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Abstract
This paper defines weak-α-supermodularity for set functions. It shows that minimizing such
functions under cardinality constrains is a common task in machine learning and data mining.
Moreover, any problem whose objective function exhibits this property benefits from a greedy
extension phase. Explicitly, let S∗ be the optimal set of cardinality k that minimizes f and let
S0 be an initial solution such that f(S0) ≤ ρf(S∗). Then, a greedy extension S ⊃ S0 of size
|S| ≤ |S0|+ dαk ln(ρ/ε)e yields f(S) ≤ (1 + ε)f(S∗).

Example usages of this framework give streamlined proofs and new bi-criteria results for
k-means, sparse regression, column subset selection, and sparse convex function minimization.
Sparse regression and column subset selection are special cases of a new, more general, sparse
multiple linear regression problem that is of independent interest. This paper also corrects
a brittleness of the proof of Natarajan for the properties of the greedy algorithm for sparse
regression.
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1 Introduction

Many problems in data mining and unsupervised machine learning take the form of minimizing
a set function with cardinality constraints. More explicitly, denote by [n] the set {1, . . . , n}
and f(S) : 2[n] → R+. Our goal is to minimize f(S) subject to |S| ≤ k. These problems
include clustering and covering problems as well as sparse regression, matrix approximation
problems and many others. These combinatorial problems are hard to minimize in general.
Finding good (e.g. constant factor) approximate solutions for them requires significant
sophistication and highly specialized algorithms.

In this paper we analyze the behavior of the greedy algorithm to all of these problems.
We start by claiming that the functions above are special. A trivial observation is that they
are non-negative and non-increasing, that is, f(S) ≥ f(S ∪ T ) ≥ 0 for any S, T ⊆ [n]. This
immediately shows that expanding solution sets is (at least potentially) beneficial in terms
of reducing the function value. But, monotonicity is not sufficient to ensure that any number
of greedy extensions of a given solution would significantly reduce the objective function.

To this end we need to somehow quantify the gain of adding a single element (greedily)
to a solution set. Let f(S) − f(S ∪ T ) be the reduction in f one gains by adding a set
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of elements T to the current solution S. Then, the average gain of adding elements from
T sequentially is [f(S) − f(S ∪ T )]/|T \ S|. One would hope that there exists an element
in i ∈ T \ S such f(S) − f(S ∪ {i}) ≥ [f(S) − f(S ∪ T )]/|T \ S|. However, that would be
false in general because different element contributions are not independent of each other.
Nevertheless, it is true for supermodular functions (see Fact 3).

Combining this fact with the idea that T could be any set, including the optimal solution
S∗, already gives some useful results for minimizing supermodular set functions. Specifically
those for which f(S∗) is bounded away from zero. Notice that k-means clustering (defined
below) is exactly this kind of problem. Section 4 gives some new bicriteria results obtainable
for k-means via the greedy extension algorithm of Section 3.

Alas, most problems of interest, such as regression, column subset selection, and feature
selection are not supermodular. In Section 2 we define the notion of weak-α-supermodularity.
Intuitively, weak-α-supermodular functions are those conducive to greedy type algorithms.
The property requirers that there exists an element i ∈ T \ S such that adding i first gains
at least [f(S)− f(S ∪ T )]/α|T \ S| for some α ≥ 1.

An analogous relaxation of the submodular property for set functions was considered in
[5] (see definition 2.3). They define a submodularity-ratio for set functions which are not
submodular. They show that if the submodularity-ratio is bonded, a greedy algorithm can
be used to obtain bi-crateria results for the maximization problem. The work of [5] can be
viewed as a direct extension of well know fact. Namely that the greedy algorithm provides a
(1− 1/e)-factor approximation for maximizing set functions g(S) subject to |S| ≤ k if g for
positive, monotone non-decreasing and submodular set functions [15].

