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Abstract
For an n-variate order-d tensor A, define Amax := sup‖x‖2=1〈A, x⊗d〉 to be the maximum value
taken by the tensor on the unit sphere. It is known that for a random tensor with i.i.d. ±1
entries, Amax .

√
n · d · log d w.h.p. We study the problem of efficiently certifying upper bounds

on Amax via the natural relaxation from the Sum of Squares (SoS) hierarchy. Our results include:
When A is a random order-q tensor, we prove that q levels of SoS certifies an upper bound
B on Amax that satisfies

B ≤ Amax ·
(

n

q 1−o(1)

)q/4−1/2

w.h.p.

Our upper bound improves a result of Montanari and Richard (NIPS 2014) when q is large.
We show the above bound is the best possible up to lower order terms, namely the optimum
of the level-q SoS relaxation is at least

Amax ·
(

n

q 1+o(1)

)q/4−1/2

.

When A is a random order-d tensor, we prove that q levels of SoS certifies an upper bound
B on Amax that satisfies

B ≤ Amax ·
(
Õ(n)
q

)d/4−1/2

w.h.p.

For growing q, this improves upon the bound certified by constant levels of SoS. This answers
in part, a question posed by Hopkins, Shi, and Steurer (COLT 2015), who gave the tight
characterization for constant levels of SoS.
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1 Introduction

It is a well-known fact from random matrix theory that for an n× n matrix M whose entries
are i.i.d. Rademacher or standard normal random variables, the maximum value xTMx

taken by the associated quadratic form on the unit sphere ‖x‖2 = 1, is Θ(
√
n) with high

probability. Further, this maximum value can be computed efficiently for any matrix, as
it equals the largest eigenvalue of (M +MT )/2, so one can also efficiently certify that the
maximum of a random quadratic form is at most O(

√
n).

This paper is motivated by the problem of analogous question for tensors. Namely, given
a random order-d tensor A who entries are i.i.d. random ± entries, we would like to certify
an upper bound on the maximum value Amax := max‖x‖=1〈A, x⊗d〉 taken by the tensor on
the unit sphere. This value is at most Od(

√
n) with high probability [18]. However, for d ≥ 3,

computing Amax for a d-tensor A is NP-hard, and it is likely that the problem is also very
hard to approximate. Assuming the Exponential Time Hypothesis, Barak et al. [1] proved
that computing 2→ 4 norm of a matrix, a special case of computing the norm of a 4-tensor,
is hard to approximate within a factor exp(log1/2−ε(n)) for any ε > 0.

Our goal is to certify an approximate upper bound on Amax is not too far from the true
value. Specifically, we seek an estimate B(A) which always upper bounds Amax, and with
high probability is as close to Od(

√
n) as possible for a random A.

In addition to its intrinsic interest, the problem of maximizing tensors and closely
related tasks of computing tensor norms, has connections to diverse topics, such as quantum
information theory [7, 2], the Small Set Expansion Hypothesis (SSEH) and the Unique
Games Conjecture (UGC) (via 2→ 4 norm, see [1, 2]), refuting random CSPs [16], tensor
decomposition [3, 10], tensor PCA [15, 12], and planted clique (via the parity tensor, see
[9, 8]). Many of these applications are of considerable interest in the 2nε-runtime regime.

A natural approach to tackle the above problem is through the Sum of Squares (SoS)
semidefinite programming relaxations. There are several ways to represent a tensor A ∈ R[n]d

(assume d is even) in matrix form as M ∈ R[n]d/2×[n]d/2 so that 〈A, x⊗d〉 = (x⊗d/2)TMx⊗d/2

for all x ∈ Rn. The largest eigenvalue λmax(M) of any such matrix representationM serves as
an (efficiently computable) upper bound on Amax. The basic SoS relaxation looks for the best
matrix representation, i.e., the one minimizing λmax(M), among all possible representations
of the tensor A. This can be expressed as a semidefinite program, and also has a natural
dual view in terms of pseudo-expectations or moment matrices (see Section 2.2).

