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—— Abstract

Computational and economic results suggest that social welfare maximization and combinatorial
auction design are much easier when bidders’ valuations satisfy the “gross substitutes” condition.
The goal of this paper is to evaluate rigorously the folklore belief that the main take-aways from
these results remain valid in settings where the gross substitutes condition holds only approxim-
ately. We show that for valuations that pointwise approximate a gross substitutes valuation (in
fact even a linear valuation), optimal social welfare cannot be approximated to within a subpoly-
nomial factor and demand oracles cannot be simulated using a subexponential number of value
queries. We then provide several positive results by imposing additional structure on the valu-
ations (beyond gross substitutes), using a more stringent notion of approximation, and/or using
more powerful oracle access to the valuations. For example, we prove that the performance of
the greedy algorithm degrades gracefully for near-linear valuations with approximately decreasing
marginal values; that with demand queries, approximate welfare guarantees for XOS valuations
degrade gracefully for valuations that are pointwise close to XOS; and that the performance of
the Kelso-Crawford auction degrades gracefully for valuations that are close to various subclasses
of gross substitutes valuations.
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1 Introduction

Welfare maximization in combinatorial auctions is a central problem in both theory and
practice, and is perhaps the most well-studied problem in algorithmic game theory (e.g., [7]).
The problem is: given a set M of distinct items and descriptions of, or oracle access to,
the valuation functions vy, ..., v, of n bidders (each a set function from bundles to values),
determine the partition Si,...,S, of items that maximizes the social welfare > 1 | v;(.S;).

This paper focuses on the purely algorithmic and approximation aspects of welfare maxim-
ization. Many possibility and impossibility results for efficiently computing or approximating
the maximum social welfare are known, as a function of the set of allowable bidder valuations.
Very roughly, the current state of affairs can be summarized by a trichotomy:

* A full version of the paper is available at https://arxiv.org/abs/1608.02402.
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(i) when the valuations satisfy “gross substitutes,” then exact welfare maximization is easy;
(ii) when the valuations are “complement-free” but not necessarily gross substitutes (e.g.,
subadditive), exact welfare maximization is hard but constant-factor approximations
are possible; and
(iii) with sufficiently general valuations, even approximate welfare maximization is hard.!

The rule of thumb that “substitutes are easy, complements are hard” has its origins in the
economic literature on multi-item auction design. For example, simple and natural ascending
auctions converge to a welfare-maximizing Walrasian equilibrium (i.e., to a market-clearing
price vector and allocation) whenever all bidders’ valuations satisfy gross substitutes [24], but
when this condition is violated a Walrasian equilibrium does not generally exist [18, 28]. Sim-
ilarly, the VCG mechanism has a number of desirable properties (like revenue monotonicity)
when bidders’ valuations satisfy gross substitutes, but not in general otherwise [2].

Thus both computational and economic results suggest that social welfare maximization
and combinatorial auction design are much easier when bidders’ valuations satisfy the gross
substitutes condition. More generally, in settings with both substitutes and complements,
the folklore belief in the field is that simple auction formats should produce allocations
with near-optimal social welfare if and only if the substitutes component is in some sense
“dominant.”® For over twenty years, there has been a healthy (and high-stakes) debate over
whether or not the ideal case of gross substitutes valuations should guide combinatorial
auction design in realistic settings.?

The goal of this paper is to evaluate rigorously the folklore belief that the main take-
aways from the study of gross substitutes valuations are robust, i.e., remain valid in settings
where the substitutes condition holds only approximately. We are interested both in possib-
ility /impossibility results for achieving robustness (Section 3), and also in understanding
the robustness of standard algorithms and auctions for welfare maximization (Sections 4-5,
Appendix D). Our goal relates to a wider research agenda on the robustness or stability
of “nice” classes of valuations: For different notions of closeness to nice valuations (in our
case gross substitutes or even simply linear valuations), do fundamental optimization tasks
(in our case welfare maximization) maintain their algorithmic guarantees? We consider a
standard notion of pointwise closeness (Section 3), and subsequently add to it “semantic”
closeness (Section 4).% This research agenda is motivated by inherent mathematical interest
in classes of set functions and their stability [10, 14], as well as by applications like data-
driven optimization in which parameters of the optimization problem such as valuations are
approximately estimated from data [5, 4, 43, 19, 3].

1.1 Our Results

We first consider arguably the most natural notion of “approximate gross substitute valu-
ations,” namely valuations that are pointwise within a 1 + € factor of some gross substitutes

“Gross substitutes” means that a bidder’s demand for an item can only increase as prices of other items
increase; see Section 2.1 for a formal definition.

For example, Bykowsky et al. [8] write: “In general, synergies across license valuations complicate the
auction design process. Theory suggests that a ‘simple’ (i.e., non-combinatorial) auction will have
difficulty in assigning licenses efficiently in such an environment.”

Ausubel et al. [1] write: “A contentious issue in the design of the Federal Communications Commission
(FCC) auctions of personal communications services (PCS) licenses concerned the importance of synergies.
If large synergies are prevalent among the licenses being offered, then the simultaneous ascending auction
mechanism the FCC adopted, which does not permit all-or-nothing bids on sets of licenses, might be
expected to perform poorly.”

What does it mean for a valuation to belong to a nice class? If a valuation approximately maintains the
meaningful properties of the class, we say it is semantically close to it.
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valuation. Do the laudable properties of gross substitutes valuations degrade gracefully as €
increases? At this level of generality, the answer is negative: even for valuations that are
pointwise close to linear (affine) valuations, we prove that the social welfare cannot be
approximated to within a subpolynomial factor using a subexponential number of value
queries, and that demand oracles cannot be approximated in any useful sense by a subex-
ponential number of value queries. When the gross substitutes condition holds exactly, a
demand query can be implemented using a polynomial number of value queries (see [36]),
and the welfare maximization problem can be solved exactly with a polynomial number of
such queries (see [33]). We conclude that there is no sweeping generalization of the properties
of gross substitutes valuations to approximations of such valuations, and that any positive
result must impose additional structure on the valuations (beyond gross substitutes), use
a more stringent notion of approximation, and/or use more powerful oracle access to the
valuations.

We next consider positive results in the value oracle model. Our main result here is
a proof that the (optimal) performance of the greedy algorithm degrades gracefully for
valuations that are close to linear functions, provided these valuations are also approximately
submodular (in a stronger than pointwise sense). (As noted above, some assumption beyond
near-linearity is necessary for any positive result.) The standard arguments for proving
approximation bounds for the greedy algorithm (e.g. [26]) do not imply this result, and we
develop a new analysis for this purpose.

We then consider welfare maximization with demand oracles,” and find that welfare
guarantees tend to be more robust in this model. First, the value of optimal social welfare
can be approximated using demand queries within a factor of y¢ + €, whenever the valuations
are pointwise e-close to a class C such that the integrality gap of the “configuration LP”
is 7¢. Since the configuration LP is the primary vehicle for developing approximation
algorithms in the demand oracle model, we recover pointwise robustness essentially for all
known approximation results in the demand oracle model (in terms of the optimal value).
Another question, though, is whether an allocation achieving good welfare can be found
in a computationally-efficient way. For some classes of valuations, we show that this is
possible (and thus we achieve a (1 — €)-approximation for valuations e-close to linear, and
a (1 — 1/e — e)-approximation for valuations e-close to XOS). We remark that no extra
assumption of near-submodularity is required here; this highlights another difference between
the value and demand oracle models.