This paper complements both [15] and [5] for the intuitively related process of greedily
minimizing supermodular functions. While our setting is not significantly more complex it is
quite different. In contrast to maximizing submodular functions, minimizing supermodular
functions is, in general, hard [10]. The difficulty arrises from the fact that a value of zero of
the objective function could force any constant factor approximation algorithm to find an
optimal solution. Our work cannot overcome this fundamental (and unresolvable) difficulty.

We consider the case where either the objective function is bounded away from zero
or one could obtain an approximate initial solution. In that case, supermodularity (or
weak-α-supermodularity) is shown to be sufficient for obtaining good bi-crateria results using
the greedy algorithm. Section 2 includes notations and concepts that will be used throughout
the paper. In section 3 we present two generic greedy algorithms and analyze their guaranties
for weak-α-supermodular functions.

Many important problems in data mining and machine learning fall into this regime.
As a warm-up, in Section 4 we obtain new bi-creteria results for k-means clustering, the
objective function of which is supermodular. Section 5 presents the sparse multiple linear
regression (SMLR) and shows that it is weakly-α-supermodular. We then streamline and
slightly improve the result of [14] for sparse regression, also known as feature selection.
Column Subset Selection (CSS) for matrix approximation is an instance of SMLR. Section 7
gives new bi-creteria results for CSS with little additional effort. Finally, we recreate the
result of [16] for minimizing smooth and strongly convex functions with sparse solutions.
The result is equivalent but the proof is simpler and shorter.

2 Preliminaries and definitions

Throughout the manuscript we denote by [n] the set {1, . . . , n}. We concern ourselves with
non-negative set function f(S) : 2[n] → R+. More specifically monotone non-increasing set
function such that f(S) ≥ f(S ∪ T ) for any two sets S ⊆ [n] and T ⊆ [n].
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Algorithm 1 Greedy Extension Algorithm
Input: Weakly-α-supermodular function f(S), initial set S0, parameters k ∈ Z+ and the
sequence Λ1,Λ2, . . .

while t ≤ dαk ln Λte do
St ← St−1 ∪ arg mini∈[n] f(St−1 ∪ {i})

Output: St

I Definition 1. A set function f(S) : 2[n] → R+ is said to be supermodular if for any two
sets S, T ⊆ [n]

f(S ∩ T ) + f(S ∪ T ) ≥ f(S) + f(T ). (1)

I Definition 2. A non-negative non-increasing set function f(S) : 2[n] → R+ is said to be
weakly-α-supermodular if there exists α ≥ 1 such that for any two sets S, T ⊆ [n]

f(S)− f(S ∪ T ) ≤ α
∑
i∈T\S

(f(S)− f(S ∪ {i})) . (2)

This property is useful because we will later try to minimize f . It asserts that if adding T \S
is beneficial then there is an element i ∈ T \ S that contributes at least a fraction of that.
The reason for the name of this property might also be explained by the following definition
and lemma.

I Fact 3. A non-increasing non-negative supermodular function f is weakly-α-supermodular
with parameter α = 1.

Proof. For S, T ⊆ [n] order the set T \ S in an arbitrary order, i.e. T \ S = {i1, . . . , i|T\S|}.
Define R0 = ∅ and Rt = {i1, . . . it} for t > 0. By supermodularity we have for any t

f(S)− f(S ∪ {it}) ≥ f(S ∪Rt−1)− f(S ∪Rt−1 ∪ {it}) (3)

We note that Rt−1 ∪ {it} = Rt and sum up Equation (3).
|T\S|∑
t=1

[f(S)− f(S ∪ {it})] ≥
|T\S|∑
t=1

f(S ∪Rt−1)− f(S ∪Rt−1 ∪ {it})

= f(S)− f(S ∪ T ) .