The SoS hierarchy offers a sequence of relaxations, parameterized by the level q, with
larger q giving a (potentially) tighter relaxation. In our context, this amounts to optimizing
over matrix representations of Aq/d (we assume q is divisible by 2d); in the dual view, this
involves optimizing over pseudo-expectations for polynomials of degree up to q (as opposed
to degree d for the basic relaxation). The level-q relaxation can be solved in nO(q) time by
solving the associated semidefinite program. The SoS hierarchy thus presents a trade-off
between approximation guarantee and runtime, with larger levels giving more accurate
estimates at the expense of higher complexity.

This work is concerned with both positive and negative results on the efficacy of the SoS
hierarchy to approximately certify the maxima of random tensors. We now turn to stating
our results formally.
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1.1 Our Results
For an order-q tensor A ∈ (IRn)⊗d, the polynomial A(x) and its maximum on the sphere
Amax are defined as

A(x) := 〈A, x⊗d〉 Amax := sup
‖x‖=1

A(x).

When the entries of A are i.i.d. Rademacher random variables (or i.i.d. Gaussians), it is
known that Amax .

√
n · d · log d (see [18]). We will also use, for a polynomial g, gmax to

denote sup‖x‖=1 g(x).

SoS degree = Polynomial Degree

We study the performance of degree-q SoS on random tensors of order-q. The formal definition
and basic properties of SoS relaxations are presented in Section 2.2.

I Theorem 1. For any even q ≤ n, let A ∈ (IRn)⊗q be a q-tensor with independent,
Rademacher entries. With high probability, the value B of the degree-q SoS relaxation of
Amax satisfies

2−O(q) ·
(
n

q

)q/4−1/2
≤ B

Amax
≤ 2O(q) ·

(
n

q

)q/4−1/2
.

This improves upon the O(nq/4) upper bound by Montanari and Richard [15].

SoS Degree � Polynomial Degree

I Theorem 2. Let A ∈ (IRn)⊗d be a d-tensor with independent, Rademacher entries. Then
for any even q satisfying d ≤ q ≤ n, with high probability, the degree-q SoS certifies an upper
bound B on Amax where w.h.p.,

B

Amax
≤

(
Õ(n)
q

)d/4−1/2

I Remark. Combining our upper bounds with the work of [12] would yield improved tensor-
PCA guarantees on higher levels of SoS.
I Remark. Raghavendra, Rao, and Schramm [16] have independently and concurrently
obtained similar (but weaker) results to Theorem 2 for random degree-d polynomials. Spe-
cifically, their upper bounds appear to require the assumption that the SoS level q must be
less than n1/(3d2) (our result only assumes q ≤ n). Further, they certify an upper bound that
matches Theorem 2 only when q ≤ 2

√
logn.

1.2 Related Work
Upper Bounds

Montanari and Richard [15] presented a nO(d)-time algorithm that can certify that the
optimal value of Amax for a random d-tensor is at most O(n

dd/2e
2 ) with high probability.

Hopkins, Shi, and Steurer [12] improved it to O(n d4 ) with the same running time. They also
asked how many levels of SoS are required to certify a bound of n3/4−δ for d = 3.

Our analysis asymptotically improves the aforementioned bound when q is growing with n,
and we prove an essentially matching lower bound (but only for the case q = d). Secondly, we

APPROX/RANDOM’17
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consider the case when d is fixed, and give improved results for the performance of degree-q
SoS (for large q), thus answering in part, a question posed by Hopkins, Shi and Steurer [12].

Raghavendra, Rao, and Schramm [16] also prove results analogous to Theorem 2 for the
case of sparse random polynomials (a model we do not consider in this work, and which
appears to pose additional technical difficulties). This implied upper bounds for refuting
random instances of constraint satisfaction problems using higher levels of the SoS hierarchy,
which were shown to be tight via matching SoS lower bounds in [13].

Lower Bounds

While we only give lower bounds for the case of q = d, subsequent to our work, Hopkins et
al. [11] proved the following theorem, which gives lower bounds for the case of q � d:

I Theorem 3. Let f be a degree-d polynomial with i.i.d. gaussian coefficients. If there is
some constant ε > 0 such that q ≥ nε, then with high probability over f , the optimum of the
level-q SoS relaxation of fmax is at least

fmax · Ωd
(

(n/qO(1))d/4−1/2
)
.

