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Abstract
We study a pumping lemma for the word/tree languages generated by higher-order grammars.
Pumping lemmas are known up to order-2 word languages (i.e., for regular/context-free/indexed
languages), and have been used to show that a given language does not belong to the classes
of regular/context-free/indexed languages. We prove a pumping lemma for word/tree languages
of arbitrary orders, modulo a conjecture that a higher-order version of Kruskal’s tree theorem
holds. We also show that the conjecture indeed holds for the order-2 case, which yields a pumping
lemma for order-2 tree languages and order-3 word languages.
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1 Introduction

We study a pumping lemma for higher-order languages, i.e., the languages generated by
higher-order word/tree grammars where non-terminals can take higher-order functions as
parameters. The classes of higher-order languages [26, 18, 4, 5, 6] form an infinite hierarchy,
where the classes of order-0, order-1, and order-2 languages are those of regular, context-free
and indexed languages. Higher-order grammars and languages have been extensively studied
by Damm [4] and Engelfriet [5, 6] and recently re-investigated in the context of model
checking and program verification [9, 20, 15, 24, 11, 16, 12, 23].

Pumping lemmas [2, 7] are known up to order-2 word languages, and have been used to
show that a given language does not belong to the classes of regular/context-free/indexed
languages. To our knowledge, however, little is known about languages of order-3 or
higher. Pumping lemmas [21, 12] are also known for higher-order deterministic grammars
(as generators of infinite trees, rather than tree languages), but they cannot be applied to
non-deterministic grammars.

In the present paper, we state and prove a pumping lemma for unsafe1 languages of
arbitrary orders modulo an assumption that a “higher-order version” of Kruskal’s tree
theorem [17, 19] holds. Let � be the homeomorphic embedding on finite ranked trees2, and

∗ A full version of the paper is available at http://arxiv.org/abs/1705.10699.
† This work was supported by JSPS Kakenhi 15H05706.
1 See, e.g., [16] for the distinction between safe vs unsafe languages; the class of unsafe languages subsumes

that of safe languages.
2 I.e., T1 � T2 if there exists an injective map from the nodes of T1 to those of T2 that preserves the

labels of nodes and the ancestor/descendant-relation of nodes; see Section 2 for the precise definition.
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97:2 Pumping Lemma for Higher-Order Languages

≺ be the strict version of �. The statement of our pumping lemma3 is that for any order-n
infinite tree language L, there exist a constant c and a strictly increasing infinite sequence of
trees T0 ≺ T1 ≺ T2 ≺ · · · in L such that |Ti| ≤ expn(ci) for every i ≥ 0, where exp0(x) = x

and expn+1(x) = 2expn(x). Due to the correspondence between word/tree languages [4, 1],
it also implies that for any order-n infinite word language L (where n ≥ 1), there exist a
constant c and a strictly increasing infinite sequence of words w0 ≺ w1 ≺ w2 ≺ · · · in L such
that |wi| ≤ expn−1(ci) for every i ≥ 0, where ≺ is the subsequence relation. The pumping
lemma can be used, for example, to show (modulo the conjecture) that the order-(n + 1)
language {aexpn(k) | k ≥ 0} does not belong to the class of order-n word languages, for n > 0.
Thus the lemma would also provide an alternative proof of the strictness of the hierarchy of
the classes of higher-order languages.4

We now informally explain the assumption of “higher-order Kruskal’s tree theorem”
(see Section 2 for details). Kruskal’s tree theorem [17, 19] states that the homeomorphic
embedding � is a well-quasi order, i.e., that for any infinite sequence of trees T0, T1, T2, . . .,
there exist i < j such that Ti � Tj . The homeomorphic embedding � can be naturally lifted
(e.g. via the logical relation) to a family of relations (�κ)κ on higher-order tree functions
of type κ. Our conjecture of “higher-order Kruskal’s theorem” states that, for every simple
type κ, �κ is also a well-quasi order on the functions expressed by the simply-typed λ-terms.
We prove that the conjecture indeed holds up to order-2 functions, if we take �κ as the
logical relation induced from the homeomorphic embedding �. Thus, our pumping “lemma”
is indeed true for order-2 tree languages and order-3 word languages. To our knowledge, the
pumping lemma for those languages is novel. The conjecture remains open for order-3 or
higher, which should be of independent interest.

Our proof of the pumping lemma (modulo the conjecture) uses the recent work of Parys [23]
on an intersection type system for deciding the infiniteness of the language generated by a
given higher-order grammar, and our previous work on the relationship between higher-order
word/tree languages [1].

The rest of this paper is organized as follows. Section 2 prepares several definitions
and states our pumping lemma and the conjecture more formally. Section 3 derives some
corollaries of Parys’ result [23]. Section 4 prepares a simplified and specialized version
of our previous result [1]. Using the results in Sections 3 and 4, we prove our pumping
lemma (modulo the conjecture) in Section 5. Section 6 proves the conjecture on higher-order
Kruskal’s tree theorem for the order-2 case, by which we obtain the (unconditional) pumping
lemma for order-2 tree languages and order-3 word languages. Section 7 discusses related
work and Section 8 concludes.

2 Preliminaries

We first give basic definitions needed for explaining our main theorem. We then state the
main theorem and provide an overview of its proof.

3 This should perhaps be called a pumping “conjecture” since it relies on the conjecture of the higher-order
Kruskal’s tree theorem.