Since |T \ S| ·maxi∈T\S [f(S)− f(S ∪ {i})] ≥
∑|T\S|
t=1 [f(S)− f(S ∪ {it})] this implies weak-

1-supermodularily. J

3 General Greedy Extension Algorithms

We are given a weakly-α-supermodular set function f(S) and would like to solve the following
optimization problem

min{f(S) : |S| ≤ k}. (4)

Let 0 < Λ1 ≤ Λ2 ≤ . . . be a non-decreasing bounded sequence of reals, i.e. maxt Λt < +∞.
Our algorithm works in phases and we may assume that Λt is computed on step t of the
algorithm. Consider a simple greedy algorithm that starts with some initial solution S0 of
value f(S0) (maybe S0 = ∅) and sequentially and greedily adds elements to it to minimize f .

Note that since the sequence Λt is bounded the algorithm terminates after at most
dαk ln (maxt Λt)e iterations.

APPROX/RANDOM’17
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Algorithm 2 Greedy Extension Algorithm
Input: Weakly-α-supermodular function f(S), initial set S0, k ∈ Z+
while t ≤ dαk ln (f(S0)/εf(St−1))e do
St ← St−1 ∪ arg mini∈[n] f(St−1 ∪ {i})

Output: St

I Lemma 4. Let Sτ be the output of Algorithm 1. Then |Sτ | ≤ |S0| + dαk ln Λτe and
f(Sτ ) ≤ f(S∗) + f(S0)−f(S∗)

Λτ+1
where S∗ is an optimal solution of the optimization problem

(4).

Proof. The fact that |Sτ | ≤ |S0|+ dαk ln Λτe is a trivial observation. For the second claim
consider an arbitrary iteration t ∈ [τ ] and consider the set S∗ \ St−1. By monotonicity and
weak α-supermodularity

f(St−1)− f(S∗) ≤ f(St−1)− f(St−1 ∪ S∗)
≤ α ·

∑
i∈S∗\St−1

f(St−1)− f(St−1 ∪ {i})

≤ αk ·max
i∈[n]

f(St−1)− f(St−1 ∪ {i})

= αk · (f(St−1)− f(St)) .

By rearranging the above equation and recursing over t we get

f(St)− f(S∗) ≤ (f(St−1)− f(S∗)) (1− 1/αk) ≤ (f(S0)− f(S∗)) (1− 1/αk)t

Substituting τ + 1 > dαk ln Λτ+1e for the last step of the algorithm completes the proof.

f(Sτ )− f(S∗) ≤ (f(S0)− f(S∗)) (1− 1/αk)αk ln Λτ+1

≤ (f(S0)− f(S∗)) e− ln Λτ+1 ≤ f(S0)− f(S∗)
Λτ+1

. J

I Theorem 5. Let Sτ be the output of Algorithm 2 which is an instantiation of Al-
gorithm 1 with parameters Λt = f(S0)/εf(St−1) for some error ε ≥ 0. Then |Sτ | ≤
|S0|+ dαk ln(f(S0)/εf(S∗))e and f(Sτ ) ≤ f(S∗)/(1− ε) where S∗ is an optimal solution of
the optimization problem (4).

Proof. By Lemma 4 we have

|Sτ | ≤ |S0|+ dαk ln Λτe ≤ |S0|+ dαk ln(f(S0)/εf(S∗))e

and

f(Sτ ) ≤ f(S∗) + f(S0)− f(S∗)
Λτ+1

= f(S∗) + f(S0)− f(S∗)
f(S0) εf(Sτ ) ≤ f(S∗) + εf(Sτ ). J

I Theorem 6. Assume there exist a ρ-approximation algorithm creating S0 such that f(S0) ≤
ρf(S∗). There exists an algorithm for generating S such that |S| ≤ |S0|+ dαk

(
ln ρ

ε

)
e and

f(S) ≤ f(S∗)/(1− ε).