Note that this almost matches our upper bounds from Theorem 2, modulo the exponent
of q. For this same reason, the above result does not completely recover our lower bound in
Theorem 1 for the special case of q = d.

Results for worst-case tensors

It is proved in [5] that the q-level SoS gives an (O(n)/q)d/2−1 approximation to ‖A‖2 in
the case of arbitrary d-tensors and an (O(n)/q)d/4−1/2 approximation to Amax in the case
of d-tensors with non-negative entries (for technical reasons one can only approximate
‖A‖2 = max{|Amax|, |Amin|} in the former case).

It is interesting to note that the approximation factor in the case of non-negative tensors
matches the approximation factor (upto polylogs) we achieve in the random case. Additionally,
the gap given by Theorem 1 for the case of random tensors provides the best degree-q SoS
gap for the problem of approximating the 2-norm of arbitrary q-tensors. Hardness results for
the arbitrary tensor 2-norm problem is an important pursuit due to its connection to various
problems for which subexponential algorithms are of interest.

1.3 Organization
We begin by setting some important notation concerning SoS matrices, and describe some
basic preliminaries about the SoS hierarchy in Section 2. We touch upon the main technical
ingredients driving our work, and give an overview of the proof of Theorem 2 and the lower
bound in Theorem 1 in Section 3. We present the proof of Theorem 2 for the case of even d
in Section 4, with the more tricky odd d case handled in the full version of our paper [6].
The lower bound on the value of SoS-hierarchy claimed in Theorem 1 is proved in Section 5,
and the upper bound in Theorem 1 also follows based on some techniques in that section.

2 Notation and Preliminaries

Multi-index and Multiset

A multi-index is defined as a sequence α ∈ Nn. We use |α| to denote
∑n
i=1 αi and Nnd (resp.

Nn≤d) to denote the set of all multi-indices α with |α| = d (resp. |α| ≤ d). We use 1 to denote
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the multi-index 1n. Thus, a homogeneous polynomial f of degree d can be expressed in
terms of its coefficients as

f(x) =
∑
α∈Nn

d

fα · xα,

where xα is used to denote the monomial corresponding to α. In general, with the exception of
absolute-value, any scalar function/operation when applied to vectors/multi-indices, returns
the vector obtained by applying the function/operation entry-wise.

2.1 Matrices

For k ∈ N, we will consider [n]k × [n]k matrices M with real entries. All matrices considered
in this paper should be taken to be symmetric (unless otherwise stated). We index entries of
the matrix M as M [I, J ] by tuples I, J ∈ [n]k. ⊕ denotes tuple-concatenation.

A tuple I = (i1, . . . , ik) naturally corresponds to a multi-index α(I) ∈ Nnk with |α(I)| = k,
i.e. α(I)j = |{` | i` = j}|. For a tuple I ∈ [n]k, we define O(I) the set of all tuples J
which correspond to the same multi-index i.e., α(I) = α(J). Thus, any multi-index α ∈ Nnk ,
corresponds to an equivalence class in [n]k. We also use O(α) to denote the class of all tuples
corresponding to α.

Note that a matrix of the form
(
x⊗k

)(
x⊗k

)T has many additional symmetries, which are
also present in solutions to programs given by the SoS hierarchy. To capture this, consider
the following definition:

I Definition 4 (SoS-Symmetry). A matrix M which satisfies M[I, J ] = M[K,L] whenever
α(I) + α(J) = α(K) + α(L) is referred to as SoS-symmetric.

I Definition 5 (Matrix-Representation). For a homogeneous degree-t (t even) polynomial
g, we say a matrix Mg ∈ IR[n]t/2×[n]t/2

is a degree-t matrix representation of g if for all x,
g(x) = (x⊗t/2)T Mg x

⊗t/2. (We note here that every homogeneous polynomial has a unique
SoS-Symmetric matrix representation.)