Another approach to finding an optimal allocation assuming the gross substitutes property
is the Kelso-Crawford algorithm, also known as the tdtonnement procedure. In general, this
procedure requires demand queries and thus also falls within the umbrella of the demand
oracle model. Here we show that the performance of the Kelso-Crawford algorithm degrades
smoothly for certain classes of functions, namely for valuations close to linear, close to
unit-demand with {0,1} values, and more generally close to transversal valuations (rank
functions of a partition matroid). Unfortunately the Kelso-Crawford algorithm is not going
to be a universally robust solution for general gross substitutes, either. As we show, its
performance degrades discontinuously for valuations close to unit-demand (with unrestricted
values), a seemingly minor extension of the cases above where we showed positive results.

In addition we show a counterexample to an approach based on Murota’s cycle canceling
algorithm, the remaining known way to solve the welfare maximization problem under the
gross substitutes property.

5 As noted above, with valuations that only satisfy gross substitutes approximately, demand oracles are
substantially more powerful than value oracles.
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In summary, the idea that approximation guarantees for various classes of valuations
should degrade gracefully under small deviations from the class should be viewed with
skepticism. Our negative results do not imply that that the folklore belief that “close to
substitutes is easy” is wrong, but they do imply that there is no “generic reason” for why
this might be the case. Our positive results show that robust guarantees can still be obtained
in certain cases, but typically this requires additional care and often new ideas on top of
known techniques.

1.2 Related Work and Organization

There is growing interest in the algorithmic game theory literature in the class of gross
substitutes valuations prominent in the economic literature [36, 21, 37]. One reason for this
is that welfare maximization for gross substitutes has deep mathematical and algorithmic
roots — the simple subcase of unit-demand valuations already subsumes bipartite matching
[39]. The main algorithmic techniques include ascending-price auctions [24], combinatorial
cycle-canceling algorithms that utilize discrete convexity [31, 32], and linear programming
[6, 33]. Submodular valuations are a strict superclass of gross substitutes, and for these the
following is known: exact welfare maximization is hard, a 2-approximation can be achieved
greedily [26], and continuous greedy — the optimal approximation algorithm in the value
oracle model — achieves a (1 — 1/e)-approximation [46, 25]. In the demand query model, a
2-approximation is achieved via an ascending-price auction [17], and the 1 — 1/e barrier can
be broken [15].

Not much previous work studies the extent to which welfare maximization is robust to
small deviations. The closest result to ours is a theorem of [19], ruling out a constant-factor
approximation when maximizing valuations that are pointwise e-close to submodular, rather
than to gross substitutes. Our Proposition 4 strengthens this negative result to apply to gross
substitutes valuations and in fact even to valuations that are close to linear. Related lower
bounds appear e.g. in [30, 38, 20|, often relying on the same approach of hiding structure in
a seemingly “nice” set function. The challenge in our case is to allow the function to appear
linear.

Several related works differ from ours in the model of deviation, valuation classes con-
sidered, and/or setting: [19] studies welfare maximization with submodular valuations and
random rather than adversarial noise. [29] introduces a distance metric from matroid rank
functions in a single-parameter rather than combinatorial setting. [13] and references within
study deviations from submodularity captured by graphical representations. [27] tests the
convergence and performance of a heuristic approach based on cycle-canceling for subclasses
of submodular valuations.

Finally, it is interesting to compare our work to [23], which studies divisible items and
budgets rather than indivisible items and quasi-linear utilities. [23] defines an approzimate
weak gross substitutes property and shows that with this property a known auction mechanism
guarantees each bidder approximately his demand (in a different sense than our Definition
22(4)). The conclusion of [23], by which “markets do not suddenly become intractable if they
slightly violate the weak gross substitutes property”, is quite different from ours, showing an
intriguing discrepancy between the divisible and indivisible models.

Organization. After preliminaries in Section 2, Section 3 presents two cautionary tales
as to what can go wrong when simple valuations undergo smalls perturbations. We then
establish positive results in the value oracle model (Section 4) and in the demand oracle
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model (Section 5), and conclude in Section 6. We defer some proofs to Appendices A-C.
Negative results for standard algorithms appear in Appendix D and in the full version [40].

2 Preliminaries

A combinatorial auction (or market) includes a set of n players (or bidders) N and a set
of m indivisible items M. We call a subset S C M of items a bundle. For an ordered set

of items S = (s1, s2,...,5;) and for j € [k], we use the notation S; to denote the “prefix”
subset {s1,...s;_1} of items that appear before s; (in particular, S; = 0).
Every player i has a valuation v; : 2™ — R, over bundles. Valuations are assumed to be

monotone unless stated otherwise, i.e., v(S) < v(T) for every two bundles S C T'. Valuations
are not necessarily normalized, i.e., v((}) is not always equal to zero (normalization is not
without loss of generality in our model of perturbation). ¢ For every two bundles S, T we
denote by v(S | T') the marginal value V(S UT) — v(T) of S given T.

An allocation S is a partition of the items in M into n bundles S, ..., S, where S; is
the allocation of player 7. In a full allocation every item is allocated. The social efficiency of
S is measured by its welfare W (S) = Y7, vi(S;).

A price vector p € R is a vector of item prices. We denote by p(S) the aggregate
price . jes p(j) of the bundle S. Given p, each player wishes to maximize his quasi-linear
utility, i.e., to receive a bundle S maximizing v;(S) — p(S), which we say is in demand. If the
player is already allocated a bundle T', he wishes to add a bundle S C (M \ T') maximizing
v (S| T) — p(S), which we say is in demand given T. A bundle S is individually rational
(IR) for a player i if v;(S) > p(S); it is strongly IR if every subset T' C S is IR for 1.

A full allocation S and price vector p form a Walrasian equilibrium if for every player i,
S; is in i’s demand given p. By the 1st welfare theorem, S maximizes welfare.

Since valuations are in general of exponential size in m, the standard assumption is that
they are accessed via wvalue oracles, which return the value of any bundle upon query. In
Sections 3.2 and 5 we discuss demand oracles, which given a price vector p, return a bundle
in the player’s demand given p. We allow p to include negative prices so that a demand
oracle can return a bundle in the player’s demand given a previous allocation T.

2.1 Valuation Classes

A valuation ¢ is linear (also known as affine) if there exists a vector (l1,...,l;;) > 0 and a
scalar ¢ > 0 such that £(S) = ¢+, 5 ; for every bundle S; it is additive if ¢ = 0. A valuation
r is unit-demand if there exists a vector (p1,...,pm) > 0 such that r(S) = max;cg p; for

every bundle S.

Let M = (M,Z) be a matroid over the ground set of items M, where Z is the family
of feasible bundles. 7 A maximal feasible set is called a basis, and the matroid rank
function maps bundles to the cardinality of their largest feasible subset. Given a vector
(w1, ..., wy) > 0 of item weights, the corresponding weighted rank function maps bundles to
the weight of their heaviest feasible subset. A valuation r is an unweighted (resp., weighted)

6 A natural example of a non-normalized valuation is that of a firm over sets of workers, where some
positions are already filled [34].

7 A set system M = (M,Z) is a matroid if the following properties hold: (i) Z is non-empty; (i) Z is
downward-closed, that is, if S C T and T € Z then S € Z; (iii) for every S,T € T such that |S| < |T7,
there exists ¢ € T'\ S such that SU {t} € T (see, e.g., [35]).
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APPROX/RANDOM’17



22:6

When Are Welfare Guarantees Robust?

matroid rank function if there exists a matroid M such that r is its (weighted) rank function.
Both additive and unit-demand valuations are types of weighted matroid rank functions.