Proof. Use the ρ-approximation algorithm to create S0 for Algorithm 1 and apply Theorem 5.
J
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Algorithm 3 Greedy Extension Algorithm; an alternative stopping criterion
Input: Weakly-α-supermodular function f , S0, fstop
repeat
St ← St−1 ∪ arg mini f(St−1 ∪ {i})

until f(St) ≤ fstop
Output: S = St

I Theorem 7. Let k′ be the minimal cardinality of a set S′ such that f(S′) ≤ f ′. For any
fstop and an initial set S0 such that f ′ < fstop < f(S0) Algorithm 3 outputs S such that

|S| ≤ |S0|+
⌈
αk′

(
ln f(S0)− f ′

fstop − f ′

)⌉
Proof. Let f ′ = f(S′). The proof follows from Lemma 4 by setting k = kf , Λt = f(S0)−f ′

fstop−f ′

and noticing that f(S0)−f ′
fstop−f ′ ≤

f(S0)−f
fstop−f . J

This alternative algorithm will be used in Section 6

4 k-means Clustering

As a gentle introduction we begin with deriving new bi-cretiria results for the k-means
clustering problem. We begin by defining the constrained k means problem.

I Definition 8 (Constrained k-means). Given a set of n points X ⊂ Rd, find a set S ⊂ X

minimizing f(S) =
∑
x∈X minx′∈S ‖x− x′‖2 subject to |S| ≤ k.

I Lemma 9. For the constrained k-means problem, one can find in O(n2dk log(1/ε)) time
a set S of size |S| = O(k) + k log(1/ε) such that f(S) ≤ (1 + ε)f(S∗) where f(S∗) is the
optimal solution.

Proof. The constrained k-means objective function f is weakly-1-supermodular because it is
supermodular (Fact 3). This is both well known and not hard to reverify. Using the algorithm
of [1] one obtains a set S0 of size |S0| = O(k) points from X for which f(S0) = O(f(S∗)).
Their technique improves on the analysis of well known k-means++ adaptive sampling
scheme of [2]. Greedily extending S0 and applying the analysis of Theorem 5 completes the
proof. The quadratic dependency of the running time on the number of data points can be
alleviated using the corset construction of [8, 9] J

I Definition 10 (Unconstrained k-means). Given a set of n points X ⊂ Rd, find a set S ⊂ Rd
minimizing f(S) =

∑
x∈X minc∈S ‖x− c‖2 subject to |S| ≤ k.

I Lemma 11. Let f(S∗) be the optimal solution to the unconstrained k-means problem. One
can find in time O(n2dk log(1/ε)) a set S ∈ Rd of size |S| = O(k) + k log(1/ε) such that
f(S) ≤ (2 + ε)f(S∗).

Proof. The proof and the algorithm are identical to the above. The only point to note is
that a 1 + ε/2 approximation to the constrained problem is at most a 2 + ε approximation
to the unconstrained one. See [2], for example, for the argument that the minimum of the
constrained objective is at most twice that of the unconstrained one. J

Alternatively, we can utilize a more computationally expensive approach which goes through
a reduction to the k-median problem.

APPROX/RANDOM’17
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I Definition 12 (k-Median). We are given a set X of data points, the set C of potential
cluster center locations and the nonnegative costs wij ≥ 0 for all i, j ∈ X × C. Find a set
S ⊂ C minimizing f(S) =

∑
i∈X minj∈C wij subject to |S| ≤ k.

It is known that given an instance (X, k) of the Unconstrained k-means problem one can
construct in polynomial time an instance of the k-Median problem (X, C, w, k) where C ⊆ Rd
such that for any solution of value Φ for the Unconstrained k-means problem there exists a
solution of value (1+ε)Φ for the corresponding instance of the k-Median problem (see Theorem
7 [13]). Moreover, |C| = nO(log(1/ε)/ε2). Therefore, after applying this transformation on our
instance of the Unconstrained k-means and using the same initial solution S0 as in Lemma 11
we derive.

I Lemma 13. Let f(S∗) be the optimal solution to the unconstrained k-means problem. One
can find in time O(nO(log(1/ε)/ε2)dk) a set S ∈ Rd of size |S| = O(k) + k log(1/ε) such that
f(S) ≤ (1 + ε)f(S∗).