Note that λmax(Mg) is an upper bound on gmax. This prompts the following relaxation of
gmax that is closely related to the final SoS relaxation used in our upper bounds:

I Definition 6. For a homogeneous degree-t (t even) polynomial g, define

Λ(g) := inf
{
λmax(Mg)

∣∣∣Mg represents g
}
.

As we will see shortly, Λ(g) is the dual of a natural SoS relaxation of gmax.

2.2 SoS Hierarchy

Let IR[x]≤q be the vector space of polynomials with real coefficients in variables x =
(x1, . . . , xn), of degree at most q. For an even integer q, the degree-q pseudo-expectation
operator is a linear operator Ẽ : IR[x]≤q 7→ IR such that
1. Ẽ [1] = 1 for the constant polynomial 1.
2. Ẽ [p1 + p2] = Ẽ [p1] + Ẽ [p2] for any polynomials p1, p2 ∈ IR[x]≤q.
3. Ẽ

[
p2] ≥ 0 for any polynomial p ∈ IR[x]≤q/2.

APPROX/RANDOM’17
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The pseudo-expectation operator Ẽ can be completely described by the moment matrix
(while x is a column vector, we abuse notation and let (1, x) denote the column vector
(1, x1, . . . , xn)T )

X := Ẽ
[
(1, x)⊗q/2 ((1, x)⊗q/2)T

]
. (2.1)

Moreover, the condition Ẽ
[
p2] ≥ 0 for all p ∈ IR[x]≤q/2 can be shown to be equivalent to

X � 0.

Constrained Pseudoexpectations

For a system of polynomial constraints

C = {f1 = 0, . . . , fm = 0, g1 ≥ 0, . . . , gr ≥ 0} ,

we say ẼC is a pseudoexpectation operator respecting C, if in addition to the above conditions,
it also satisfies
1. ẼC [p · fi] = 0, ∀i ∈ [m] and ∀p such that deg(p · fi) ≤ q.
2. ẼC

[
p2 ·

∏
i∈S gi

]
≥ 0, ∀S ⊆ [r] and ∀p such that deg(p2 ·

∏
i∈S gi) ≤ q.

It is well-known that such constrained pseudoexpectation operators can be described as
solutions to semidefinite programs of size nO(q) [4, 14]. This hierarchy of semidefinite
programs for increasing q is known as the SoS hierarchy.

Additional Facts about SoS

We shall record here some well-known facts about SoS that come in handy later.

I Claim 7. For polynomials p1, p2, let p1 � p2 denote that p1 − p2 is a sum of squares. It
is easy to verify that if p1, p2 are homogeneous degree d polynomials and there exist matrix
representations Mp1 and Mp2 of p1 and p2 respectively, such that Mp1 −Mp2 � 0, then
p1 − p2 � 0.

I Claim 8 (Pseudo-Cauchy-Schwarz [2]). Ẽ [p1p2] ≤ (Ẽ
[
p2

1
]

Ẽ
[
p2

2
]
)1/2 for any p1, p2 of degree

at most q/2.

SoS Relaxations for Amax

Given an order-q tensor A, our degree-q SoS relaxation for Amax which we will henceforth
denote by SoSq(A(x)) is given by,

maximize ẼC [A(x)]

subject to : ẼC is a degree-q
pseudoexpectation

ẼC respects C ≡ {‖x‖q2 = 1}

Assuming q is divisible by 2d, we make an observation that is useful in our upper bounds:

Amax ≤ SoSq(A(x)) ≤ SoSq
(
A(x) q/d

)d/q
= Λ

(
A(x) q/d

)d/q
(2.2)

where the second inequality follows from Pseudo-Cauchy-Scwarz, and the equality follows
from well known strong duality of the following programs (specifically, take g(x) := A(x) q/d):1

1 Compared to (2.1), the primal formulation here uses a homogeneous moment matrix or pseudo-
expectation operator, defined for polynomials of degree exactly q.
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Dual

Λ(g) := inf
{
λmax(Mg)

∣∣∣Mg represents g
}

Primal I

maximize 〈Mg,X〉
subject to : Tr(X) = 1

X is SoS symmetric
X � 0

Primal II

maximize ẼC [g]

subject to : ẼC is a degree-q
pseudoexpectation

ẼC respects C ≡
{
‖x‖q

2 = 1
}

Figure 2.1 Duals of Λ(g) for the degree-q homogeneous polynomial g.