A valuation v is gross substitutes if for every two price vectors p < ¢, for every bundle S
in demand given p, there exists a bundle T' in demand given ¢, which contains every item
j € S for which ¢(j) = p(j). ® A valuation v is submodular if for every two bundles S C T
and item j ¢ T, v(j | S) > v(j | T), i.e., the marginal value of j is decreasing. A valuation v
is XOS (also known as fractionally subadditive) if there exist additive valuations a1, as, ...
such that v(S) = maxy, a;(S) for every bundle S. It is well-known that gross substitutes C
submodular C XOS.

2.2 Welfare Maximization

There are three main algorithmic approaches to finding a welfare-maximizing allocation
in combinatorial auctions with gross substitutes: (1) auction-based, (2) LP-based, and (3)
combinatorial. For linear valuations there is also (4) greedy. The first two approaches use
demand queries and run in polynomial time, while the latter two use value queries and run
in strongly-polynomial time. We describe here Approaches (1) and (4); see also Appendix A.

In the Kelso-Crawford auction (Approach (1), Algorithm 1 in Appendix A), in each round
an arbitrary player adds to his existing allocation a bundle in his demand given his current
bundle and the current prices (with a d-increase in the prices of items not currently in his
allocation). The algorithm terminates when no player wants to add to his allocation. By the
definition of gross substitutes, at any point in the algorithm every player’s allocation is a
subset of a bundle in his demand, and so:

» Proposition 1 ([24]). For gross substitutes valuations, Algorithm 1 converges to a (welfare-
mazximizing) Walrasian equilibrium as § — 0.

The greedy algorithm (Approach (4), Algorithm 2 in Appendix A) finds a value-maximizing
bundle subject to a feasibility constraint Z on the bundles;” this is a problem to which welfare
maximization is well-known to reduce (see proof of Corollary 16). The greedy algorithm
starts with an empty bundle, and in each iteration adds the item with maximum marginal
value among all items that maintain feasibility, breaking ties arbitrarily.

» Proposition 2 ([16]). If v is linear and T is such that M = (M,I) is a matroid, then
Algorithm 2 is optimal.

3 Two Cautionary Tales

Do the nice properties of a valuation class degrade gracefully as one moves outside the
class? This section describes two cautionary tales demonstrating that the answer can subtly
depend on the notion of “being close,” on the tractable class under consideration, and on the

model of access to the valuations. Arguably the most natural general notion of “closeness” is

pointwise:'°

8 The intuition behind this definition is revealed by the Kelso-Crawford algorithm below.

9 The constraint Z is simply a family of feasible bundles; we assume it is given by a feasibility oracle.

10We use relative error in the interest of scale-invariance (the “units” in which valuations are specified do
not matter). However it is interesting to note that our negative results in this section would hold even
for additive (rather than linear) valuations in a model of additive (rather than multiplicative) error, as
studied e.g. by [10].
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» Definition 3. A valuation ¥ is e-close to submodular (or linear, gross substitutes, etc.), if
there is a submodular (or linear, gross substitutes, etc.) valuation v such that v(S) < 9(S) <
(14 €)v(S) for all bundles S.

3.1 Close-to-additive vs. Close-to-linear Valuations

We next show that approximate welfare maximization is hard for valuations that are e-close
to linear (a restrictive subclass of gross substitutes valuations).

» Proposition 4. Given value oracles for valuations e-close to linear, no algorithm using a
subexponential number of queries can approzimate the value of optimal social welfare within
a factor better than polynomial in m,n.

Proof Sketch. Let |[M| =m = an and let (Ay, As, ..., A,) be a random partition of M such
that [4;| = a. We define linear valuations as follows: £;(S) = € 4+ 1|5 N A;]. We also define
w;(S) = (14 €)e + —=|S|. Note that if we do not know the partition (A1,..., A,), which is
randomized, ¢;(S) will be close to its expectation which is w;(S). Let us define the following
valuations v;:

If [|S N As| — L1S]| < €2a, then v;(S) = w;(59).

If [|S N Aj| — L1S]| > €%a, then v;(S) = £;(S).
Note that in the first case, we have v;(S) > (1 + €)e + (]S N A4;| — €?a) = £;(S) and
v;(S) < (1+€)e+ L(|SNA;| +€2a) < (1+2e)e+ (SN A;| < (1+26)45(S). So v; is 2e-close
to €i~

By Chernoff bounds, for a fixed query S, the probability that ||S NA;| — %|S|| > e2a is
e~(€'a) Hence, with high probability we are always in the first case above, the returned

value depends only on |S| and hence the algorithm does not learn any information about A;.

Therefore (by standard arguments), it would require exponentially many queries to find any
set such that ||S N A;| — 1|S|| > ea and hence distinguish whether the input valuations are
V; O W;.

The optimal solution under v; is S; = A; which gives welfare Y7 | v;(4;) > 231" | |A;| =
n, while the optimal welfare under w; is (1 + €)en 4+ 1. So the approximation factor cannot
be better than (1 + €)e + +.

Note that we can set € = 1/a'/4=% = (n/m)'/*=% and the high probability statements
still hold. Therefore, we can push the hardness factor to max{(n/m)/4=% 1/n}. <

This hardness result relies strongly on the value oracle model — things are quite different
in the demand oracle model, as we discuss in Section 3.2 below.

Proposition 4 is a startling contrast to the case of valuations that are e-close to additive
valuations, which differ only by requiring the empty set to have value 0. Here, approximate
welfare maximization is easy (a proof appears for completeness in Appendix B).

» Proposition 5. Welfare mazimization can be solved within a factor of 1 + € for e-close to
additive valuations.

The proof of Proposition 5 makes the more general point that, whenever the approximating
“nice” valuation ¥ can be (approximately) recovered from the given valuation v, then welfare
approximation guarantees carry over (applying an off-the-shelf approximation algorithm to
the valuations ©). As Proposition 4 makes clear, however, in many cases it is not possible to
efficiently reconstruct an approximating “nice” valuation, even under the promise that such
a valuation exists.

22:7
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3.2 Value Queries vs. Demand Queries

One remarkable property of gross substitutes valuations is that there is no difference between
the value oracle and demand oracle models: Demand queries can be simulated efficiently by
value queries (via the greedy algorithm), and hence any algorithm in the demand oracle model
can also be implemented in the value oracle model ([36] and references within). Unfortunately,
this is no longer true for valuations that are e-close to gross substitutes, or even e-close to
linear.

» Proposition 6. Given a value oracle to a valuation e-close to linear, answering demand
queries requires an exponential number of value queries.

This can be proved by a construction similar to the one above. However, let us instead
present an indirect argument which shows more.

» Lemma 7. For any class of valuations C such that the integrality gap of the configuration
LP is v > 1, it is possible to estimate the optimal social welfare within a multiplicative factor
of (1 + €)vy for valuations that are e-close to C in the demand oracle model.

Proof. Consider the configuration LP:

max y.._, scm) Vi(S)Tis
vjieml; XL >sjesTis < 1,
Vi € [n]; ngm] xis =1,
x5 > 0.

