δi > 0 to be the smallest integer such that there exists an
(i, δi)-related pair (x, y) of generic internal points with f(x) = f(y). For this choice of x and
y we have m(y) −m(x) = ȳ − f(y) − (x̄ − f(x)) = ȳ − x̄ = y − x, so (m(x),m(y)) is also
(i, δi)-related. In particular, we may take ∆i = δi (Recall that until now, we only used the
fact that ∆i < k/3, without committing to a specific value). Without loss of generality we
may assume that f(x) = f(y) = a. By Claim 5, any pair (s, t) of (i,∆i)-related points for
which s 6= ȳ −m(y) = f(y) = a and t 6= x̄−m(x) = f(x) = a is not an (i,∆i)-jump. Since b
is not a ∆-neighbour of a, it does not participate in any (i,∆i)-jump, contradicting the fact
that it is (∆, P )-isolated. This finishes the proof of the lemma. J

Finally, we are ready to show that P is almost homogeneous. Let a = (a1, . . . , ad) be the
single (∆, P )-isolated point in I. Consider the set

J = {x = (x1, . . . , xd) ∈ I : ∆i ≤ xi < ∆i + 2d for any 1 ≤ i ≤ d}

and note that all points in J are ∆-internal. Let 1 ≤ i ≤ d and partition J into (i, 1)-related
pairs of points. There are 2d2−1 ≥ 4d pairs in the partition. On the other hand, the number
of non-generic points in J is at most 2|C| − (d − 1) < 4d (to see it, count the number of
elements in pairs from C and recall that a is contained in at least d pairs). Therefore, there
exists a pair (x, y) in the above partition such that x and y are both generic. As before,



O. Ben-Eliezer, S. Korman, and D. Reichman 9:11

f(x) and f(y) must be isolated, and thus f(x) = f(y) = a, implying that ∆i = δi = 1. We
conclude that ∆ = (1, . . . , 1).

Claim 5 now implies that any pair (s, t) of (i, 1)-related points for which s 6= ȳ −m(y) =
f(y) = a and t 6= x̄−m(x) = f(x) = a is not an (i, 1)-jump. That is, for any two neighbouring
points s, t 6= a in I, Ps = Pt, implying that Px = Py for any x, y 6= a (since ∆ = (1, . . . , 1),
a ∆-neighbour is a neighbour in the usual sense). To see this, observe that for any two
points x, y 6= a there exists a path x0x1 . . . xt in I where xj and xj+1 are neighbours for any
0 ≤ j ≤ t− 1, the endpoints are x0 = x and xt = y, and xj 6= a for any 0 < j < t. Since a is
isolated, it is also true that Pa 6= Px for any x 6= a.

To finish the proof that P is almost homogeneous, it remains to show that a is a corner.
Suppose to the contrary that 0 < ai < k − 1 for some 1 ≤ i ≤ d and let b, c ∈ I be the
unique points such that (a, b) and (c, a) are (i, 1)-related, respectively. Clearly f(b) = a, so a
is mapped to ā −m(b) = ā − b̄ + f(b) = c − a + a = c as a result of flipping b, which is a
contradiction - as Pa 6= Pc and b 6= a, c. This finishes the proof. J

6 From Deletion to Testing

We use the modification lemmas of Section 5 to investigate combinatorial characterizations
of the deletion number, which in turn allow efficient approximation and testing of pattern
freeness for removable patterns. In particular, we prove that minimal deletion sets and
minimal hitting sets are closely related. Due to space considerations, the proofs of all results
in this Section do not appear here, and are given in the full version of this paper [9].

The characterizations for almost homogeneous 1-dimensional patterns are also given in
the full version of the paper [9], along with an optimal tester for pattern freeness in that
case. The rest of this section deals with removable patterns, for both the 1-dimensional and
multi-dimensional settings.

In the 1-dimensional case, we show that for any removable pattern there exist certain
minimal hitting sets which are in fact minimal deletion sets. These are sets where none of
the flips create new occurrences. Our constructive proof shows how to build such a set.

I Theorem 10 (dP (S) equals hP (S)). For a binary string S of length n and a binary pattern
P of length k that is removable, the deletion number dP (S) equals the hitting number hP (S).

For the multidimensional case, we show that when P is removable, the hitting number
hP (A) of A approximates the deletion number up to a multiplicative constant that depends
only on the dimension d. This is done in two stages, the first of which involves the analysis
of a procedure that proves the existence of a large collection of P -copies with small pairwise
overlaps, among the set of all P -copies in A. This procedure heavily relies on the fact that P
is removable. The second stage shows that since these copies have small overlaps, their hitting
number cannot be much different than their deletion number. The result is summarized in
Lemma 11.