5 Sparse Multiple Linear Regression

We begin by defining the Sparse Multiple Linear Regression (SMLR) problem. Given two
matrices X ∈ Rm×n and Y ∈ Rm×`, and an integer k find a matrix W ∈ Rn×` that
minimizes ‖XW − Y ‖2F subject to W having at most k non zero rows. We assume for
notational brevity (and w.l.o.g.) that the columns of X have unit norm. An alternative
and equivalent formulation of SMLR is as follows. Let XS be a submatrix of the matrix
X defined by the columns of X indexed by the set S ⊆ [n]. Let X+

S be the Moore-Penrose
pseudo-inverse of XS . It is well-known that the minimizer of ‖XW − Y ‖2F subject to W
whose non zero rows are indexed by S is equal to ‖Y −XSX

+
S Y ‖2F . SMLR can therefore be

reformulated as

min
S⊆[n]

{f(S) = ‖Y −XSX
+
S Y ‖

2
F : |S| ≤ k} .

We can consequently apply our methodology from Section 3 to SMLR if we show that f(S)
is α-weakly-supermodular.

I Lemma 14. For X ∈ Rm×n and Y ∈ Rm×` the SMLR minimization function f(S) =
‖Y −XSX

+
S Y ‖2F is α-weakly-supermodular with α = maxS′ ‖X+

S′‖22.

Proof. We first estimate f(S) − f(S ∪ T ). Denote by ZT\S the matrix whose columns
are those of XT\S projected away from the span of XS and normalized. More formally,
ζi = ‖(I −XSX

+
S )xi‖ and zi = (I −XSX

+
S )xi/ζi for all i ∈ T \ S. Note that the column

span of ZT\S is orthogonal to that of XS and that together they are equal to the column
span of XT∪S . Using the Pythagorean theorem and the fact that XSX

+
S is a projection we

obtain f(S) = ‖Y ‖2F −‖XSX
+
S Y ‖2F and f(S ∪T ) = ‖Y ‖2F −‖XSX

+
S Y ‖2F −‖ZS\TZ

+
S\TY ‖

2
F .

Substituting T = {i} also gives f(S)− f(S ∪ {i}) = ‖zizTi Y ‖2F = ‖zTi Y ‖22.

f(S)− f(S ∪ T ) = ‖ZT\SZ+
T\SY ‖

2
F (5)

= ‖(ZT

T\S)+ · ZT

T\SY ‖
2
F By SVD (6)

≤ ‖(ZT

T\S)+‖22 · ‖ZT

T\SY ‖
2
F (7)

= ‖Z+
T\S‖

2
2 ·

∑
i∈T\S

‖zTi Y ‖22 (8)
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≤ ‖X+
T∪S‖

2
2 ·

∑
i∈T\S

‖zTi Y ‖22 See below (9)

= α ·
∑
i∈T\S

(f(S)− f(S ∪ {i})) (10)

For Equation (9) we use a non trivial transition, ‖Z+
T\S‖2 ≤ ‖X

+
T∪S‖2. By the definition of

ZT\S we can write for i ∈ T \ S that zi = (xi −
∑
j∈S αijxj)/ζi and ζi = ‖(I −XSX

+
S )xi‖.

For any vector w

ZT\Sw =
∑
i∈T\S

xiwi/ζi +
∑
j∈S

xj
∑
i∈T\S

wiαij/ζi = XT∪Sw
′

where w′i = wi/ζi for i ∈ T \ S and w′j =
∑
i∈T\S wiαij/ζi for j ∈ S. Since, ζi =

‖(I −XSX
+
S )xi‖ ≤ ‖xi‖ = 1 we have ‖w′‖ ≥ ‖w‖. Finally, consider w such that ‖w‖ = 1

and ‖ZT\Sw‖ = ‖Z+
T\S‖

−1. This is the right singular vector corresponding to the smallest
singular value of ZT\S . We obtain

‖Z+
T\S‖

−1 = ‖ZT\Sw‖ = ‖XT∪Sw
′‖ ≥ ‖X+

T∪S‖
−1‖w′‖ ≥ ‖X+

T∪S‖
−1 .