Let us denote by LP(v) and OPT(v) the LP optimum and optimal social welfare, respectively,
under valuations v. The assumption is that for valuations v € C, OPT(v) < LP(v) <
v - OPT(v). Let us solve the LP for valuations v that are pointwise e-close to valuations
v € C. (This is possible since we assume that we have demand oracles for v, which gives a
separation oracle for the dual; see [33].) We have v;(S) < ;(S) < (1 + €)v;(S) for each i and
S. Therefore, the same inequalities hold for the LP optimum as well as optimal social welfare,
and we obtain OPT(V) < LP(V) < (14¢€)LP(v) < (14¢€)y-OPT(v) < (1+¢)y-OPT(V). =

Since the configuration LP is known to be integral for gross substitutes valuations (see
e.g. [45]), we obtain the following.

» Corollary 8. For valuations e-close to gross substitutes, it is possible to estimate the optimal
social welfare to within a multiplicative factor of 1 + € in the demand oracle model.

This implies Proposition 6: a simulation of demand queries would allow us to approximate
social welfare within 1+ ¢ for valuations e-close to gross substitutes and as a special case e-close
to linear. We know from Proposition 4 that this (and even much weaker approximations)
would require exponentially many value queries. Actually we obtain a stronger statement: It
is not possible to answer demand queries via value queries for e-close to linear valuations even
approximately, under any notion of approximation that would be useful for approximating
the optimal social welfare. This is because, again, such a simulation would lead to a
(1 + €)-approximation of social welfare via value queries, which Proposition 4 rules out.
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4  Positive Results for Restricted Valuation Classes

Motivated by the hardness results in the previous section for valuations e-close to linear in
the value oracle model, this section considers stronger notions of closeness. In Section 4.1
we define a semantic notion of marginal closeness. In Section 4.2 we analyze the greedy
algorithm for e-close to linear valuations, but this time to avoid the impossibility results we
assume they are also marginally close to submodular. Intuitively, such valuations enable
positive results by approximately maintaining some of the semantic properties of linear
valuations (namely submodularity).

4.1 Marginal Closeness

Recall that a pointwise approximation of a valuation is a set function with approximately
the same output as the valuation for every input. A natural strengthening of this is to have
the set function’s discrete derivatives approximate those of the valuation — i.e., the items’
marginal values. For every item j, its marginal value v(j | -) is a set function mapping S
to v(j | S), and together these set functions encode important properties of the valuation.
For example, linear valuations can be characterized as valuations for which the marginal of
every item is a constant function; submodular valuations can be characterized as valuations
for which the marginal of every item is a non-increasing function; and unweighted matroid
rank functions can be characterized as valuations for which the marginal of every item is a
non-increasing zero-one function [41].

We remark that even without any strengthening, pointwise e-closeness has the following
useful implication regarding the “closeness” of the marginal values of bundles:

» Observation 9. For every valuation v that is e-close to a valuation v', and for every two
bundles S, T C M, v'(S|T)—e/'(T)<v(S|T) <V'(S|T)+ e/ (SUT).

Proof. By the definition of e-closeness, v(S | T) = v(SUT)—v(T) > v'(SUT)—(1+€)v'(T) =
v'(S|T)— e (T). The upper bound follows similarly. <

Observation 9 will be useful in proving some of our positive results (see Sections 4.2
and 5.2). Yet its guarantee is relatively weak: the “error terms” depend on v'(T") or v/(SUT),
and so can be large if these terms are large. We now define the stronger notion of marginal

pointwise approximation:!!

» Definition 10. A valuation v is marginal-e-close to a class C of marginals (constant,
non-increasing, etc.), if for every item j the corresponding marginal value function v(j | -) is
(pointwise) e-close to a function g; € C.

Let us now see what semantic properties follow from this definition. Consider the class of
valuations that are marginal-e-close to decreasing. It turns out that this coincides with a
previously-studied class of approximately submodular valuations (see Appendix B for missing
proofs).

» Definition 11 ([26]). Let a > 1. A valuation v is a-submodular if for every two bundles
SCTanditem j¢ T, av(j|S)>v(j|T).

» Proposition 12. A wvaluation v is marginal-e-close to the class of decreasing functions if
and only if it is (1 + €)-submodular.

11 This notion is equivalent to having erroneous oracle access to marginal values, an idea mentioned in [9].

22:9
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Since we are interested in closeness notions that maintain semantic properties, in the
next section we consider what happens when the e-close to linear valuations from Section 3
are also a-submodular. Such valuations are well-studied in the literature as they contain
submodular valuations with bounded curvature, which were introduced by [11] and arise
frequently in the optimization and learning literatures ([42, 44] and references within):

» Definition 13 ([11, 44]). A valuation v has curvature ¢ € [0,1] if for every item j and
bundle S such that j ¢ S, v(5|S) > (1 —c)v(j | D).

a—1+c

T -close to a linear

» Proposition 14. An a-submodular valuation v with curvature c is
valuation.

4.2 The Greedy Algorithm

Recall that the greedy algorithm (Algorithm 2) is optimal for linear valuations; in this section
and in Appendix B we prove the following robustness theorem, whose implication for welfare
maximization is stated in Corollary 16.

» Theorem 15. Let v be an a-submodular valuation that is e-close to a linear valuation £.
Let M = (M,T) be a matroid of rank k (represented by an independence oracle). The
greedy algorithm returns an independent set S € I such that v(S) > 1=30(5*), where
S* € argmaxycrv(I).

» Corollary 16. In a market with a-submodular valuations vy,...,v, that are e-close to
linear valuations £, ..., L,, there is a polynomial time algorithm with value access that finds
an allocation with %—appmximately optimal welfare.

Proof. As in [26], we define a valuation v over player-item pairs, such that for a set S of
such pairs, v(S) = >, v;(S;) where S; is the set of items paired with player i in S. We show
that v is also a-submodular and e-close to linear: It is e-close to linear since ), ¢;(S;) <
v(S) < (1+¢€) ), 4i(Si), and the sum of linear valuations is linear. It is a-submodular since
for every S C T and (4,5) ¢ T, av((i,5) | S) = avi(§ | Si) > vi(j | T3) = v((i,5),T). The
proof follows by applying Theorem 15 to v and to the partition matroid M over player-item
pairs, which allows each item to be paired with no more than one player. |

The following lemma (whose proof appears in Appendix B) relates the sum of marginals
to the linear contribution, and is applied in the proof of Theorem 15. Recall that v is e-close
to the linear valuation ¢, and that for an ordered set of items X = (z1,2,...,2k), X
denotes the prefix {z1,...z;_1}.

» Lemma 17. Let X and Z be two disjoint sets. X is ordered and has mx items.
Let Yi,...,Yimy be sets such that Yy C X; U Z for every j. Then a} /™ v(z; |Y;) >
S ey) — el(2).

Before proving Theorem 15, we highlight the difference between our proof and the standard
item-by-item analysis of the greedy algorithm (see, e.g., [26]). The standard analysis shows
that greedily choosing the next item maintains the optimal value up to a small error. However
this does not provide a good approximation factor in our case because of the distortion
caused by the pointwise errors. For example, greedy may choose to include an item j from
the optimal solution, but at the particular stage in which j is included its marginal value
may not be high relative to its linear contribution (due to the error term in the marginal
value shown in Observation 9). This suggests analyzing multiple items at a time so that the
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error terms will average out. We split the items chosen by greedy into two sets — those that
coincide with the optimal solution and the rest — and analyze each set as a whole in order to
establish the claimed approximation ratio.