Note

In the rest of the paper, we will drop the subscript C of the pseudo-expectation operator
since throughout this work, we only assume the hypersphere constraint.

3 Overview of our Methods

We now give a high level view of the two broad techniques driving this work, followed by a
more detailed overview of the proofs.

Higher Order Mass-Shifting

Our approach to upper bounds on a random low degree (say d) polynomial f , is through
exhibiting a matrix representation of fq/d that has small operator norm. Such approaches
had been used previously for low-degree SoS upper bounds. However when the SoS degree
is constant, the set of SoS symmetric positions is also a constant and the usual approach
is to shift all the mass towards the diagonal which is of little consequence when the SoS-
degree is low. In contrast, when the SoS-degree is large, many non-trivial issues arise when
shifting mass across SoS-symmetric positions, as there are many permutations with very
large operator norm. In our setting, mass-shifting approaches like symmetrizing and diagonal-
shifting fail quite spectacularly to provide good upper bounds. For our upper bounds, we
crucially exploit the existence of "good permutations", and moreover that there are qq · 2−O(q)

such good permutations. On averaging the representations corresponding to these good
permutations, we obtain a matrix that admits similar spectral preperties to those of a matrix
with i.i.d. entries, and with much lower variance (in most of the entries) compared to the
naive representations.

Square Moments of Wigner Semicircle Distribution

Often when one is giving SoS lower bounds, one has a linear functional that is not necessarily
PSD and a natural approach is to fix it by adding a pseudo-expectation operator with large
value on square polynomials (under some normalization). Finding such operators however,
is quite a non-trivial task when the SoS-degree is growing. We show that if x1, . . . , xn are
independently drawn from the Wigner semicircle distribution, then for any polynomial p

APPROX/RANDOM’17
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of any degree, E
[
p2] is large (with respect to the degree and coefficients of p). Our proof

crucially relies on knowledge of the Cholesky decomposition of the moment matrix of the
univariate Wigner distribution. This tool was useful to us in giving tight q-tensor lower
bounds, and we believe it to be generally useful for high degree SoS lower bounds.

3.1 Overview of Upper Bound Proofs

For even d, let A ∈ IR[n]d be a d-tensor with i.i.d. ±1 entries and let A ∈ IR[n]d/2×[n]d/2
be the

matrix flattening of A, i.e., A[I, J ] = A[I ⊕ J ] (recall that ⊕ denotes tuple concatenation).
Also let f(x) := A(x) = 〈A, x⊗d〉. It is well known that fmax ≤ O(

√
n · d · log d) with high

probability [18]. For such a polynomial f and any q divisible by d, in order to establish
Theorem 2, by Eq. (2.2) it is sufficient to prove that with high probability,(

Λ
(
fq/d

))d/q
≤ Õ

(
n

q1−2/d

)d/4
= Õ

(
n

q

)d/4−1/2
· fmax.

We give an overview of the proof. Let d = 4 for the sake of clarity of exposition. To prove
an upper bound on Λ

(
fq/4

)
using degree-q SoS (assume q is a multiple of 4), we define a

suitable matrix representation M := Mfq/4 ∈ R[n]q/2×[n]q/2 of fq/4 and bound ‖M‖2. Since
Λ(f) ≤ (‖M‖2)q/4 for any representation M , a good upper bound on ‖M‖2 certifies that
Λ(f) is small.

One of the intuitive reasons taking a high power gives a better bound on the spectral
norm is that this creates more entries of the matrix that correspond to the same monomial,
and distributing the coefficient of this monomial equally among the corresponding entries
reduces variance (i.e., Var [X] is less than k ·Var [X/k] for k > 1). In this regard, the most
natural representation M of fq/4 is the complete symmetrization.