4 The strictness of the hierarchy of higher-order safe languages has been shown by Engelfriet [5] using a
complexity argument, and Kartzow [8] observed that essentially the same argument is applicable to
obtain the strictness of the hierarchy of unsafe languages as well. Their argument cannot be used for
showing that a particular language does not belong to the class of order-n languages.
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2.1 λ-terms and Higher-order Grammars

This section gives basic definitions for terms and higher-order grammars.

I Definition 1 (Types and Terms). The set of simple types, ranged over by κ, is given by:
κ ::= o | κ1 → κ2. The order of a simple type κ, written order(κ) is defined by order(o) = 0
and order(κ1 → κ2) = max(order(κ1) + 1, order(κ2)). The type o describes trees, and
κ1 → κ2 describes functions from κ1 to κ2. The set of λ→,+-terms (or terms), ranged over
by s, t, u, v, is defined by:

t ::= x | a t1 · · · tk | t1 t2 | λx : κ.t | t1 + t2 .

Here, x ranges over variables, and a over constants (which represent tree constructors).
Variables are also called non-terminals, ranged over by x, y, z, f, g, A,B; and constants are
also called terminals. A ranked alphabet Σ is a map from a finite set of terminals to natural
numbers called arities; we implicitly assume a ranked alphabet whose domain contains all
terminals discussed, unless explicitly described. + is non-deterministic choice. As seen below,
our simple type system forces that a terminal must be fully applied; this does not restrict the
expressive power, as λx1, . . . , xk.a x1 · · ·xk is available. We often omit the type κ of λx : κ.t.
A term is called an applicative term if it does not contain λ-abstractions nor +, and called a
λ→-term if it does not contain +. As usual, we identify terms up to the α-equivalence, and
implicitly apply α-conversions.

A (simple) type environment K is a sequence of type bindings of the form x : κ such
that if K contains x : κ and x′ : κ′ in different positions then x 6= x′. In type environments,
non-terminals are also treated as variables. A term t has type κ under K if K `ST t : κ is
derivable from the following typing rules.

K, x : κ, K′ `ST x : κ
Σ(a) = k K `ST ti : o (for each i ∈ {1, . . . , k})

K `ST a t1 · · · tk : o

K `ST t1 : κ2 → κ K `ST t2 : κ2

K `ST t1 t2 : κ
K, x : κ1 `ST t : κ2

K `ST λx : κ1.t : κ1 → κ2

K `ST t1 : o K `ST t2 : o

K `ST t1 + t2 : o

We consider below only well-typed terms. Note that given K and t, there exists at most one
type κ such that K `ST t : κ. We call κ the type of t (with respect to K). We often omit “with
respect to K” if K is clear from context. The (internal) order of t, written orderK(t), is the
largest order of the types of subterms of t, and the external order of t, written eorderK(t),
is the order of the type of t (both with respect to K). We often omit K when it is clear from
context. For example, for t = (λx : o.x)e, order∅(t) = 1 and eorder∅(t) = 0.

We call a term t ground (with respect to K) if K `ST t : o. We call t a (finite, Σ-ranked)
tree if t is a closed ground applicative term consisting of only terminals. We write TreeΣ for
the set of Σ-ranked trees, and use the meta-variable π for trees.

The set of contexts, ranged over by C, D, G, H, is defined by C ::= [ ] | C t | t C | λx.C.
We write C[t] for the term obtained from C by replacing [ ] with t. Note that the replacement
may capture variables; e.g., (λx.[ ])[x] is λx.x. We call C a (K′, κ′)-(K, κ)-context if K `ST C :
κ is derived by using axiom K′ `ST [ ] : κ′. We also call a (∅, κ′)-(∅, κ)-context a κ′-κ-context.
The (internal) order of a (K′, κ′)-(K, κ)-context, is the largest order of the types occurring in
the derivation of K `ST C : κ. A context is called a λ→-context if it does not contain +.

We define the size |t| of a term t by: |x| := 1, |a t1 · · · , tk| := 1 + |t1| + · · · + |tk|,
|s t| := |s|+ |t|+ 1, |λx.t| := |t|+ 1, and |s+ t| := |s|+ |t|+ 1. The size |C| of a context C is
defined similarly, with |[ ]| := 0.

ICALP 2017



97:4 Pumping Lemma for Higher-Order Languages

I Definition 2 (Reduction and Language). The set of (call-by-name) evaluation contexts is
defined by:

E ::= [ ] t1 · · · tk | a π1 · · ·πiE t1 · · · tk

and the call-by-name reduction for (possibly open) ground terms is defined by:

E[(λx.t)t′] −→ E[[t′/x]t] E[t1 + t2] −→ E[ti] (i = 1, 2)

where [t′/x]t is the usual capture-avoiding substitution. We write −→∗ for the reflexive
transitive closure of −→. A call-by-name normal form is a ground term t such that t 6−→ t′

for any t′. For a closed ground term t, we define the tree language L(t) generated by t by
L(t) := {π | t −→∗ π}. For a closed ground λ→-term t, L(t) is a singleton set {π}; we write
T (t) for such π and call it the tree of t.

Note that t −→∗ t′ implies [s/x]t −→∗ [s/x]t′, and that the set of call-by-name normal forms
equals the set of trees and ground terms of the form E[x].

For x : κ `ST t : o where t does not contain the non-deterministic choice, t is called linear
(with respect to x) if x occurs exactly once in the call-by-name normal form of t. A pair of
contexts [ ] : κ `ST C : o and [ ] : κ `ST D : κ is called linear if x : κ `ST C[Di[x]] : o is linear
for any i ≥ 0 where x is a fresh variable that is not captured by the context applications.

