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Abstract
The n-variable PARITY function is computable (by a well-known recursive construction) by
AC0 formulas of depth d+ 1 and leafsize n·2dn1/d . These formulas are seen to possess a certain
symmetry: they are syntactically invariant under the subspace P of even-weight elements in
{0, 1}n, which acts (as a group) on formulas by toggling negations on input literals. In this
paper, we prove a 2d(n1/d−1) lower bound on the size of syntactically P -invariant depth d + 1
formulas for PARITY. Quantitatively, this beats the best 2Ω(d(n1/d−1)) lower bound in the non-
invariant setting [16].
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1 Introduction

Let U be a linear subspace of {0, 1}n. We say that a Boolean function f : {0, 1}n → {0, 1}
is U-invariant if f(x) = f(x ⊕ u) for all u ∈ U and x ∈ {0, 1}n. (Note that U -invariant
Boolean functions are in one-to-one correspondence with functions from the quotient space
{0, 1}n/U to {0, 1}.) An obvious example is the PARITY function x 7→

⊕n
i=1 x, which is

P -invariant where P is the linear subspace of even-weight elements in {0, 1}n.
We may also view U as a group that acts on the set of n-variable Boolean circuits (as

well as the set of n-variable Boolean formulas). Here we consider circuits with unbounded
fan-in AND and OR gates and inputs labeled by literals in the set {X1, X1, . . . , Xn, Xn},
also known as AC 0 circuits in the setting where depth is bounded. For a circuit C and an
element u ∈ U , let Cu be the circuit obtained from C by negating the ith pair of literals (i.e.
exchanging Xi and Xi as labels on inputs) for all coordinates i ∈ [n] such that ui = 1. This
action of U on circuits is compatible with the action on Boolean functions: for all u ∈ U and
x ∈ {0, 1}n, we have Cu(x) = C(x⊕ u).

There are two notions of U -invariance for circuits. We say that C is syntactically U-
invariant if C is identical to Cu for every u ∈ U (we define this notion precisely for formulas),
while we say that C is semantically U-invariant if it computes a U -invariant function.
Syntactic U -invariance clearly implies semantic U -invariance. However, the converse is false:
a circuit may compute a U -invariant function without being syntactically U -invariant.

For a U -invariant Boolean function f , we define its U-invariant circuit size as the
minimum number of gates in a syntactically U -invariant circuit that computes it. This
quantity may be compared to the usual (“non-invariant”) circuit size of f . There are several
questions we may ask: What gap, if any, is there between the U -invariant circuit size and
non-invariant circuit size of f? Are lower bounds for U -invariant circuit size easier to prove,
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and do they suggest new strategies for proving lower bound in the non-invariant setting?
The same questions may be asked with respect to U -invariant versions of other complexity
measures, such as formula size and bounded-depth versions of both circuit and formula size
(noting that the action of U on circuits preserves fan-out and depth).1

In this paper, we focus on bounded-depth formula size. Our primary target is the P -
invariant PARITY function where P is the linear subspace of even-weight elements in {0, 1}n.
We start from the observation that the best known construction of bounded-depth circuits
and formulas for PARITY are syntactically P -invariant. Here we refer to the well-known
recursive construction, for all d ≥ 1, of depth d+ 1 circuits and formulas for PARITY, of
size at most n·2n1/d and n·2dn1/d respectively. The main result of this paper (Theorem 1)
yields a nearly matching lower bound of 2d(n1/d−1) on the P -invariant depth d+ 1 formula
size of PARITY. This implies a 2n1/d−1 lower bound on P -invariant depth d + 1 circuit
size.2 Quantitatively, the lower bounds are stronger than the best known Ω(2 1

10n
1/d) and

Ω(2 1
84d(n1/d−1)) lower bounds for non-invariant depth d+ 1 circuits [10] and formulas [16],

respectively. Qualitatively, syntactic P -invariance appears to be a severe restriction and
unnatural from the standpoint of computation.

The general form of our lower bound is the following theorem.