Mc[(i1, . . . , iq/2), (iq/2+1, . . . , iq)]

= 1
q! ·

∑
π∈Sq

A⊗q/4[(iπ(1), . . . , iπ(q/2)), (iπ(q/2+1), . . . , iπ(q))]

= 1
q! ·

∑
π∈Sq

q/4∏
j=1

A[(iπ(2j−1), iπ(2j)), (iπ(q/2+2j−1), iπ(q/2+2j))].

However, ‖Mc‖2 turns out to be much larger than Λ(f), even when q = 8. One intuitive
explanation is that Mc, as a n4 × n4 matrix, contains a copy of Vec(A) Vec(A)T , where
Vec(A) ∈ R[n]4 is the vector with Vec(A) [i1, i2, i3, i4] = A[(i1, i2), (i3, i4)]. Then Vec(A)
is a vector that witnesses ‖Mc‖2 ≥ Ω(n2), regardless of the randomness of f . Our final
representation2 is the following row-column independent symmetrization that simultaneously
respects the spectral structure of a random matrix A and reduces the variance. Our M is
given by

M [(i1, . . . , iq/2), (j1, . . . , jq/2)]

= 1
(q/2)!2 ·

∑
π,σ∈Sq/2

A⊗q/4[(iπ(1), . . . , iπ(q/2)), (jσ(1), . . . , jσ(q/2))]

= 1
(q/2)!2 ·

∑
π,σ∈Sq/2

q/4∏
k=1

A[(iπ(2k−1), iπ(2k)), (jσ(2k−1), jσ(2k))].

2 The independent and concurrent work of [16] uses the same representation.
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To formally show ‖M‖2 = Õ(n/√q)q/4 with high probability, we use the trace method to
show

E [Tr(Mp)] ≤ 2O(pq log p)n
pq/4+q/2

qpq/8
,

where E [Tr(Mp)] can be written as (let Ip+1 := I1)

E

 ∑
I1,...,Ip∈[n]q/2

p∏
j=1

M [Ij , Ij+1]


=

∑
I1,...,Ip

E

 p∏
j=1

(
∑

πj ,σj∈Sq/2

q/4∏
k=1

A[(Ikπj(2k−1), I
k
πj(2k)), (I

k+1
σj(2k−1), I

k+1
σj(2k))])

.
Let E(I1, . . . , Ip) be the expectation value for I1, . . . , Ip in the right hand side. We study
E(I1, . . . , Ip) for each I1, . . . , Ip by careful counting of the number of permutations on a
given sequence with possibly repeated entries. For any I1, . . . , Ip ∈ [n]q/2, let #

(
I1, . . . , Ip

)
denote the number of distinct elements of [n] that occur in I1, . . . , Ip, and for each s =
1, . . . ,#

(
I1, . . . , Ip

)
, let cs ∈ ({0}∪ [q/2])p denote the number of times that the jth smallest

element occurs in I1, . . . , Ip. When E(I1, . . . , Ip) 6= 0, it means that for some permutations
{πj , σj}j , every term A[·, ·] must appear even number of times. This implies that the number
of distinct elements in I1, . . . , Ip is at most half the maximal possible number pq/2. This
lemma proves the intuition via graph theoretic arguments.

I Lemma 9. If E(I1, . . . , Ip) 6= 0, #
(
I1, . . . , Ip

)
≤ pq

4 + q
2 .

The number of I1, . . . , Ip that corresponds to a sequence c1, . . . , cs is at most n
s

s! ·
((q/2)!)p∏
`∈[p]

c1
`
!·cp
`
!
.

Furthermore, there are at most 2O(pq)ppq/2 different choices of c1, . . . , cs that corresponds to
some I1, . . . , Ip. The following technical lemma bounds E(I1, . . . , Ip) by careful counting
arguments.

I Lemma 10. For any I1, . . . , Ip, E(I1, . . . , Ip) ≤ 2O(pq) p5pq/8

q3pq/8

∏
`∈[p] c

1
` ! . . . cs` !.

Summing over all s and multiplying all possibilities,

E [Tr(Mp)] ≤
pq/4+q/2∑
s=1

(
2O(pq)ppq/2

)
·
(
ns

s! · ((q/2)!)p
)
·
(

2O(pq) p
5pq/8

q3pq/8

)
= max

1≤s≤pq/4+q/2
2O(pq log p) · ns · q

pq/8

s! .