I Definition 3 (Higher-Order Grammar). A higher-order grammar (or grammar for short) is
a quadruple (Σ,N ,R, S), where (i) Σ is a ranked alphabet; (ii) N is a map from a finite
set of non-terminals to their types; (iii) R is a finite set of rewriting rules of the form
A → λx1. · · ·λx`.t, where N (A) = κ1 → · · · → κ` → o, t is an applicative term, and
N , x1 : κ1, . . . , x` : κ` `ST t : o holds; (iv) S is a non-terminal called the start symbol, and
N (S) = o. The order of a grammar G is the largest order of the types of non-terminals. We
sometimes write ΣG ,NG ,RG , SG for the four components of G. We often write Ax1 · · · xk → t

for the rule A→ λx1. · · ·λxk.t.
For a grammar G = (Σ,N ,R, S), the rewriting relation −→G is defined by:

(A→ λx1. · · ·λxk.t) ∈ R
A t1 · · · tk −→G [t1/x1, . . . , tk/xk]t

ti −→G t′i i ∈ {1, . . . , k} Σ(a) = k

a t1 · · · tk −→G a t1 · · · ti−1 t
′
i ti+1 · · · tk

We write −→∗G for the reflexive transitive closure of −→G . The tree language generated by G,
written L(G), is the set {π | S −→∗G π}.

I Remark. An order-n grammar can also be represented as a ground closed order-n λ→,+-term
extended with the Y-combinator such that Yκx.t −→ [Yκx.t/x]t. Conversely, any ground
closed order-n λ→,+-term (extended with Y ) can be represented as an equivalent order-n
grammar.

The grammars defined above may also be viewed as generators of word languages.

I Definition 4 (Word Alphabet / br-Alphabet). We call a ranked alphabet Σ a word alphabet
if it has a special nullary terminal e and all the other terminals have arity 1; also we call a
grammar G a word grammar if its alphabet is a word alphabet. For a tree π = a1(· · · (an e) · · · )
of a word grammar, we define word(π) = a1 · · · an. The word language generated by a word
grammar G, written Lw(G), is {word(π) | π ∈ L(G)}.

The frontier word of a tree π, written leaves(π), is the sequence of symbols in the leaves
of π. It is defined inductively by: leaves(a) = a when Σ(a) = 0, and leaves(a π1 · · · πk) =
leaves(π1) · · · leaves(πk) when Σ(a) = k > 0. The frontier language generated by G, written
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Lleaf(G), is the set: {leaves(π) | S −→∗G π}. A br-alphabet is a ranked alphabet such that
it has a special binary constant br and a special nullary constant e and the other constants
are nullary. We consider e as the empty word ε: for a grammar with a br-alphabet, we also
define Lεleaf(G) := (Lleaf(G) \ {e}) ∪ {ε | e ∈ Lleaf(G)}. We call a tree π an e-free br-tree if
it is a tree of some br-alphabet but does not contain e.

We note that the classes of order-0, order-1, and order-2 word languages coincide with
those of regular, context-free, and indexed languages, respectively [26].

2.2 Homeomorphic Embedding and Kruskal’s Tree Theorem
In our main theorem, we use the notion of homeomorphic embedding for trees.

I Definition 5 (Homeomorphic Embedding). Let Σ be an arbitrary ranked alphabet. The
homeomorphic embedding order � between Σ-ranked trees5 is inductively defined by the
following rules:

πi � π′i (for all i ≤ k)
a π1 · · ·πk � a π′1 · · ·π′k

(k = Σ(a)) π � πi
π � a π1 · · ·πk

(k = Σ(a) > 0, i ∈ {1, . . . , k})

For example, br a b � br (br a c) b. We extend � to words: for w = a1 · · · an and w′ =
a′1 · · · a′n′ , we define w � w′ if a1(· · · (an(e))) � a′1(· · · (a′n′(e))), where ai and a′i are regarded
as unary constants and e is a nullary constant (this order on words is nothing but the
(scattered) subsequence relation). We write π ≺ π′ if π � π′ and π′ 6� π.

Next we explain a basic property on �, Kruskal’s tree theorem. A quasi-order (also
called a pre-order) is a reflexive and transitive relation. A well quasi-order on a set S is
a quasi-order ≤ on S such that for any infinite sequence (si)i of elements in S there exist
j < k such that sj ≤ sk.

I Proposition 6 (Kruskal’s Tree Theorem [17]). For any (finite) ranked alphabet Σ, the
homeomorphic embedding � on Σ-ranked trees is a well quasi-order.

2.3 Conjecture and Pumping Lemma for Higher-order Grammars
As explained in Section 1, our pumping lemma makes use of a conjecture on “higher-order”
Kruskal’s tree theorem, which is stated below.

I Conjecture 7. There exists a family (�κ)κ of relations indexed by simple types such that
�κ is a well quasi-order on the set of closed λ→-terms of type κ modulo βη-equivalence;
i.e., for an infinite sequence t1, t2, . . . of closed λ→-terms of type κ, there exist i < j such
that ti �κ tj.
�o is a conservative extension of �, i.e., t �o t

′ if and only if T (t) � T (t′).
(�κ)κ is closed under applications, i.e., if t �κ1→κ2 t

′ and s �κ1 s
′ then t s �κ2 t

′ s′.
A candidate of (�κ)κ would be the logical relation induced from �. Indeed, if we choose
the logical relation as (�κ)κ, the above conjecture holds up to order-2 (see Theorem 18 in
Section 6).