I Lemma 11 (Relation between distance and hitting number). Let P be a removable (k, d)-
array over an alphabet Γ, and let A be an (n, d)-array over Γ. Let αd = 4d + 2d. It holds
that: hP (A) ≤ dP (A) ≤ αdhP (A) ≤ αd(n/k)d.

We describe efficient distance approximation algorithms and testers for both the 1-
dimensional and the d-dimensional removable patterns. The tolerance of the testers depends
only on d, and the query complexity is linear in ε−1 where the constant depends only on d
(and not on k; using a completely naive tester, it can be seen that the tolerance and the query
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complexity depend on k). The distance approximation algorithms and the testers essentially
estimate the hitting number by sampling a small set of O(k)× . . .×O(k) uniformly chosen
consecutive subarrays of the input array, and calculating the hitting number of the pattern
P in each of these samples.

I Theorem 12 (Approximating the deletion number in 1-dimension). Let P be a removable string
of length k and fix constants 0 < τ < 1, 0 < δ < 1/k. Let h1, h2 : [0, 1] → [0, 1] be defined
as h1(ε) = (1− τ)ε− δ and h2(ε) = ε+ δ. There exists an (h1, h2)-distance approximation
algorithm for P -freeness with query complexity and running time of O(1/kτδ2).

Note that dP (S) = hP (S) ≤ n/k always holds, so having an additive error parameter of
δ ≥ 1/k is pointless. The proof of Theorem 12 can be adapted to derive an (ε1, ε2)-tolerant
tester for any 0 ≤ ε1 < ε2 ≤ 1, yielding the following multiplicative-error tester.

I Corollary 13 (Multiplicative tolerant tester for pattern freeness in 1-dimension). Fix 0 < τ < 1.
For any 0 < ε ≤ 1 there exists a ((1 − τ)ε, ε)-tolerant tester whose number of queries and
running time are O(ε−1τ−3).

For the multidimensional case, our distance approximation algorithm and tolerant tester
for P -freeness are given in Theorems 14 and 15.

I Theorem 14 (Approximating the deletion number in multidimensional arrays). Let P be a
removable (k, d)-array and fix constants 0 < τ ≤ 1, 0 ≤ δ ≤ 1/kd. Let h1, h2 : [0, 1]→ [0, 1]
be defined as h1(ε) = (1− τ)dα−1

d ε− δ and h2(ε) = ε+ δ. There exists an (h1, h2)-distance
approximation algorithm for P -freeness making at most γ/kdτdδ2 queries, where γ > 0 is an
absolute constant, and has running time ζτ/kdδ2 where ζτ is a constant depending only on τ .

I Theorem 15 (Multiplicative tolerant tester for pattern freeness in multidimensional arrays).
Fix 0 < τ ≤ 1 and let P be a removable (k, d)-array. For any 0 < ε ≤ 1 there exists a
((1− τ)dα−1

d ε, ε)-tolerant tester making Cτ ε−1 queries, where Cτ = O(1/τd(1− (1− τ)d)2).
The running time is C ′τ ε−1 where C ′τ depends only on τ .

7 Discussion and Open Questions

We have provided efficient algorithms for testing whether high-dimensional arrays do not
contain P for any fixed removable pattern P . The results suggest several interesting open
questions on the problem of pattern-freeness and more generally, on local properties - where
we say that a property P is k-local (for k � n) if for any array A not satisfying P, there
exists a consecutive subarray of A of size at most k× . . .× k which does not satisfy P as well.
That is, a property is local if any array not satisfying P contains a small ‘proof’ for this fact.
Note that P -freeness is indeed k-local where k is the side length of P , and that a property
P is k-local if and only if there exists a family F of arrays of size at most k × . . .× k each,
such that A satisfies P if and only if it does not contain any consecutive sub-array from F .
That is, to understand the general problem of testing local properties of arrays we will need
to understand the testing of F-freeness, where F is a family of forbidden patterns (rather
than a single forbidden pattern). As mentioned, it is not clear how to apply our methods to
develop testers for families of patterns. Devising testers for this case is an interesting open
question.

The problem of approximate pattern matching is of interest as well. The family of
forbidden patterns for this problem might consist of a pattern and all patterns that are
close enough to it, and the distance measures between patterns might also differ from the
Hamming distance (e.g., `1 distance for grey-scale patterns).
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Finally, it is desirable to settle the problem of testing pattern freeness for the almost
homogenous case by either finding an efficient tester for the almost homogeneous multi-
dimensional case, or proving that an efficient tester cannot exist for such patterns. It is also
of interest to examine which of the [k]d patterns with k < 3 · 2d are removable.
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