Proof of Theorem 15. Denote by S the independent set that greedy returns given the

valuation v and matroid M, ordered by the order in which the items were greedily added.
Denote by S* an independent set with optimal value v(S*) subject to the matroid constraint.

Due to monotonicity we can assume without loss of generality that the sizes of both S and
S* are k, i.e., that both sets are bases.

Let P = {j | s; € SN .S*} be the positions in S of the items that also appear in S*,
and let @) be the remaining positions in S. Order S* such that the items in .S N S* are in
positions P. The rest of the items in S* are ordered among the remaining positions in S* in
the following way: By the exchange property of matroids, there exists a bijection f from

S\ S* to §*\ S, such that for every position j € Q, S\ {s;} U{f(s;)} is independent [41].

For every j € Q we set s = f(s;). This ensures that s} can be added to S; without violating
feasibility. We use the notation S(P) and S(Q) for the set of items in S in positions P and
Q, respectively; similarly for S*(P) and S*(Q).

By the definition of greedy, and because adding s} to S; maintains feasibility for every

J € @, it holds that v(s; [ S;) > v(s] | Sj) for every j € [k]. Thus

o)+ > vls;i | S;)+ Y v(si | S;) (1)

JjeEP JEQ

We now invoke Lemma 17 twice. By Lemma 17 instantiated with X = S*(Q) and Z = S
(note these are indeed disjoint), and using that S; C S, we get that

a Z v(sj | S Z 0(s7) —el(S (2)

JEQ JjEQ

By Lemma 17 instantiated with X = S(P) and Z = S(Q) (these are also disjoint), and using
that S; € S(Q) U {sp,,...,5p,_, }, we get that

aZv(sj | Sj) > Zg(sj) —el(S Zﬁ —el(S (3)

JjeEP jeEP jEP

Combining (1), (2) and (3), we get that av(S) > av(0) + Zj L (s5) — 2€L(S). Since
v is e-close to £ and S* is optimal for v, £(S) < v(S) < v(S*). Again using v’s closeness
to £, av(f) > ac > c. Putting these together we get that av(S) > £(S*) — 2ev(S*) >
v(S*)/(14+¢€) — 2ev(S*) > (1 — 3e)v(S*), as required. <

5 The Demand Oracle Model

In this section we achieve positive results by considering a stronger oracle model.

5.1 Rounding the Configuration LP

By Lemma 7 and Corollary 8, we already know that polynomial-time estimation of the

optimal welfare is robust in the demand oracle model. A different question is whether finding

an allocation given a fractional solution of the configuration LP is also robust. Here we

observe that in some cases, existing rounding techniques yield the result that we want.
The following proposition does not assume submodularity:

22:11
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» Proposition 18. For combinatorial auctions in the demand oracle model, there is a
polynomial time algorithm that finds:
A (1 — €)-approzimately optimal allocation, if the valuations are e-close to linear;
A (1 —1/e — €)-approzimately optimal allocation, if the valuations are e-close to XOS (or
in particular e-close to submodular).

Proof. We solve the configuration LP using demand queries. Let ©; denote the true valuations
and v; the linear/XOS valuations that the ¢; are close to.

In the case of valuations close to linear, we round the fractional solution by allocating
each item j to player ¢ with probability y;; = > . jes Ti,s. Call the resulting random sets R;.
For the underlying linear valuations v;, it is clearly the case that E[v;(R;)] = >_ g xi svi(S).
Therefore, ZlE[ﬁz(Rz)] > Zz E[’Ul(Rz)] = Zi,S zi,svi(S) > %—&-e LP(’[}Z) > (1 — 6) OPT.

For valuations close to XOS, we allocate a set S tentatively to player ¢ with probability
x;,5, and then we use the contention resolution technique to resolve conflicts [12, 15]. This
technique has the property that conditioned on requesting an item j, a player receives it with
conditional probability at least 1 — 1/e. Denote by R; the random set that player i receives
after contention resolution. Using the fractional subadditivity of XOS functions, we obtain
that E[v;(R;)] > (1 —1/e) > ¢ x4,5v:(S). Hence, similarly to the case above, ), E[0;(R;)] >

S ELi(R)] > (1—1/e) X, g wa,svi(S) > S LP(5;) > (1 — 1/e — ¢) OPT. <

5.2 Positive Results for Kelso-Crawford

The Kelso-Crawford algorithm (Algorithm 1) uses demand queries in order to find, in each
iteration, the items to add to a player’s existing bundle. Here we show that it can work
well for markets in which the valuations are approximately submodular (maintain semantic
closeness) and e-close to simple subclasses of gross substitutes. Our high-level approach
is to show that Kelso-Crawford finds an allocation which achieves approximately optimal
welfare, as well as a price vector that is “approximately stabilizing” (in a sense made precise
in Definition 22, which may be of independent interest).

» Remark. For simplicity, our analysis of the Kelso-Crawford algorithm shall treat prices as
if raised continuously rather than discretely. This means that the approximation factors we
state in this section hold up to a small additive error.'?

We first establish that the Kelso-Crawford algorithm works well for the class of a-
submodular and e-close to linear valuations, as studied above in Section 4.

» Theorem 19 (Linear). In a market with a-submodular valuations that are e-close to linear
valuations, the Kelso-Crawford algorithm finds an allocation with a-i]:26
welfare (up to a vanishing error).

-approximately optimal

On the negative side and somewhat surprisingly, we find this positive result does not
extend even to e-close to unit-demand (and still a-submodular) valuations (see Appendix D
and the full version):

» Proposition 20. For every e < 1, there exists a market with O(1/€) players whose
submodular valuations are e-close to unit-demand, for which the Kelso-Crawford algorithm
with adversarial ordering of the players finds an allocation with ~ 2/3 of the optimal welfare.

21f the prices are increased by discrete § increments, then the additive error is of order O(mns).
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Oe

oiz 1 P, 0\::} P,

Figure 1 A graphical representation of an unweighted transversal valuation r. The edges

correspond to items and have {0,1} weights; they are partitioned in this case into two parts Pi, Ps.

The value that r attributes to the subset of solid bold edges in this example is 1, since this is the
weight of the maximum-weight matching within the subset.

We thus proceed to consider the unweighted version of unit-demand valuations, and more
generally the direct sums of such valuations — called unweighted transversal valuations. Such
valuations arise in natural economic environments, e.g. in the context of labor markets. '3
For these valuations we establish in Theorem 21 that Kelso-Crawford maintains good welfare
guarantees.

» Theorem 21 (Transversal). In a market with a-submodular valuations that are e-close
to unweighted transversal valuations, the Kelso-Crawford algorithm finds an allocation with

m-appmximately optimal welfare (up to a vanishing error).

In more detail, a valuation 7 is an unweighted unit-demand valuation if v(.S) = max;cg r(j)
for every bundle S and r(j) € {0,1} for every item j. A valuation r is an unweighted
transversal valuation if there exists a partition P = (P,..., P;) of the items such that
v(S) = > pep maxjesnp r(j) for every bundle S, and r(j) € {0,1} for every item j. An
equivalent definition in terms of matchings in graphs is the following: r is an unweighted
transversal valuation if it can be represented by a bipartite graph whose vertices on one side
of the graph all have degree 1, and whose edges M have {0, 1} edge weights. The value for a
bundle of edges S is the weight of the maximum matching in the bipartite graph induced by
S — see Figure 1 for an example.