This completes the proof. J

I Lemma 15. Let f(S∗) be the optimal solution to the Sparse Multiple Linear Regres-
sion problem. One can find in time O(αk log(‖Y ‖2F /ε) · nTf ) a set S ⊆ [n] of size |S| =
dαk log(‖Y ‖2F /ε)e such that f(S) ≤ f(S∗)/(1− ε) where Tf is the time needed to compute
f(S) once.

6 Sparse Regression

The problem of Sparse Regression defined in [14] is an instance of SMLR where the number
of columns in W and Y is ` = 1. Since both W and Y are vectors we reduce to the more
familiar form of this problem; minimize ‖Xw − y‖22 subject to ‖w‖0 ≤ k.

Natarajan [14] analyzes the greedy algorithm for the sparse regression problem. He sets
a desired threshold error E and defines k to be the minimum cardinality of a solution S∗
that achieves f(S∗) ≤ E′ = E/4. He shows that for α = maxS′ ‖X+

S′‖2 the greedy algorithm
finds a solution S such that f(S) ≤ E such that

|S| ≤
⌈

9kα ln ‖y‖
2
2

E

⌉
.

Natarajan’s implicit assumption

In [14] Natarajan uses α = ‖X+‖2 instead of α = maxS′ ‖X+
S′‖2. This is only correct

if the columns of X are linearly independent which seems to be an implicit assumption.
In this setting α = maxS′ ‖X+

S′‖2 = ‖X+‖2 by Cauchy’s interlacing theorem. Note that
maxS′ ‖X+

S′‖ ≥ ‖X+‖ if the columns of X are linearly dependent. This is the setting in the
hardness result of [10] and is inevitable in the under constrained case where the number of
columns is larger than their dimension.

Here, we apply Theorem 7 with initial solution S0 = ∅ (which gives f(S0) = ‖y‖22) and
E′ = E/4. It immediately yields that the greedy algorithm finds a solution of value f(S) ≤ E
and

|S| ≤
⌈
kα ln ‖y‖

2
2 − E/4

E − E/4

⌉
≤
⌈

4
3kα ln ‖y‖

2
2

E

⌉

APPROX/RANDOM’17
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using the inequality ln( 4
3x−

1
3 ) ≤ 4

3 ln x for x ≥ 1. This improves the result of [14] in three
ways
1. the approximation constant is smaller
2. its proof is more streamlined and
3. it extends to viability of the greedy algorithm to the under constrained case where the

result of [14] does not hold.

7 Column Subset Selection Problem

Given a matrix X, Column Subset Selection (CSS) is concerned with finding a small set
of columns whose span captures as much of the Frobenius norm of X. It was throughly
investigated in the context of numerical linear algebra [11, 12, 4]. CSS can be formulated
as follows, find a subset S ∈ [n], |S| ≤ k of matrix columns that minimize f(S) = ‖X −
XSX

+
S X‖2F . This formulation makes it clear that this is a special case of SMLR where

Y = X.
The work of [17] investigates the notion of a curvature c ∈ [0, 1] for a nonincreasing set

functions. They define it as follows:

c = 1− min
j∈[n]

min
S,T⊆[n]\{j}

f(S)− f(S ∪ {j})
f(T )− f(T ∪ {j}) . (11)

They show that there exists a greedy type algorithm that finds a solution of value at most
1/(1− c) times the optimal value of the minimization problem for any objective set function
with curvature c (Corollary 8.5 in [17]).

I Lemma 16 (Lemma 9.1 from [17]). Let f(S) be the objective function for the Column
Subset Selection Problem corresponding to the matrix X. The curvature c of f(S) is such
that 1

1−c ≤ κ
2(X) where κ(X) is the condition number of X.