Actually, for our pumping lemma, the following, slightly weaker property called the
periodicity is sufficient.

5 In the usual definition, a quasi order on labels (tree constructors) is assumed. Here we fix the quasi-order
on labels to the identity relation.

ICALP 2017



97:6 Pumping Lemma for Higher-Order Languages

I Conjecture 8 (Periodicity). There exists a family (�κ)κ indexed by simple types such that
�κ is a quasi-order on the set of closed λ→-terms of type κ modulo βη-equivalence.
for any `ST t : κ→ κ and `ST s : κ, there exist i, j > 0 such that

ti s �κ ti+j s �κ ti+2j s �κ · · · .

�o is a conservative extension of �.
(�κ)κ is closed under applications.

Note that Conjecture 7 implies Conjecture 8, since if the former holds, for the infinite
sequence (ti s)i, there exist i < i+ j such that ti s �κ ti+j s, and then by the monotonicity
of u 7→ tj u, we have ti+kj s �κ ti+(k+1)j s for any k ≥ 0.

We can now state our pumping lemma.

I Theorem 9 (Pumping Lemma). Assume that Conjecture 8 holds. Then, for any order-n tree
grammar G such that L(G) is infinite, there exist an infinite sequence of trees π0, π1, π2, . . . ∈
L(G), and constants c, d such that: (i) π0 ≺ π1 ≺ π2 ≺ · · ·, and (ii) |πi| ≤ expn(ci+ d) for
each i ≥ 0. Furthermore, we can drop the assumption on Conjecture 8 when G is of order up
to 2.

By the correspondence between order-n tree grammars and order-(n+ 1) grammars [4, 1],
we also have:

I Corollary 10 (Pumping Lemma for Word Languages). Assume that Conjecture 8 holds.
Then, for any order-n word grammar G (where n ≥ 1) such that Lw(G) is infinite, there
exist an infinite sequence of words w0, w1, w2, . . . ∈ Lw(G), and constants c, d such that:
(i) w0 ≺ w1 ≺ w2 ≺ · · ·, and (ii) |wi| ≤ expn−1(ci+ d) for each i ≥ 0. Furthermore, we can
drop the assumption on Conjecture 8 when G is of order up to 3.

We sketch the overall structure of the proof of Theorem 9 below. Let G be an order-n tree
grammar. By using the recent type system of Parys [23], if L(G) is infinite, we can construct
order-n linear λ→-contexts C,D and an order-n λ→-term t such that {T (C[Di[t]]) | i ≥ 0}
(⊆ L(G)) is infinite. It then suffices to show that there exist constants p and q such
that T (C[Dp[t]]) ≺ T (C[Dp+q[t]]) ≺ T (C[Dp+2q[t]]) ≺ · · ·. The bound T (C[Dp+iq]) ≤
expn(c+ id) would then follow immediately from the standard result on an upper-bound
on the size of β-normal forms. Actually, assuming Conjecture 8, we can easily deduce
T (C[Dp[t]]) � T (C[Dp+q[t]]) � T (C[Dp+2q[t]]) � · · ·. Thus, the main remaining difficulty is
to show that the “strict” inequality holds periodically. To this end, we prove it by induction
on the order, by making use of three ingredients: an extension of the result of Parys’ type
system (again) [23], an extension of our previous work on a translation from word languages
to tree languages [1], and Conjecture 8. In Sections 3 and 4, we derive corollaries from the
results of Parys’ and our previous work respectively. We then provide the proof of Theorem 9
(except the statement “Furthermore, ...”) in Section 5. We then, in Section 6, discharge the
assumption on Conjecture 8 for order up to 2, by proving Conjecture 7 for order up to 2.

3 Corollaries of Parys’ Results

Parys [23] developed an intersection type system with judgments of the form Γ ` s : τ . c,
where s is a term of a simply-typed, infinitary λ-calculus (that corresponds to the λY-calculus)
extended with choice, and c is a natural number. He proved that for any order-n closed
ground term s, (i) ∅ ` s : τ .c implies that s can be reduced to a tree π such that c ≤ |π|, and
(ii) if s can be reduced to a tree π, then ∅ ` s : τ . c holds for some c such that |π| ≤ expn(c).
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Let G be an order-n tree grammar and S be its start symbol. By Parys’ result,6 if L(G)
is infinite, there exists a derivation for ∅ ` S : o . c1 + c2 + c3 in which Θ ` A : γ . c1 + c2 is
derived from Θ ` A : γ . c1 for some non-terminal A. Thus, by “pumping” the derivation of
Θ ` A : γ . c1 + c2 from Θ ` A : γ . c1, we obtain a derivation for ∅ ` S : o . c1 + kc2 + c3 for
any k ≥ 0. From the derivation, we obtain a λ→-term t and λ→-contexts C,D of at most
order-n, such that C[Dk[t]] generates a tree πk such that c1 + kc2 + c3 ≤ |πk|. By further
refining the argument above (see the full version for details), we can also ensure that the
pair (C,D) is linear. Thus, we obtain the following lemma.

I Lemma 11. Given an order-n tree grammar G such that L(G) is infinite, there exist
order-n linear λ→-contexts C,D, and an order-n λ→-term t such that:
1. {T (C[Dk[t]]) | k ≥ 1} ⊆ L(G),
2. {T (C[D`k [t]]) | k ≥ 1} is infinite for any strictly increasing sequence (`k)k.