I Theorem 1. Let U ⊂ V be linear subspaces of {0, 1}n, and suppose F is a syntactically
U-invariant depth d + 1 formula which is non-constant over V . Then F has size at least
2d(m1/d−1) where m = min{|x| : x ∈ U⊥ \ V ⊥} (i.e. m is the minimum Hamming weight of a
vector x which is orthogonal to U but non-orthogonal to V ).

Some observations: first, notice that the bound in Theorem 1 does not depend on the
parameter n, i.e. the dimension of the ambient hypercube. The lower bound for PARITY
described in the previous paragraph is the special case U = P and V = {0, 1}n. Theorem 1
implies anm1/ log2(e) lower bound for unbounded-depth formulas, since limd→∞ d(m1/d−1) =
ln(m). It also implies a 2m1/d−1 lower bound for depth d+ 1 circuits. (However, we get no
non-trivial lower bound for unbounded-depth circuits, since limd→∞m1/d − 1 = 0.)

The proof of Theorem 1 uses elementary linear algebra, in particular a small lemma on
the existence of linear retractions with small Hamming-weight distortion (Lemma 5). Overall,
this is much simpler than the random restriction and polynomial approximation methods
typically used to prove AC0 lower bounds.

1.1 Related Work
Syntactically invariant models of computation have been previously studied from the per-
spective of Descriptive Complexity, an area that characterizes complexity classes in terms
of definability in different logics [11]. In this context, the notion of invariance pertains to
the action of Sm on n =

(
m
2
)
binary variables, encoding the edge relation of a simple graph

on m vertices. More generally, for a finite relational signature σ, one may consider the
action of Sm on n =

∑
R∈σm

arity(R) binary variables (encoding the possible σ-structures
with universe {1, . . . ,m}). The action of Sm on the set of variables {X1, . . . , Xn} induces a

1 These questions have been asked previously concerning, e.g., the action of the symmetric group Sn on
n-invariable circuits. For Sn-invariant Boolean functions (a.k.a. symmetric functions) including PARITY
and MAJORITY, there is known to be an exponential gap between U -invariant and non-invariant circuit
and formula size. (See the Related Work section, below.)

2 This follows from the observation that every [syntactically U -invariant] depth d + 1 circuit of size s is
equivalent to a [syntactically U -invariant] depth d + 1 formula of size at most sd.
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syntactic action of Sm on the set of n-variable Boolean circuits (and many other concrete
models of computation, such as branching programs, etc.)

An early result in this area, due to Denenberg et al [8], shows that syntactically Sm-
invariant circuits of polynomial size and constant depth (subject to a certain uniformity
condition) capture precisely the first-order definable properties of finite σ-structures. A
decade later, Otto [13] introduced a certain limit object of finite circuits (also viewed as a
form of uniformity) and showed a correspondence between infinitary logic with a bounded
number of variables (Lω∞ω) and syntactically Sm-invariant circuits of polynomial size and
arbitrary depth. Otto also gives characterizations of fixed point and partial fixed point logic
in terms of syntactically Sm-invariant networks. More recently, Anderson and Dawar [2]
showed a correspondence (under a different uniformity condition) between fixed-point logic
(FP) and syntactically Sm-invariant polynomial-size circuits, as well between fixed-point
logic with counting (FPC) and syntactically Sm-invariant polynomial-size circuits in the
basis that includes majority gates.

So far as I know, this paper is the first to study syntactic invariance under the action of
linear subspaces of {0, 1}n (i.e. subgroups on Zn2 ) on n-variable Boolean circuits. A different
notion of syntactic invariance — with respect to the automorphism group of the input
structure — can be found in the literature on Choiceless Polynomial Time [3, 4, 6, 7, 9, 15].
On Sm-invariant tautologies in proof complexity, see [1, 14].

2 Preliminaries

Let N = {0, 1, 2, . . . }. Let n and d be arbitrary positive integers. Let [n] = {1, . . . , n}.
Our lower bound makes use of the following inequality involving the function n 7→ dn1/d:

I Lemma 2. For all real numbers a, b, c > 0, we have

a+ c(b/a)1/c ≥ (c+ 1)b1/(c+1)

with equality iff a = b1/(c+1).