5.2.1 Biased Walrasian Equilibrium: Definition and Properties

The proofs of Theorems 19 and 21 follow from the welfare guarantees of a solution concept
that we call a “biased” Walrasian equilibrium (Definition 22 and Proposition 23), combined
with an appropriate lemma showing that Kelso-Crawford converges to such an equilibrium for

the relevant class of valuations (Lemma 27 for Theorem 19, and Lemma 29 for Theorem 21).

Recall that the standard proof establishing the optimality of Kelso-Crawford for gross
substitutes relies on showing convergence to a Walrasian equilibrium. Unfortunately in our
case it does not hold — even approximately — that Kelso-Crawford allocates to each player
a bundle in his demand. Instead, our proofs will define and utilize a different notion of an
approximate Walrasian equilibrium.

» Definition 22. Consider a market with n players, and let p € [0,1]. A full allocation S
and a price vector p form a p-biased Walrasian equilibrium if there exists p' € [u, 1] such
that for every alternative allocation 1" and for every player i,

/

%m(si) —p(Si) = wvi(Ty) - p(Ty). (4)

13 Consider for example a firm wishing to hire a team of several workers, each with a different specialization,
from a pool of specialist workers who are each either acceptable to the firm or not. The firm’s valuation
over workers is unweighted transversal.

22:13

APPROX/RANDOM’17



22:14

When Are Welfare Guarantees Robust?

» Proposition 23 (Approximate first welfare theorem.). The welfare of a u-biased Walrasian
equilibrium is a p-approximation to the optimal welfare.

Proof. Let §* be an optimal allocation. Without loss of generality we can assume that S* is
a full allocation. By summing up Inequality (4) over all players, we get (¢//p)W(S) —p(S) >
wWW(S*) — p(S*). Since both §,S8* are full allocations, p(S) = p(S*). We conclude that
W(S) > nOPT. <

A possible economic interpretation of a u-biased Walrasian equilibrium is that its allocation
and prices induce market stability under the endowment effect (see, e.g., [22]). This effect
is modeled as an increase of factor p//u in a player’s value for the bundle he owns, and a
decrease of factor u’ in his value for bundles he does not own.

5.2.2 Convergence to Biased Walrasian Equilibrium

To give intuition for establishing convergence to biased Walrasian equilibrium (see Lemmas 27
and 29), let us compare the case of linear valuations to that of e-close to linear (and a-
submodular) valuations. The analysis of Kelso-Crawford for the linear case is simple — every
player ends up with the items for which he has the highest marginal value and can afford
to pay the highest price. In the close-to-linear case, an item could end up belonging to the
wrong player for two reasons: at some point, given his current allocation (which is subject
to changes), either (1) the right player has a low marginal value for the item, or (2) the
wrong player has a high marginal value for it. The latter issue is resolved by submodularity,
but the former could drive Kelso-Crawford to performance that is bounded away from
optimal, as demonstrated in Proposition 20. Thus the crux of the convergence proofs is to
show this cannot happen for the classes of valuations in question. For the close-to-linear
case (Lemma 27), we achieve this by considering the marginal value of all “under-valued”
items together if we were to add them to the player’s final allocation. The transversal
case (Lemma 29) is more involved since we cannot analyze only the addition of items to
the player’s final allocation — we need to also consider swapping out items from the final
allocation and replacing them with others. This case is deferred to Appendix C.

We conclude this subsection with a generalization of a well-known invariant property of
Kelso-Crawford which holds for submodular valuations [17]. The following generalization to
a-submodular valuations is used below to prove Lemmas 27 and 29.

» Definition 24. Let v be a valuation and p be a price vector. A bundle S is a-IR (a-
individually rational) for v given p if aw(S) > p(S). A bundle S is strongly a-IR for v given
p if av(T) > p(T) for every T C S.

» Lemma 25. Consider a market with a player whose valuation v is a-submodular. Then
the Kelso-Crawford algorithm maintains the following invariant: the player’s allocation
throughout the algorithm is strongly a-IR.

Proof. Since removing items from the player’s allocation maintains the strong a-IR property,
the only case we need to check is when a bundle T is added to the player’s current allocation S.
We know that T" maximizes the player’s utility given .S and the current price vector p. We show
this by induction. In the base case all prices are 0 and so the invariant holds. Now assume for
contradiction that SUT is not strongly a-IR, i.e., there exists a set S’ UT’ where S’ C S and
T’ C T such that cv(S"UT") < p(S) 4+ p(T"). By the induction assumption, av(S’) > p(S'),
and so it must be the case that av(T’ | S") < p(T"). So using a-submodularity we can write
the utility v(T' | S) —p(T) as v(T\T" | S)+v(T" | SUT\T") —p(T\T") —p(T") < v(T\T" |
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S)+av(T | S)—p(T\T")—pT) <v(T\T'|S)—p(T\T'). Thus adding T\ T" to S
adds more to the utility than adding 7" to .S, contradiction. |

The following corollary of Lemma 25 generalizes a result of [17, Propositions 1-2].

» Corollary 26. In a market with a-submodular valuations, the Kelso-Crawford algorithm
finds an allocation with (1 4 «)-approximately optimal welfare (up to a vanishing error).

5.3 Kelso-Crawford and Close-to-Linear Valuations

» Lemma 27. In a market with a-submodular valuations v1, ..., v, that are e-close to linear
valuations ry, ...,ry, the Kelso-Crawford algorithm converges to a ﬁ—biased Walrasian
equilibrium.

Proof. We can assume without loss of generality that Kelso-Crawford returns a full allocation
(see proof of Theorem 21). From now until the end of the proof, fix a player i. Let S; be
player i’s allocation and let p be the price vector at termination of the KC algorithm. Let T;
be an alternative bundle for player i. We show that

vi(S;) = p(Si) > vi(Ti) — p(Ti) — (2e + @ — 1) v;(Sy). (5)

This is sufficient to complete the proof, since by summing up over all players and rearranging,
we get

(26 + ) 3 i Zp >Z'Uzz - 2_p(T)

and so u > 1/(a + 2e).

It remains to prove Inequality (5). For simplicity we omit ¢ from the notation. Without
loss of generality, assume that in the last round of Kelso-Crawford, the player added to
his existing bundle, which we denote by B, a bundle which maximizes his utility given B
and given the price vector p. So the player’s utility at termination v;(S;) — p(S;) is at least
up(BUT). We use the notation B = B\T,T' =T\ B, and C = BNT. We can now write
the lower bound on the player’s utility as

up(BUT) =v(0) +v(B"|0) +v(C | B') +v(T" | B) — p(B') — p(C) — p(T"). (6)
By Lemma 25, B is a-strongly IR. So v(B’ | 0) + (o — 1)v(B’ | 0) > p(B’). By Observation 9,

v(C'| B') > 37 cct(j) — ev(B). Again by Observation 9, v(I" | B) > > cq £(j) — ev(B).
Plugging in these inequahtleb to (6) and using v’s e-closeness to ¢ we get

up(BUT) > c—(a—1o(B' [0)+ > () —p(T) - 2e0(B)
JjeET
> UT)—p(T)— (2e+a—1)v(B).

Inequality (5) follows, and this completes the proof. <

Proof of Theorem 19. The proof follows directly from Proposition 23 combined with
Lemma 27. <
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6

Conclusion

Let us summarize the findings of this paper: The robustness of results for various classes
of valuations should not be assumed without further investigation. The default assumption
should be that positive results are not robust and may break down abruptly when small
deviations from the class in question are introduced. Robust results can be attained, but
they are surprisingly challenging to obtain even in simple cases. Most importantly, it matters

how “closeness” to a class is defined, and what the other attributes of the variant of the
problem are (oracle model, class of valuations).