By slightly modifying Parys’ type system, we can also reason about the length of a
particular path of a tree. Let us annotate each constructor a as a〈i〉, where 0 ≤ i ≤ Σ(a).
We call i a direction. We define |π|p by:

|a〈0〉 π1 · · · πk|p = 1 |a〈i〉 π1 · · · πk|p = |πi|p + 1 (1 ≤ i ≤ k).

We define rmdir as the function that removes all the direction annotations.

I Lemma 12. For any order-n linear λ→-contexts C,D and any order-n λ→-term t such that
{T (C[Dk[t]]) | k ≥ 1} is infinite, there exist direction-annotated order-n linear λ→-contexts
G,H, a direction-annotated order-n λ→-term u, and p, q > 0 such that
1. rmdir(T (G[Hk[u]])) = T (C[Dpk+q[t]]) for any k ≥ 1,
2. {|T (G[H`k [u]])|p | k ≥ 1} is infinite for any strictly increasing sequence (`k)k.

4 Word to Frontier Transformation

We have an “order-decreasing” transformation [1] that transforms an order-(n + 1) word
grammar G to an order-n tree grammar G′ (with a br-alphabet) such that Lw(G) = Lεleaf(G′).
We use this as a method for induction on order; this method was originally suggested by
Damm [4] for safe languages.

The transformation in the present paper has been modified from the original one in [1].
On the one hand, the current transformation is a specialized version in that we apply the
transformation only to λ→-terms instead of terms of (non-deterministic) grammars. On the
other hand, the current transformation has been strengthened in that the transformation
preserves linearity. Due to the preservation of linearity, a single-hole context is transformed
to a single-hole context, and the uniqueness of an occurrence of [ ] will be utilized for the
calculation of the size of “pumped trees” in Lemma 16.

The definition of the current transformation is given just by translating the transformation
rules in [1] by following the idea of the embedding of λ→-terms into grammars. For the
detailed definition, see the full version. By using this transformation, we have:

I Lemma 13. Given order-n λ→-contexts C, D, and an order-n λ→-term t such that
the constants in C, D, t are in a word alphabet,

6 See Section 6 of [23]. Parys considered a λ-calculus with infinite regular terms, but the result can be
easily adapted to terms of grammars.

ICALP 2017



97:8 Pumping Lemma for Higher-Order Languages

{T (C[D`i [t]]) | i ≥ 0} is infinite for any strictly increasing sequence (`i)i, and
C and D are linear,

there exist order-(n− 1) λ→-contexts G, H, order-(n− 1) λ→-term u, and some constant
numbers c, d ≥ 1 such that

the constants in G, H, u are in a br-alphabet
for i ≥ 0, T (G[Hi[u]]) is either an e-free br-tree or e, and

word(T (C[Dci+d[t]])) =
{
ε (T (G[Hi[u]]) = e)
leaves(T (G[Hi[u]])) (T (G[Hi[u]]) 6= e)

G and H are linear.

Proof. The preservation of meaning (the second condition) follows as a corollary of a theorem
in [1]. Also, the preservation of linearity (the third condition) can be proved in a manner
similar to the proof of the preservation of meaning in [1], using a kind of subject-reduction.
See the full version for the detail. J

5 Proof of the Main Theorem

We first prepare some lemmas.

I Lemma 14. For e-free br-trees π and π′, if π ≺ π′ then leaves(π) ≺ leaves(π′).

Proof. We can show that π � π′ implies leaves(π) � leaves(π′) and then the statement,
both by straightforward induction on the derivation of π � π′. J

I Remark. The above lemma does not necessarily hold for an arbitrary ranked alphabet,
especially that with a unary constant; e.g., a e ≺ a (a e) but their leaves are both e. Also,
it does not hold if a tree contains e and if we regard e as ε in the leaves word; e.g., for
br a b ≺ br (br a e) b, their leaves are ab ≺ aeb, but if we regard e as ε then ab 6≺ ab.

I Lemma 15. For direction-annotated trees π and π′, if π ≺ π′ then rmdir(π) ≺ rmdir(π′).

Proof. We can show that π � π′ implies rmdir(π) � rmdir(π′) and then the statement,
both by straightforward induction on the derivation of π � π′. J

Now, we prove the following lemma (Lemma 16) by the induction on order. Theorem 9
(except the last statement) will then follow as an immediate corollary of Lemmas 11 and 16.

I Lemma 16. Assume that the statement of Conjecture 8 is true. For any order-n linear
λ→-contexts C,D and any order-n λ→-term t such that {T (C[Di[t]]) | i ≥ 1} is infinite,
there exist c, d, j, k ≥ 1 such that
T (C[Dj [t]]) ≺ T (C[Dj+k[t]]) ≺ T (C[Dj+2k[t]]) ≺ · · ·
|T (C[Dj+ik[t]])| ≤ expn(ci+ d) (i = 0, 1, . . . )