Proof. We have ∂
∂a

(
a+ c(b/a)1/c) = 1− (b/a(c+1))1/c. Thus, the function a 7→ a+ c(b/a)1/c

is seen to have a unique minimum at a = b1/(c+1) where it takes value (c+ 1)b1/(c+1). J

2.1 Linear Algebra

For x, y ∈ {0, 1}n, we write |x| :=
∑n
i=1 xi for the Hamming weight of x, we write x⊕ y for

the bitwise sum of x and y modulo 2 (i.e. the element z ∈ {0, 1}n with zi := xi ⊕ yi), and we
write 〈x, y〉 :=

⊕n
i=1 xiyi for the inner product of x and y.

We write L for the lattice of linear subspaces of {0, 1}n. For U, V ∈ L, we write dim(V )
for the dimension of V , we write V ⊥ := {x ∈ {0, 1}n : 〈x, v〉 = 0 for all v ∈ V } for the
orthogonal complement of V , and we write U + V for the subspace spanned by U and V .
We say that U is a codimension-k subspace of V if U ⊆ V and dim(V )− dim(U) = k.

The orthogonal complement has the following properties:

dim(V ) + dim(V ⊥) = n, U ⊆ V ⇐⇒ V ⊥ ⊆ U⊥,
V = (V ⊥)⊥, (U + V )⊥ = U⊥ ∩ V ⊥, (U ∩ V )⊥ = U⊥ + V ⊥.

ICALP 2017
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2.2 AC0 Formulas
We write F for the set of n-variable AC0 formulas (with unbounded fan-in AND and OR
gates and leaves labeled by literals). Formally, let F =

⋃
d∈N Fd where Fd is the set of

depth-d formulas, defined inductively as follows:3
F0 is the set of literals {X1, . . . , Xn, X1, . . . , Xn},
Fd+1 is the set of ordered pairs {(γ,G) : γ ∈ {AND,OR} and G is a nonempty subset of Fd}.

Every F ∈ F computes a Boolean function {0, 1}n → {0, 1}, defined in the usual way.
For x ∈ {0, 1}n, we write F (x) for the value of F on x.

For a nonempty set S ⊆ {0, 1}n and b ∈ {0, 1}, notation F (S) ≡ b is the assertion that
F (x) = b for all x ∈ S. We say that F is non-constant on S if F (S) 6≡ 0 and F (S) 6≡ 1 (i.e.
there exist x, y ∈ S such that F (x) = 0 and F (y) = 1).

The depth of F is the minimum d such that F ∈ Fd. The leafsize of a formula is
the number of depth-0 subformulas. Let size of a formula refer to the number of depth-1
subformulas. Inductively,

leafsize(F ) =
{

0 if F ∈ F0,∑
G∈G size(G) if F = (γ,G) ∈ F \ F0,

size(F ) =


0 if F ∈ F0,

1 if F ∈ F1,∑
G∈G size(G) if F = (γ,G) ∈ F \ (F0 ∪ F1).

Clearly size(F ) ≤ leafsize(F ). (Note that size is within a factor 2 of the number of gates in F ,
which is how one usually measures size of circuits.) We define these two complexity measures
since our lower bound naturally applies to size, while the upper bounds are naturally stated
in terms of leafsize.

2.3 The Action of {0, 1}n

We define a group action of {0, 1}n on F as follows. For u ∈ {0, 1}n and F ∈ F , let Fu be
the formula obtained from F by exchanging literals Xi and Xi for every i ∈ [n] with ui = 1.
Formally, this action is defined inductively by

Fu =


Xi (resp. Xi) if F = Xi (resp. Xi) and ui = 0,
Xi (resp. Xi) if F = Xi (resp. Xi) and ui = 1,
(γ, {Gu : G ∈ G}) if F = (γ,G).

Clearly Fu has the same depth and size as F . Note that Fu(x) = F (x⊕u) for all x ∈ {0, 1}n.
If U is a linear subspace of {0, 1} (i.e. subgroup of {0, 1}n), then we say that an AC0

formula F is:
syntactically U -invariant if Fu = F for every u ∈ U ,
semantically U -invariant if F (x) = F (x⊕ u) for every u ∈ U and x ∈ {0, 1}n.

As remarked in Section 1, syntactic U -invariance implies semantic U -invariance (but not
conversely).