Acknowledgements. A preliminarily version appeared as [40].
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Standard Algorithms for Welfare-Maximization

Algorithms 1 and 2 describe the ascending price and the greedy approaches to welfare
maximization.

ALGORITHM 1: The Kelso-Crawford ascending-price auction (formulated as an algorithm).

Input: Player valuations v1, ..., v, represented by demand oracles; a parameter 6 > 0
Output: An allocation S and a price vector p
p:=0and S:=0; % Initialization
while there exists a player ¢ and a non-empty bundle D; such that D; is in demand given prices
p+ éijgsi and current allocation S;, do
Si = S; UDy;
Sy := Sy \ D; for every i’ # i;
p(j) :==p(j) + 0 for every j € Di;

end
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ALGORITHM 2: Greedy maximization of value subject to a feasibility constraint.
Input: A valuation v represented by a value oracle; a feasibility constraint represented by a

feasiblity oracle

Output: A bundle S
S:=0; % Initialization
while there exists an item j ¢ S such that S U {j} is feasible do

Let j* be an item that maximizes v(j* | S) among all items j ¢ S such that S U {5} is

feasible;

Si=SU{i"h

end

B Missing Proofs from Sections 3 and 4

Proof of Proposition 5. An additive valuation has the form v(S) = .5 a;. By assump-
tion, a; < v({j}) < (1 + €)a; for every singleton j. Hence we can determine the coefficients
a; within a factor of 1 4 € and run welfare maximization on the resulting additive functions.
Each item simply goes to the highest bidder, and we lose a factor of at most 1 + € due to the
errors in determining a;. |

Proof of Proposition 12. For every S C T and j ¢ T, let g; be the decreasing function to
which v(j|-) is e-close. Then (1 + €)v(j]S) > (1+¢€)g;(S) > (1 +€)g;(T) > v(j|T"), showing
that v is (1 4 €)-submodular. The converse follows from Observation 28. |

» Observation 28. If a valuation v is a-submodular then it is marginal-e-close for e = a—1
to the class of decreasing functions.

Proof Sketch. Fix an item j. We want to show that the set function v(j | -) is e-close to
a decreasing function g;. We define g; as follows. For every bundle S, there is a range
[1JrE v(j | S),v(s5 | S)] to which g;(S) must belong. Furthermore, for g; to be decreasing,
for every S and every subset T' C S, the upper-bound on the range of ¢;(T) is also an
upper-bound on the range of g;(S). We claim that: (1) If there is a non-zero range for
g;(S) for every bundle S, then by picking the highest value in the range to be g;(S5), we
have defined a decreasing g; such that v(j | -) is e-close to it; (2) If there is a bundle S with
negative range then we have found a contradiction to a-submodularity of v. Indeed, if this
is the case then we have found a subset T such that v(j | T) <v(j | S)/1+e=v(j]|S)/a.
This concludes the proof. |

Proof of Proposition 14. Define a linear valuation ¢ as follows: £(S) = (1 — ¢)(v(0) +
Z‘S‘l v(s; | 0)) for every bundle S. Using that v has curvature ¢, v(S) = v(0)+ Elsll v(s;]S;) >

(1 - ¢o)(v(®) + le‘l v(s;|0)) = ¢(S). Using that v is a-submodular, v(S) = v(0) +
Z‘S‘l v(s]|S ) < v(d) + azjﬂlv(sﬂ@) < 1224(S). Thus v is e-close to £ for € such that
I+e=7 <

_c'

Proof of Lemma 17.
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where (7) follows since Y; C ZUX; and since v is a-submodular, (8) follows by the disjointness
of X and Z, and (9) follows since v is e-close to £ and by Observation 9. |

C Kelso-Crawford and Close-to-Transversal Valuations

» Lemma 29. In a market with a-submodular valuations vy,...,v, that are e-close to
unweighted transversal valuations r1,...,1,, the Kelso-Crawford algorithm converges to a
m-biased Walrasian equilibrium.

Proof. By monotonicity we can assume without loss of generality that all items are allocated
at price 0 in the first step of the Kelso-Crawford algorithm, and once an item is allocated then
it remains allocated throughout. Thus without loss of generality, Kelso-Crawford returns a
full allocation as required by the definition of a u-biased Walrasian equilibrium.

From now until the end of the proof, fix a player i. For simplicity we omit i from the
notation. Let P = (P4, ..., P;) be the partition of the items corresponding to the unweighted
transversal valuation r, to which the player’s valuation v is e-close. For an item j, let P(j)
denote the part to which this item belongs. We say that a part P is represented in a bundle
X if X contains at least one item j € P with value r(j) = 1.

Towards proving the guarantee in Inequality (4), let S be the bundle allocated to the
player by the Kelso-Crawford algorithm, and let 7" be an alternative bundle. Let P(S) (resp.,
P(T)) be the parts represented in S (resp., T'). Let S’ ={j € S| P(j) € P(S)NP(T)} be
the set of items in S that belong to parts represented both in S and in 7', and similarly
T'={j €T | Pj) € P(S) N P(T)}.

» Claim 30. »(S") = r(T").

Proof of Claim 30. The value assigned to a set by valuation r is the number of parts
represented in it. By definition, the same parts are represented in S’ and in 7”. <

We now relate the prices of S” and T according to the price vector p with which the
Kelso-Crawford algorithm terminated. In particular we show that the price of S’ cannot be
too high in comparison to the price of T".

» Claim 31. p(S’) < p(T') + 3aer(S’).

The proof of Claim 31 appears below. We use the above claims to complete the proof
of Lemma 29. Let S” = S\ S’ and T” =T\ T’. We know that when the Kelso-Crawford
algorithm terminates, the player cannot improve his utility by adding 7" to his allocation S,
and so:

v(S) —p(S) = v(SUT")—p(SUT")

v(S") + (S| 8") +u(T" | S) = p(S") — p(S') = p(T"). (10)

By a-submodularity Lemma 25 applies and S” is a-IR, therefore
v(S") = p(S") > (1 — a)u(S"). (11)

The marginal value assigned by r to a bundle X given a bundle Y is the number of parts
represented in X but not in Y. Therefore v(S’ | S”) = r(S’) and »(T” | S) = r(T"). By
Observation 9 and since r(S’) = r(7”) (Claim 30),
v(S" 18"y > r(S|S")—er(S") >r(S) —er(S)=r(T") —er(S); (12)
(T S)> r(T"|S)—er(S) =r(T")—er(S). (13)
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Plugging (11)—(13) into (10), and using that r(T")+r(T") = r(T) and p(S’) < p(T")+3aer(S’)
(Claim 31),

v(S) —p(S) > (1—a)v(S")+r(T)—2er(S)—p(T) — 3aer(S)
1

>
- 1+€U

(T) = p(T) — (a — 1 4 2¢ + 3ae)v(S),

where the last inequality uses v’s e-closeness to r. Thus g > ((1 + €)(a + 2¢ + 3ae)) ™! >
(a1 + 3€)?)~1. This completes the proof of Lemma 29. <

Proof of Theorem 21. The proof follows directly from Proposition 23 combined with
Lemma 29. <

C.1 Proof of Claim 31

Towards proving Claim 31, the following is a property of valuations that are a-submodular
and e-close to unweighted transversal valuations. It can be seen as a strengthening of
Observation 9.