Proof. The proof proceeds by induction on n. The case n = 0 is clear, and we discuss the
case n > 0 below. By Lemma 12, from C, D, and t, we obtain direction-annotated order-n
linear λ→-contexts G,H, a direction-annotated order-n λ→-term u, and j0, k0 > 0 such that

rmdir(T (G[Hi[u]])) = T (C[Dj0+ik0 [t]]) for any i ≥ 1 (1)
{|T (G[H`i [u]])|p | i ≥ 1} is infinite for any strictly increasing sequence (`i)i. (2)
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Next we transform G, H, and u by choosing a path according to directions, i.e., we define
Gp, Hp, and up as the contexts/term obtained from G, H, and u by replacing each a〈i〉 with:
(i) λx1 . . . x`.aixi if i > 0 or (ii) λx1 . . . x`.e if i = 0, where ` = Σ(a) and ai is a fresh unary
constant. For any i ≥ 0,

|T (G[Hi[u]])|p = |word(T (Gp[Hp
i[up]]))|+ 1. (3)

We also define a function path on trees annotated with directions, by the following induction:
path(a〈i〉 π1 · · ·π`) = ai path(πi) if i > 0 and path(a〈0〉 π1 · · ·π`) = e. Then for any i ≥ 0,

path(T (G[Hi[u]])) = T (Gp[Hp
i[up]]). (4)

By (2) and (3), {T (Gp[Hp
`i [up]]) | i ≥ 0} is infinite for any strictly increasing sequence

(`i)i. Also, the transformation from G, H to Gp, Hp preserves the linearity, because: let
N be the normal form of G[Hi[x]] where x is fresh, and Np be the term obtained by
applying this transformation to N ; then Gp[Hp

i[x]] −→∗ Np, and by the infiniteness of
{T (Gp[Hp

i[up]]) | i ≥ 0}, Np must contain x, which implies Np is a linear normal form.
Now we decrease the order by using the transformation in Section 4. By Lemma 13 to Gp,

Hp, and up, there exist order-(n− 1) linear λ→-contexts Gl , Hl , an order-(n− 1) λ→-term
ul , and some constant numbers c′, d′ ≥ 1 such that, for any i ≥ 0, T (Gl [Hl

i[ul ]]) is either an
e-free br-tree or e, and

word(T (Gp[Hp
c′i+d′

[up]])) =
{
ε (T (Gl [Hl

i[ul ]]) = e)
leaves(T (Gl [Hl

i[ul ]])) (T (Gl [Hl
i[ul ]]) 6= e).

(5)

By (2), (3), and (5), {T (Gl [Hl
i[ul ]]) | i ≥ 1} is also infinite.

By the induction hypothesis, there exist j1 and k1 such that

T (Gl [Hl
j1 [ul ]]) ≺ T (Gl [Hl

j1+k1 [ul ]]) ≺ T (Gl [Hl
j1+2k1 [ul ]]) ≺ · · · .

Hence by Lemma 14, we have

leaves(T (Gl [Hl
j1 [ul ]])) ≺ leaves(T (Gl [Hl

j1+k1 [ul ]])) ≺ leaves(T (Gl [Hl
j1+2k1 [ul ]])) ≺ · · · .

Then by (5), we have

T (Gp[Hp
c′j1+d′

[up]]) ≺ T (Gp[Hp
c′(j1+k1)+d′

[up]]) ≺ T (Gp[Hp
c′(j1+2k1)+d′

[up]]) ≺ · · · .

Let j′1 = c′j1 + d′ and k′1 = c′k1; then

T (Gp[Hp
j′

1 [up]]) ≺ T (Gp[Hp
j′

1+k′
1 [up]]) ≺ T (Gp[Hp

j′
1+2k′

1 [up]]) ≺ · · · . (6)

Now, by Conjecture 8, there exist j2 ≥ 0 and k2 > 0 such that

Hj2 [u] �κ Hj2+k2 [u] �κ Hj2+2k2 [u] �κ · · · . (7)

Let j3 be the least j3 such that j3 = j′1 + i3 k
′
1 = j2 +m0 for some i3 and m0, and k3 be the

least common multiple of k′1 and k2, whence k3 = m1k
′
1 = m2k2 for some m1 and m2. Then

since the mapping s 7→ T (G[Hm0 [s]]) is monotonic, from (7) we have:

T (G[Hj3 [u]]) � T (G[Hj3+k2 [u]]) � T (G[Hj3+2k2 [u]]) � · · · .

Since j3 + ik3 = j3 + (im2)k2, we have

T (G[Hj3 [u]]) � T (G[Hj3+k3 [u]]) � T (G[Hj3+2k3 [u]]) � · · · . (8)

ICALP 2017



97:10 Pumping Lemma for Higher-Order Languages

Also, since j3 + ik3 = j′1 + (i3 + im1)k′1, from (6) we have

T (Gp[Hp
j3 [up]]) ≺ T (Gp[Hp

j3+k3 [up]]) ≺ T (Gp[Hp
j3+2k3 [up]]) ≺ · · · . (9)

Thus, from (4), (8), and (9) we obtain

T (G[Hj3 [u]]) ≺ T (G[Hj3+k3 [u]]) ≺ T (G[Hj3+2k3 [u]]) ≺ · · · . (10)

By applying rmdir to this sequence, and by (1) and Lemma 15, we have

T (C[Dj0+j3k0 [t]]) ≺ T (C[Dj0+(j3+k3)k0 [t]]) ≺ T (C[Dj0+(j3+2k3)k0 [t]]) ≺ · · · . (11)

We define j = j0 + k0j3 and k = k0k3; then we obtain

T (C[Dj [t]]) ≺ T (C[Dj+k[t]]) ≺ T (C[Dj+2k[t]]) ≺ · · · .