3 As a minor convenience, we do not include constants 0 and 1 in F0, nor do we allow identical sibling
subformulas (i.e. multisets G) in the definition of Fd+1. This is without loss of generality: the depth-d
formula size of a Boolean function is unaffected by these restrictions.
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2.4 Upper Bound
We briefly review the smallest known construction of bounded-depth formulas for PARITY
and observe that these formulas are syntactically P -invariant.

I Proposition 3. For all d, n ≥ 1, the n-variable PARITY function is computable by
syntactically P -invariant depth d + 1 formulas of leafsize at most n·2dn1/d where P is the
even-weight subspace of {0, 1}n. If n1/d is an integer, this bound improves to n·2d(n1/d−1).

Proof. For an optimal choice of k, n1, . . . , nk ≥ 1 with n1 + · · · + nk = n, we construct a
syntactically Pn-invariant depth d+ 1 formula for PARITYn — with output gate OR (resp.
AND) — by composing the brute-force DNF (resp. CNF) for PARITYk (in which each
variable occurs 2k−1 times) with syntactically Pni

-invariant depth d formulas for PARITYni

(or 1 − PARITYni
) with output gate AND (resp. OR). The minimum leafsize β(d + 1, n)

achievable by this construction is given by the recurrence

β(1, n) =
{

1 if n = 1,
∞ if n > 1,

β(d+ 1, n) = min
k,n1,...,nk≥1
n1+···+nk=n

2k−1
k∑
i=1

β(d, ni).

We now observe:
If n1/d is an integer, we get β(d+ 1, n) ≤ n·2d(n1/d−1) by setting k = n1/d and n1 = · · · =
nk = n(d−1)/d.
For arbitrary d, n ≥ 1, we get β(d+1, n) ≤ n·2dn1/d by setting k = dn/te and n1, . . . , nk ∈
{t− 1, t} where t = bn(d−1)/dc. J

An aside

I suspect that, by analyzing the above recurrence more carefully, the upper bound in
Proposition 3 can be improved to O(n·2d(n1/d−1)) for all d ≤ dlogne. This is suggested by
the observation that PARITY is computable by syntactically P -invariant formulas of depth
dlogne+ 1 and leafsize O(n2). Note that the upper bound of Proposition 3 is slack (except
when n1/d is an integer), since setting d = logn, we have n·2d(n1/d−1) = n2 and n·2dn1/d = n3.
Also note that O(n·2d(n1/d−1)) is not an upper bound for d � logn, since Ω(n2) is lower
bound even for non-invariant formulas of unbounded depth [12].

3 Linear-Algebraic Lemmas

In this section, we prove a linear-algebraic lemma (Lemma 9) which plays a key role in our
lower bound. Recall that S, T, U, V range over the set of linear subspaces of {0, 1}n, denoted
by L.

I Definition 4. For linear spaces U ⊆ V , a linear retraction from V to U is a linear function
ρ : V → U such that ρ(u) = u for every u ∈ U .

We next give a small lemma on the existence of linear retractions with small (one-sided)
Hamming-weight distortion.

I Lemma 5. If U is a codimension-k subspace of V , then there exists a linear retraction
ρ : V → U such that |ρ(v)|/|v| ≤ k + 1 for all v ∈ V .

Proof. Greedily choose a basis w1, . . . , wk for V over U such that wi has minimal Hamming
weight among elements of V \ Span(U ∪ {w1, . . . , wi−1}) for all i ∈ [k]. Each v ∈ V has a

ICALP 2017



93:6 Subspace-Invariant AC0 Formulas

unique representation v = u⊕ a1w1 ⊕ · · · ⊕ akwk where u ∈ U and a1, . . . , ak ∈ {0, 1}. Let
ρ : V → U be the map v 7→ u and observe that this is a linear retraction.