» Claim 32. For every part P and bundles X C P and Y, if P is represented in 'Y then
(X 1Y) < ae.

Proof. Let y be an item representing P in Y. Then by a-submodularity, v(X | Y) <
av(X | y) < ar(X | y) + aer(X U {y}) = ae, where the last inequality is by invoking
Observation 9. <

Proof of Claim 31. Fix a part P that is represented in S’ and T’. Let t be an item
representing P in T'. Order the items representing P in S’ according to the order in which
the Kelso-Crawford algorithm added them to the player’s allocation for the last time (i.e., at
their termination prices according to p), breaking ties arbitrarily; denote the ordered set by
(s1,82,...). Let B; be the bundle of the player right before item s; was added, and let D,
be the set of items (not including s;) with which s; was added to B;.

We first consider item s;. If it is the case that P is not represented in By and no other item
represents P in Dy, then we argue that v(sy | By UDy) —p(s1) > v(t | B1UD1) —p(t). The
reason for this is that otherwise, the player’s utility could have been improved by replacing s;
by t (using that t’s termination price p(t) is weakly higher than its price when s; was added).
By monotonicity, we can write v(s; | By UD;) < wv(s1,t | By UD;p) <o(t| By UDy)+ ae,
where the last inequality is by Claim 32. Therefore p(s1) < p(t) + ce. In the remaining case,
P is represented in either By or D;. We know that v(sy | By U D1) > p(s1), otherwise the
utility could have been improved by dropping s;. By Claim 32, the left-hand side is at most
ae, and so p(s1) < ae.

Now consider the rest of the items so, s3,.... When item s; is added, {s1,...,s;-1} C
B;UD;. We also know that, as above, v(s; | B;UD;) > p(s;). By a-submodularity this means
that a ) .o, v(s; [ Sj) = >2;59p(s;). The left-hand side is equal to av({s2,s3,...} | s1),
and is therefore < ae by Observation 9. We have thus shown that >, p(s;) < ae, and the
same argument shows that the total payment for items in S’ N P that do not represent P is
at most «e.

We conclude that the total payment for items in S’ N P is at most p(t) + 3ae. Summing
up over all parts represented in S’ and 7”7 completes the proof of the claim. <
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D Negative Results for Specific Algorithms

How well do standard algorithms for welfare maximization perform for valuations that are
close to, but are not quite, gross substitutes? After discussing the LP-based approach in
Section 3.2, in this section we discuss the two other main approaches to welfare maximization
for gross substitutes — the ascending auction algorithm of Kelso and Crawford [24], and the
cycle canceling algorithm of Murota [31, 32]. Some of the details are deferred to the full
version [40] due to space limitations.

At first glance, the Kelso-Crawford algorithm seems like a promising approach due to its
known welfare guarantee of a 1/2-approximation for the class of submodular valuations [17].
However Proposition 20 and its proof in the full version [40, Proposition 8] show that the
Kelso-Crawford algorithm cannot in general guarantee much better than that, even for simple
submodular valuations that are arbitrarily close to unit-demand. More precisely, for every
€ <1 there exists a market with O(1/¢) players whose submodular valuations are e-close to
unit-demand, and for which the Kelso-Crawford algorithm with adversarial ordering of the
players finds an allocation with & 2/3 of the optimal welfare. An interesting open question
is whether the Kelso-Crawford algorithm can be modified to eliminate such bad examples,
e.g., by ordering the players in an optimal way.

The cycle canceling algorithm of Murota is a different approach which relies on properties
of GS (or equivalently M°®-concave) valuations under local improvements. In Section D.1 we
show that such properties hold for submodular valuations in a certain approximate sense,
but unfortunately the cycle canceling algorithm cannot find a local optimum that would
allow us to exploit these properties. In fact we show that a local optimum in Murota’s sense
does not exist for submodular valuations.

D.1 Murota’s Cycle Canceling Approach

The cycle canceling approach is based on the following useful property of gross substitutes
valuations, called the single improvement (SI) property [18]: Given a price vector p, we say
that a bundle S is in local demand for a valuation v if its utility cannot be improved by
adding an item, removing an item or swapping one item for another. The SI property holds
if every bundle S in local demand is also in (global) demand (i.e., v(S) — p(S) > v(T") — p(T)
for every bundle T'). Murota’s cycle canceling algorithm finds an allocation and prices such
that each player gets a bundle in local demand, thus arriving at an optimal allocation for
gross substitutes valuations.

We observe that a variant of the SI property characterizes submodular valuations, and
thus the SI property interpolates between submodularity and gross substitutes.

» Definition 33. Let 8 € [0,1]. A valuation v is 5-SI if for every S in local demand, S is
strongly individually rational,}* and v(S) — Bp(S) > v(T) — p(T) for every T.

» Observation 34. A monotone valuation is submodular if and only if it is 0-SI. A monotone
valuation is gross substitutes if and only if it is 1-SL.

Proof. Suppose v is submodular; we want to prove that v is 0-SI. Let S be in local demand,
v(S+1) —v(S) <p;, and v(S — j) —v(S) < —p,. (We don’t even need the swap property.)
By submodularity and the second property, we have v(SUT) < v(S)+ 3 ier\sPi- T herefore,

4 Being strongly IR implicitly holds for SI as well, i.e., if v is SI and S is in local demand then § is
strongly IR.
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v(S) > v(SUT) —p(T\S) > v(T) — p(T) by monotonicity. Also, for every S’ C S, by

submodularity we have v(S\S’) < v(S)=>_,cqs pj. Therefore v(S") > v(S)—v(S\S’) > p(5").

Conversely, suppose that v is not submodular, i.e. v(S+a+b) > v(S)+v(a | S)+v(b|S)
for some S and a,b ¢ S. We set p; =0 for i € S and p; = v(j | S) for j ¢ S. Clearly S is
in local demand, because swapping at most 1 element does not increase utility. However,
v(SU{a,b}) —p(SU{a,b}) > v(S), so v is not 0-SI. <

Moreover, as the next observation shows, finding an allocation with prices such that each
player gets a bundle in their local demand would give a smooth transition would provide a
smooth transition between a 1/2-approximation for submodular valuations and an optimal
solution for gross substitutes.

» Observation 35. For 5-SI valuations, any allocation (of all items) with prices such that
each player gets a bundle in their local demand has value at least ﬁ OPT.

Proof. Suppose that each v; is 5-SI and we have an allocation (A4, ..., A,) with prices such
that each A; is in the local demand of player i. We assume that all items are allocated, and
the allocation is individually rational; therefore, Y7 | v;(A;) > > p(4;) = > pj.
Suppose that the optimal allocation is (Oq,...,0,). By the p-SI property, we have
vi(4;) — Bp(Ai) > v;(0;) — p(0;). Adding up over all players, > " v;(4;) — B> p; >

OPT — 3" p;. From here, Y1, v;(4;) > OPT—(1— ) Y_p; > OPT —(1 — ) Y i, vi(4;).

Thus (2 —8) Y., vi(4;) > OPT. <

Unfortunately, this approach (whether by cycle canceling or by any other method) is
doomed to fail: Example 1 in the full version [40] shows a market with submodular valuations
for which it is impossible to find an allocation and prices such that every player’s bundle
is in their local demand. In other words, for this market it is impossible to get rid of all
negative cycles in Murota’s algorithm, ruling out this approach.
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