Finally, we show that |T (C[Dj+ik[t]])| ≤ expn(ci + d) for some c and d. Since C
and D are single-hole contexts, |C[Dj+ik[t]]| = |C| + (j + ik)|D| + |t|. Let c = k|D| and
d = |C| + j|D| + |t|; then |C[Dj+ik[t]]| = ci + d. It is well-known that, for an order-
n λ→-term s, we have |T (s)| ≤ expn(|s|) (see, e.g., [25, Lemma 3]). Thus, we have
|T (C[Dj+ik[t]])| ≤ expn(ci+ d). J

The step obtaining (10) (the steps using Lemma 14 and obtaining (11), resp.) indic-
ates why we need to require T (C[Dj+ik[t]]) ≺ T (C[Dj+i′k[t]]) for any i < i′ rather than
|T (C[Dj+ik[t]])| < |T (C[Dj+i′k[t]])| (T (C[Dj+ik[t]]) 6= T (C[Dj+i′k[t]]), resp.) to make the
induction work.

6 Second-order Kruskal’s theorem

In this section, we prove Conjecture 7 (hence also Conjecture 8) up to order-2. First, we
extend the homeomorphic embedding � on trees to a family of relations �κ by using logical
relation: (i) t1 �o t2 if ∅ `ST t1 : o, ∅ `ST t2 : o, and T (t1) � T (t2). (ii) t1 �κ1→κ2 t2
if ∅ `ST t1 : κ1 → κ2, ∅ `ST t2 : κ1 → κ2, and t1s1 �κ2 t2s2 holds for every s1, s2
such that s1 �κ1 s2. We often omit the subscript κ and just write � for �κ. We also
write x1 : κ1, . . . , xk : κk |= t �κ t′ if [s1/x1, . . . , sk/xk]t �κ [s′1/x1, . . . , s

′
k/xk]t′ for every

s1, . . . , sk, s
′
1, . . . , s

′
k such that si �κi

s′i.
The relation �κ is well-defined for βη-equivalence classes, and by the abstraction lemma

of logical relation, it turns out that the relation �κ is a pre-order for any κ (see the full
version for these). Note that the relation is also preserved by applications by the definition of
the logical relation. It remains to show that �κ is a well quasi-order for κ of order up to 2.

For `-ary terminal a and k ≥ `, we write CTermsa,k for the set of terms

{λx1. · · ·λxk.a xi1 . . . xi` | i1 · · · i` is a subsequence of 1 · · · k}.

We define o0 → o := o and on+1 → o := o→ (on → o).
The following lemma allows us to reduce t�κ t′ on any order-2 type κ to (finitely many

instances of) that on order-0 type o.

I Lemma 17. Let Σ be a ranked alphabet; κ be (ok1 → o)→ · · · → (okm → o)→ o; aji be a
j-ary terminal not in Σ for 1 ≤ i ≤ m and 0 ≤ j ≤ ki; and t, t′ be λ→-terms whose type is
κ and whose terminals are in Σ. Then t �κ t′ if and only if t u1 . . . um �o t

′ u1 . . . um for
every ui ∈ ∪j≤kiCTermsaj

i
,ki

.
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Proof. The “only if” direction is trivial by the definition of �κ. To show the opposite,
assume the latter holds. We need to show that t s1 . . . sm �o t

′ s1 . . . sm holds for every
combination of s1, . . . , sm such that `ST si : κi for each i. Without loss of generality, we can
assume that t, t′, s1, . . . , sm are βη long normal forms, and hence that

t = λf1. · · ·λfm.t0 f1 : ok1 → o, . . . , fm : okm → o `ST t0 : o

t′ = λf1. · · ·λfm.t′0 f1 : ok1 → o, . . . , fm : okm → o `ST t
′
0 : o

si = λx1. . . . λxki
.si,0 x1 : o, . . . , xki

: o `ST si,0 : o (for each i)

For each i ≤ m, let FV(si,0) = {xq(i,1), . . . , xq(i,`i)}, and ui ∈ CTerms
a

`i
i
,ki

be the term
λx1. · · ·λxki .a

`i
i xq(i,1) · · · xq(i,`i). Let θ and θ′ be the substitutions [u1/f1, . . . , um/fm] and

[s1/f1, . . . , sm/fm] respectively. It suffices to show that θt0 �o θt
′
0 implies θ′t0 �o θ

′t′0, which
we prove by induction on |t′0|.

By the condition f1 :ok1 → o, . . . , fm :okm → o `ST t0 : o, t0 must be of the form h t1 · · · t`
where h is fi or a terminal a in Σ, and ` may be 0. Then we have

T (θt0)=
{
aT (θt1) · · · T (θt`) (h= a)
a`i
i T (θtq(i,1)) · · · T (θtq(i,`i)) (h= fi)

Similarly, t′0 must be of the form h′ t′1 · · · t′`′ and the corresponding equality on T (θt′0) holds.
By the assumption θt0 �o θt

′
0, we have T (θt0) � T (θt′0). We perform case analysis on the

rule used for deriving T (θt0) � T (θt′0) (recall Definition 5).
Case of the first rule: In this case, the roots of T (θt0) and T (θt′0) are the same and hence
h = h′ and ` = `′. We further perform case analysis on h.

Case h = a: For 1 ≤ j ≤ `, since T (θtj) � T (θt′j), by induction hypothesis, we have
θ′tj �o θ

′t′j . Hence θ′t0 �o θ
′t′0.