To show that |ρ(v)| ≤ (k + 1)|v|, we first notice that |aiwi| ≤ |v| for all i ∈ [k]. If ai = 0,
this is obvious, as |aiwi| = 0. If ai = 1, then v ∈ V \ Span(U ∪ {w1, . . . , wi−1}), so by our
choice of wi we have |aiwi| = |wi| ≤ |v|. Completing the proof, we have

|ρ(v)| = |v ⊕ a1v1 ⊕ · · · ⊕ akvk|
≤ |v|+ |a1v1|+ · · ·+ |akvk|
≤ (k + 1)|v|. J

I Definition 6. Define sets L2 and L4 as follows:

L2 =
{

(U, V ) ∈ L × L : U is a codimension-1 subspace of V
}
,

L4 =
{

((S, T ), (U, V )) ∈ L2 × L2 : T ∩ U = S and T + U = V
}
.

The next lemma shows that L4 is symmetric under orthogonal complementation.

I Lemma 7. For all ((S, T ), (U, V )) ∈ L4, we have ((V ⊥, U⊥), (T⊥, S⊥)) ∈ L4.

Proof. This follows from the properties of the orthogonal complement listed in §2.1. Consider
any ((S, T ), (U, V )) ∈ L4. First note that (V ⊥, U⊥) ∈ L2 by the fact that U ⊆ V =⇒ V ⊥ ⊆
U⊥ and dim(U⊥) − dim(V ⊥) = (n − dim(U)) − (n − dim(V )) = dim(V ) − dim(U) =
1. Similarly, we have (T⊥, S⊥) ∈ L2. We now have ((V ⊥, U⊥), (T⊥, S⊥)) ∈ L4 since
U⊥ ∩ T⊥ = (T + U)⊥ = V ⊥ and U⊥ + T⊥ = (T ∩ U)⊥ = S⊥. J

I Lemma 8. For all S ⊂ T ⊆ V such that (S, T ) ∈ L2, there exists U ⊇ S such that
((S, T ), (U, V )) ∈ L4 and

min
x∈V \U

|x| ≥ 1
dim(V )− dim(T ) + 1 min

y∈T\S
|y|.

Proof. By Lemma 5, there exists a linear retraction ρ : V → T such that |ρ(v)|/|v| ≤
dim(V ) − dim(T ) + 1 for all v ∈ V . Let U = ρ−1(S) and note that U is a codimension-1
subspace of V . (This follows from applying the Rank-Nullity Theorem to linear functions
ρ : V → T and ρ�U : U → S and noting that ker(ρ) = ker(ρ�U).) We have S = T ∩ U and
T + U = V , hence ((S, T ), (U, V )) ∈ L4. Choosing x with minimum Hamming weight in
V \ U , we observe that ρ(x) ∈ T \ S and |x| ≥ |ρ(v)|/(dim(V )− dim(T ) + 1), which proves
the lemma. J

I Lemma 9. For all S ⊆ U ⊂ V such that (U, V ) ∈ L2, there exists T ⊆ V such that
((S, T ), (U, V )) ∈ L4 and

min
x∈S⊥\T⊥

|x| ≥ 1
dim(U)− dim(S) + 1 min

y∈U⊥\V ⊥
|y|.

Proof. Follows directly from Lemmas 7 and 8. J

4 Proof of Theorem 1

The following lemma gives the base case of Theorem 1 for depth-2 formulas (a.k.a. DNFs
and CNFs). In this case, we merely require the hypothesis of semantic rather than syntactic
U -invariance. The proof is similar to the standard argument showing that depth-2 formulas
for PARITY require 2n−1 clauses of width n.
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I Lemma 10. Suppose F is a depth-2 formula and (U, V ) ∈ L2 such that F (U) ≡ b and
F (V \ U) ≡ 1 − b for some b ∈ {0, 1}. Then size(F ) ≥ 2m−1 and leafsize(F ) ≥ m·2m−1

where m = min{|x| : x ∈ U⊥ \ V ⊥}.

Proof. Without loss of generality, assume that F is a DNF formula (i.e. an OR-of-ANDs
formula) and F (U) ≡ 0 and F (V \ U) ≡ 1. (The argument is similar if we replace DNF
with CNF, or if we assume that F (U) ≡ 1 and F (V \ U) ≡ 0.) We further assume that F is
minimal with respect to the number of clauses and the number of literals in any particular
clause.