Note that for any matrix Xwith full column rank if X̃ is the matrix with normalized columns
then ‖X̃+‖ ≤ κ(X). We can find our initial solution S0 by one of the three known methods:
1. an approximation algorithm from [17] finds a solution S0 such that |S0| = k and perform-

ance guarantee ρ = κ2(X);
2. an approximation algorithm from [7, 6] with |S0| = k and ρ = k + 1;
3. an approximation algorithm from [3] with |S0| = 2k and ρ = 2;

I Lemma 17. For the column subset selection problem for a column normalized matrix X
and α = maxS′ ‖X+

S′‖22 one can find a set S such that

f(S) ≤ (1 + ε)f(S∗) and |S| = O (k) + αk
(

ln ρ
ε

)
.

Proof. Combining one of the above results with the algorithm from Section 3 completes the
proof. J

8 Sparse Convex Function Minimization

One popular extension of the regression problem is to consider

f(S) = min{R(y) : supp(y) ⊆ S} (12)

where R(y) is a convex function and supp(y) = {i | yi 6= 0}. Following Shalev-Shwartz et
al. [16], we consider a special case when the convex function R(y) satisfies two additional
conditions.
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I Definition 18. A function R(w) is said to be λ-strongly convex for λ ≥ 0 if for each
w, u ∈ Rd we have

R(w) ≥ R(u) + 〈∇R(u), w − u〉+ λ

2 ||w − u||
2
2.

I Definition 19. A function R(w) is said to be β-smooth if for each w, u ∈ Rd we have

R(w) ≤ R(u) + 〈∇R(u), w − u〉+ β

2 ||w − u||
2
1.

Shalev-Shwartz et al. [16] gave many examples of such convex functions. In particular,
they relate our Definition 19 to a class of functions arising in Machine Learning with β-smooth
loss functions (see Lemma B1 and Section 3 in [16]).

I Theorem 20. Given the set function f(S) defined in (12) corresponding to β-smooth
λ-strongly convex function R(w). The set function f(S) is α-weakly-supermodular with
α = β

λ .

Proof. Let yS ∈ Rd be a vector minimizing the function R(y) among vectors with support
S and yS∪T ∈ Rd be a vector minimizing function R(y) among vectors with support S ∪ T .
For any vector x ∈ Rd, let x(j) ∈ R be its j-th coordinate.

For each j ∈ T \ S, we define vector ỹj ∈ Rd such that ỹj(j) = yS∪T (j) and ỹj(i) = 0 for
all i 6= j. It is enough to prove the inequality

R(yS)−R(yS∪T ) ≤ β

λ

∑
j∈T\S

R(yS)−R
(
yS + λ

β
ỹj
)

(13)

to prove the statement of the theorem. By applying Definitions 18 and 19 we derive∑
j∈T\S

R(yS)−R
(
yS + λ

β
ỹj
)
≥
∑
j∈T\S

(
−
〈
∇R(yS), λ

β
ỹj
〉
− β

2 ||
λ

β
ỹj ||21

)

≥ −λ
β

 ∑
j∈T\S

〈
∇R(yS), ỹj

〉− λ2

2β ||yS∪T − yS ||
2
2

= −λ
β
〈∇R(yS), yS∪T − yS〉 −

λ2

2β ||yS∪T − yS ||
2
2

≥ λ

β

(
R(yS)−R(yS∪T ) + λ

2 ||yS∪T − yS ||
2
2

)
− λ2

2β ||yS∪T − yS ||
2
2

= λ

β
(R(yS)−R(yS∪T ))

where the first equality follows from the fact that ∇R(yS)(j) = 0 for all j ∈ S. J

Let R∗ be the target value for our convex function R(y) and kf be the minimal cardinality
of a set S′ such that f(S′) ≤ R∗ where f(S) is defined by (12). Combining Theorem 7 and
Theorem 20 we derive

I Theorem 21. For any ε > 0, let fstop = R∗ + ε then the Algorithm 3 outputs S such that

|S| ≤
⌈
β

λ
kf

(
ln R(∅)−R∗

ε

)⌉
.

The above theorem is analogous to Theorem 2.8 in [16].
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