Case h = fi: For 1 ≤ j ≤ `i, since T (θtq(i,j)) � T (θt′q(i,j)), by induction hypothesis,
we have θ′tq(i,j) �o θ

′t′q(i,j). Hence, [θ′tq(i,j)/xq(i,j)]j≤`i
si,0 �o [θ′t′q(i,j)/xq(i,j)]j≤`i

si,0.
By the definition of q(i, j), θ′t0 −→ [θ′tj/xj ]j≤kisi,0 = [θ′tq(i,j)/xq(i,j)]j≤`isi,0, and
similarly, θ′t′0 −→ [θ′t′q(i,j)/xq(i,j)]j≤`i

si,0; hence we have θ′t0 �o θ
′t′0.

Case of the second rule: We further perform case analysis on h′.
Case h′ = a: We have T (θt0) � T (θt′p) for some 1 ≤ p ≤ `′. Hence by induction
hypothesis, we have θ′t0 �o θ

′t′p, and then θ′t0 �o θ
′t′0.

Case h′ = fi: We have T (θt0) � T (θt′q(i,p)) for some 1 ≤ p ≤ `i. Hence by induction
hypothesis, we have θ′t0 �o θ

′t′q(i,p). Also, by the definition of q(i, p), xq(i,p) occurs in
si,0. Since si,0 is a βη long normal form of order-0, the order-0 variable xq(i,p) occurs
as a leaf of si,0; hence T (θ′t′q(i,p)) � [T (θ′t′q(i,j))/xq(i,j)]j≤`i

si,0. Therefore θ′t0 �o

[θ′t′q(i,j)/xq(i,j)]j≤`i
si,0. Since θ′t′0 −→ [θ′t′q(i,j)/xq(i,j)]j≤`i

si,0, we have θ′t0 �o θ
′t′0.

J

As a corollary, we obtain a second-order version of Kruskal’s tree theorem.

I Theorem 18. Let Σ be a ranked alphabet, κ be an at most order-2 type, and t0, t1, t2, . . .
be an infinite sequence of λ→-terms whose type is κ and whose terminals are in Σ. Then,
there exist i < j such that ti �κ tj.

Proof. Since κ is at most order-2, it must be of the form (ok1 → o)→ · · · → (okm → o)→ o.
Let aji be a j-ary terminal not in Σ for 1 ≤ i ≤ m and 0 ≤ j ≤ ki; (∪j≤k1CTermsaj

1,k1
)×· · ·×

(∪j≤kmCTermsaj
m,km

) be {(u1,1, . . . , u1,m), . . . , (up,1, . . . , up,m)}; b be a p-ary terminal not
in Σ∪{aji | 1 ≤ i ≤ m, 0 ≤ j ≤ ki}; and si be the term b (ti u1,1 · · · u1,m) · · · (ti up,1 · · · up,m)
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for each i ∈ {0, 1, 2, . . .}. Since the set of terminals in s0, s1, s2, . . . is finite, by Kruskal’s tree
theorem, there exist i, j such that si �o sj and i < j. Since b occurs just at the root of sk
for each k, si �o sj implies ti uk,1 · · · uk,m �o tj uk,1 · · · uk,m for every k ∈ {1, . . . , p}. Thus,
by Lemma 17, we have ti �κ tj as required. J

7 Related Work

As mentioned in Section 1, to our knowledge, pumping lemmas for higher-order word languages
have been established only up to order-2 [7], whereas we have proved (unconditionally) a
pumping lemma for order-2 tree languages and order-3 word languages. Hayashi’s pumping
lemma for indexed languages (i.e., order-2 word languages) is already quite complex, and it is
unclear how to generalize it to arbitrary orders. In contrast, our proof of a pumping lemma
works for arbitrary orders, although it relies on the conjecture on higher-order Kruskal’s tree
theorem. Parys [21] and Kobayashi [12] studied pumping lemmas for collapsible pushdown
automata and higher-order recursion schemes respectively. Unfortunately, they are not
applicable to word/tree languages generated by (non-deterministic) grammars.

As also mentioned in Section 1, the strictness of hierarchy of higher-order word languages
has already been shown by using a complexity argument [5, 8]. We can use our pumping
lemma (if the conjecture is discharged) to obtain a simple alternative proof of the strictness,
using the language {aexpn(k) | k ≥ 0} as a witness of the separation between the classes
of order-(n+ 1) word languages and order-n word languages. In fact, the pumping lemma
would imply that there is no order-n grammar that generates {aexpn(k) | k ≥ 0}, whereas an
order-(n+ 1) grammar that generates the same language can be easily constructed.

We are not aware of studies of the higher-order version of Kruskal’s tree theorem
(Conjecture 7) or the periodicity of tree functions expressed by the simply-typed λ-calculus
(Conjecture 8), which seem to be of independent interest. Zaionc [27, 28] characterized the
class of (first-order) word/tree functions definable in the simply-typed λ-calculus. To obtain
higher-order Kruskal’s tree theorem, we may need some characterization of higher-order
definable tree functions instead.

We have heavily used the results of Parys’ work [23] and our own previous work [1], which
both use intersection types for studying properties of higher-order languages. Other uses of
intersection types in studying higher-order grammars/languages are found in [10, 15, 22, 12,
3, 14, 13].

8 Conclusion

We have proved a pumping lemma for higher-order languages of arbitrary orders, modulo
the assumption that a higher-order version of Kruskal’s tree theorem holds. We have also
proved the assumption indeed holds for the second-order case, yielding a pumping lemma for
order-2 tree languages and order-3 word languages. Proving (or disproving) the higher-order
Kruskal’s tree theorem is left for future work.
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