Consider a clause G of F . This clause G is the AND of some number ` of literals. Without
loss of generality, suppose these literals involve the first ` coordinates. Let π be the projection
map {0, 1}n → {0, 1}`. Then there is a point p ∈ {0, 1}` such that G(x) = 1⇐⇒ π(x) = p

for all x ∈ {0, 1}n. Observe that G(U) ≡ 0 (since F (U) ≡ 0) and, therefore, p /∈ π(U).
We claim that p ∈ π(V \ U). To see why, assume for contradiction that p /∈ π(V \ U).

Then G(V ) ≡ 0. But this means that the clause G can be removed from F and the resulting
function would still satisfy F (U) ≡ 0 and F (V \ U) ≡ 1. This contradicts the minimality of
F with respect to number of clauses.

For each i ∈ [`], let p(i) be the neighbor of p in {0, 1}` along the ith coordinate. We
claim that p(1), . . . , p(`) ∈ π(U). Without loss of generality, we give the argument showing
p(`) ∈ π(U). Let G′ be the AND of the first `− 1 literals in G, and let F ′ be the formula
obtained from F by replacing G with G′. For all x ∈ {0, 1}n, we have G(x) ≤ G′(x) and
hence F (x) ≤ F ′(x). Therefore, F ′(V \ U) ≡ 1. We now note that there exists u ∈ U such
that F ′(u) = 1 (otherwise, we would have F ′(u) ≡ 0, contradicting the minimality of F with
respect to the width of each clause). Since F (u) = 0 and G′ is the only clause of F ′ distinct
from the clauses of F , it follows that G′(u) = 1. This means that u{1,...,`−1} = p{1,...,`−1}.
We now have π(u) = p(`) (otherwise, we would have π(u) = p and therefore G(u) = 1 and
F (u) = 1, contradicting that fact that F (U) ≡ 0).

Since π is a linear function and π(U) 6= π(V ), it follows that π(U) is a codimension-
1 subspace of π(V ). The fact that p ∈ π(V \ U) and p(1), . . . , p(`) ∈ π(U) now forces
π(V ) = {0, 1}` and π(U) = {q ∈ {0, 1}` : |q| is even}. Therefore, 1` ∈ π(U)⊥ \ π(V )⊥
(writing 1` for the all-1 vector in {0, 1}`). It follows that 1`0n−` ∈ U⊥ \ V ⊥ and, therefore,
` = |1`0n−`| ≥ m (by definition of m).

We now observe that

P
v∈V

[G(v) = 1] = P
v∈V

[π(v) = p] = P
q∈π(V )

[q = p] = P
q∈{0,1}`

[q = p] = 2−` ≤ 2−m.

That is, each clause in F has value 1 over at most 2−m fraction of points in V . Since the set
V \ U has density 1/2 in V , we see that 2m−1 clauses are required to cover V \ U .

Subject to the stated minimality assumptions on F (with respect to the number of clauses
and, secondarily, to the width of each clause), we conclude that F contains ≥ 2m−1 clauses,
each of width ≥ m. Therefore, size(F ) ≥ 2m−1 and leafsize(F ) ≥ m·2m−1. J

On to our main result:

I Theorem 1 (restated). Let U ⊂ V be linear subspaces of {0, 1}n, and suppose F is a
syntactically U-invariant depth d+ 1 formula which is non-constant over V . Then F has
size at least 2d(m1/d−1) where m = min{|x| : x ∈ U⊥ \ V ⊥}.

Proof. We first observe that it suffices to prove the theorem in the case where (U, V ) ∈ L2,
that is, U has codimension-1 in V . To see why, note that for any U ⊂ V where F is

ICALP 2017
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syntactically U -invariant and non-constant over V , there must exist U ⊂W ⊆ V such that
(U,W ) ∈ L2 and F is non-constant over W . Assuming the theorem holds with respect
to U ⊂ W , it also hold with respect to U ⊂ V , since U⊥ \ V ⊥ ⊆ U⊥ \W⊥ and hence
min{|x| : x ∈ U⊥ \ V ⊥} ≥ min{|x| : x ∈ U⊥ \W⊥}.

Therefore, we assume (U, V ) ∈ L2 and prove the theorem by induction on d. The base
case d = 1 is established by Lemma 10.4 For the induction step, let d ≥ 2 and assume
F ∈ Fd+1 is a syntactically U -invariant and non-constant over V . Without loss of generality,
we consider the case where F = (OR,G) for some nonempty G ⊆ Fd. (The case where
F = (AND,G) is symmetric, with the roles of 0 and 1 exchanged.)

Since F is syntactically U -invariant, we have Gu ∈ G for every u ∈ U and G ∈ G. We
claim that it suffices to prove the theorem in the case where the action of U on G is transitive
(i.e. G = {Gu : u ∈ U} for every G ∈ G). To see why, consider the partition G = G1 t · · · t Gt,
t ≥ 1, into orbits under U . For each i ∈ [t], let Fi be the formula (OR,Gi). Note that Fi is
syntactically U -invariant and U acts transitively on Gi. Clearly, we have F (v) =

∨
i∈[t] Fi(v)

for all v ∈ V . Since every U -invariant Boolean function is constant over sets U and V \ U
(using the fact that U has codimension-1 in V ), this means that each Fi satisfies either
Fi(V ) ≡ 0 or F (v) = Fi(v) for all v ∈ V . Because F is non-constant over V , it follows that
there exists i ∈ [t] such that F (v) = Fi(v) for all v ∈ V . In particular, this Fi is non-constant
over V . Since size(F ) ≥ size(Fi), we have reduced proving the theorem for F to proving to
theorem for Fi.

In light of the preceding paragraph, we proceed under the assumption that U acts
transitively on G. Fix an arbitrary choice of G ∈ G. Let

S = StabU (G) (= {u ∈ U : Gu = G}),
a = dim(U)− dim(S) + 1.

By the Orbit-Stabilizer Theorem,

|G| = |OrbitU (G)| = [U : S] = |U |/|S| = 2a−1.

Since size(G′) = size(G) for every G′ ∈ G, we have

size(F ) =
∑
G′∈G

size(G′) = |G| · size(G) = 2a−1 · size(G). (1)

We next observe that Gu is syntactically S-invariant for every u ∈ U (in fact, S =
StabU (Gu)). This follows from the fact that (Gu)s = Gu⊕s = (Gs)u = Gu for every s ∈ S.

By Lemma 9, there exists T such that ((S, T ), (U, V )) ∈ L4 and

min
x∈S⊥\T⊥

|x| ≥ 1
dim(U)− dim(S) + 1 min

y∈U⊥\V ⊥
|y| = m

a
.

We claim that there exists u ∈ U such that Gu is non-constant on T . There are two cases to
consider:

Case 1: Suppose F (U) ≡ 0 and F (V \ U) ≡ 1.
We have G(U) ≡ 0 and G(V ) 6≡ 0. Fix any v ∈ V \U such that G(v) = 1. In addition, fix
any w ∈ T \U (noting that T \U is nonempty since U+T = V and U ⊂ V ). Let u = v⊕w
and note that u ∈ U (since U is a codimension-1 subspace of V and v, w ∈ V \ U). We
have Gu(U) ≡ 0 and Gu(w) = G(w ⊕ u) = G(v) = 1. By the S-invariance of Gu, it
follows that Gu(S) ≡ 0 and Gu(T \ S) ≡ 1. In particular, Gu is non-constant on T .

4 Note that Theorem 1 makes sense even when d = 0, if we interpret 0·(m1/0 − 1) as 0 if m = 1 and ∞ if
m > 1.
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Case 2: Suppose F (U) ≡ 1 and F (V \ U) ≡ 0.
We have G(U) 6≡ 0 and G(V \ U) ≡ 0. Fix any u ∈ U such that G(u) = 1. In addition,
fix any w ∈ T \ U and let v = w ⊕ u. We have Gu(v) = G(v ⊕ u) = G(w) = 0 (since
w ∈ V \ U and G(V \ U) ≡ 0). We also have Gu(~0) = G(u) = 1 where ~0 is the origin
in {0, 1}n. By S-invariance of Gu, it follows that Gu(S) ≡ 1 and Gu(T \ S) ≡ 0. In
particular, Gu is non-constant on T .

Since Gu is syntactically S-invariant and non-constant on T and depth(Gu) = (d− 1) + 1,
we may apply the induction hypothesis to Gu. Thus, we have

size(G) = size(Gu) ≥ 2(d−1)((m/a)1/(d−1)−1). (2)

Since d ≥ 2, Lemma 2 tells us

a+ (d− 1)(m/a)1/(d−1) ≥ d(m/a)1/d. (3)

Putting together (1), (2), (3), we get the desired bound

size(F ) ≥ 2a−1 · 2(d−1)((m/a)1/(d−1)−1)

= 2a+(d−1)(m/a)1/(d−1)−d

≥ 2d(m1/d−1).

This completes the proof of Theorem 1. J

5 Further Remarks and Open Questions

5.1 Another Application of Theorem 1
Theorem 1 applies to interesting subspaces U besides the even-weight subspace P . Here we
describe one example. Let G be a simple graph with n edges, so that {0, 1}n is identified with
the set of spanning subgraphs of G. The cycle space of G is the linear subspace Z ⊆ {0, 1}n
consisting of even subgraphs of G (i.e. spanning subgraphs in which every vertex has even
degree). Consider the even-weight subspace Z0 = {z ∈ Z : |z| is even}. Provided G is
non-bipartite, Z0 is a codimension-1 subspace of Z.

Let m = min{|z| : z ∈ Z⊥0 \Z⊥} as in Theorem 1 with U = Z0 and V = Z. It is not hard
to show that m is equal to the minimum number of edges whose removal makes G bipartite.
(It follows that m = n− c where c is the number edges in a maximum cut in G.) Moreover,
if G is a uniform random 3-regular graph on 2

3n vertices, then m = Ω(n) asymptotically
almost surely [5]. By these observations, we have:

I Corollary 11. Let Z ⊆ {0, 1}n be the cycle space of a random 3-regular graph with n edges,
and let Z0 = {z ∈ Z : |z| is even}. Then a.a.s. every syntactically Z0-invariant depth d+ 1
formula that computes PARITYn over Z has size 2d(Ω(n)1/d−1).

5.2 The (U, V )-Search Problem
For linear subspaces U ⊂ V of {0, 1}n, consider the following (U, V )-search problem: there
is a hidden vector x ∈ V \ U and the goal is to learn a nonzero coordinate of x (i.e. any
i ∈ [n] such that wi = 1) by asking queries (i.e. yes/no questions) in the form of linear
functions {0, 1}n → {0, 1}. The d-round query complexity of this problem is the minimum
number of queries required by protocols that solve this problem on all w ∈ V \ U by asking
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queries in d consecutive batches (thus, 1-round = non-adaptive). By a slightly simpler
version of the argument in the proof of Theorem 1, we can show a d(m1/d − 1) lower
bound on the d-round query complexity of the (U, V )-search problem for all U ⊂ V where
m = min{|x| : x ∈ U⊥ \ V ⊥}.

This (U, V )-search problem is, in some sense, related to the Karchmer-Wigderson game
where Alice gets u ∈ U and Bob gets v ∈ V \ U and their common goal is to learn a nonzero
coordinate of u⊕ v. For an appropriate definition of “U -invariant protocols” (i.e. whatever
comes from syntactically U -invariant formulas), we can translate the pair (u, v) to (0, u⊕ v)
without loss of generality and it becomes Alice’s task to learn a nonzero coordinate of u⊕ v
by asking linear queries.

5.3 Open Questions
We conclude by mentioning some open questions and challenges raised by this work:
1. Does the lower bound of Theorem 1 (or something weaker like 2mΩ(1/d)) hold under the

weaker assumption of semantic U -invariance, in place of syntactic U -invariance? What
about Corollary 11?

2. Considering leafsize (rather than size, i.e. the number of depth-1 subformulas), improve
the lower bound of Theorem 1 from 2d(m1/d−1) to m·2d(m1/d−1).

3. Improve the upper bound of Proposition 3 from n·2dn1/d to O(n·2d(n1/d−1)) for all
d ≤ dlogne.

4. What is the maximum gap, if any, between U -invariant [depth d] formula size and
non-invariant [depth d] formula size?
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