When q ≤ n, the maximum occurs when s = pq/4+q/2, so E [Tr(Mp)] ≤ 2O(pq log p) · n
pq/4+q/2

qpq/8

as desired.

3.2 Overview of Lower Bound Proofs
Let A, A, f be as in Section 3.1. To prove the lower bound in Theorem 1, we construct a
moment matrix M that is positive semidefinite, SoS-symmetric, Tr(M) = 1, and 〈A,M〉 ≥
2−O(d) · n

d/4

dd/4 . At a high level, our construction is M := c1A + c2W for some c1, c2, where
A contains entries of A only corresponding to the multilinear indices, averaged over all
SoS-symmetric positions. This gives a large inner product with A, SoS-symmetry, and nice

APPROX/RANDOM’17



31:10 Sum-of-Squares Certificates for Maxima of Random Tensors on the Sphere

spectral properties even though it is not positive semidefinite. The most natural way to make
it positive semidefinite is adding a copy of the identity matrix, but this will again break the
SoS-symmetry.

Our main technical contribution here is the construction of W that acts like a SoS-
symmetrized identity. It has the minimum eigenvalue at least 1

2 , while the trace being
nd/2 · 2O(d), so the ratio of the average eigenvalue to the minimum eigenvalue is bounded
above by 2O(d), which allows us to prove a tight lower bound. To the best of our knowledge,
no such bound was known for SoS-symmetric matrices except small values of d = 3, 4.

Given I, J ∈ [n]d/2, we let W[I, J ] := E[xα(I)+α(J)], where x1, . . . , xn are independently
sampled from the Wigner semicircle distribution, whose probability density function is the
semicircle f(x) = 2

π

√
1− x2. Since E[x`1] = 0 if ` is odd and E[x2`

1 ] = 1
`+1
(2`
`

)
, which is the

`th Catalan number, each entry of W is bounded by 2O(d) and Tr(W) ≤ nd/2 ·2O(d). To prove
a lower bound on the minimum eigenvalue, we show that for any degree-` polynomial p with
m variables, E[p(x1, . . . , xm)2] is large by induction on ` and m. We use another property
of the Wigner semicircle distribution that if H ∈ R(d+1)×(d+1) is the univariate moment
matrix of x1 defined by H[i, j] = E[xi+j1 ] (0 ≤ i, j ≤ d) and H = (RT )R is the Cholesky
decomposition of H, R is an upper triangular matrix with 1’s on the main diagonal. This
nice Cholesky decomposition allows us to perform the induction on the number of variables
while the guarantee on the minimum eigenvalue is independent of n.

4 Upper bounds for even degree tensors

For even d, let A ∈ IR[n]d be a d-tensor with i.i.d. ±1 entries and let A ∈ IR[n]d/2×[n]d/2
be the

matrix flattening of A, i.e., A[I, J ] = A[I ⊕ J ] (recall that ⊕ denotes tuple concatenation).
Also let f(x) := A(x) = 〈A, x⊗d〉. With high probability fmax = O(

√
n · d · log d). In this

section, we prove that for every q divisible by d, with high probability,

(
Λ
(
fq/d

))d/q
≤ Õ

(
n

q1−2/d

)d/4
= Õ

(
n

q

)d/4−1/2
· fmax.

To prove it, we use the following matrix representation M of fq/d, and show that ‖M‖2 ≤

Õd

((
n log5 n
q1−2/d

)q/4)
. Given a tuple I = (i1, . . . , iq), and an integer d that divides q and

1 ≤ ` ≤ q/d, let I`;d be the d-tuple (Id(`−1)+1, . . . , Id`) (i.e., if we divide I into q/d tuples
of length d, I`;d be the `-th tuple). Furthermore, given a tuple I = (i1, . . . , iq) ∈ [n]q and
a permutation π ∈ [n]q, let π(I) be another q-tuple whose `th coordinate is π(i`). For
I, J ∈ [n]q/2, M [I, J ] is formally given by

M [I, J ] = 1
q! ·

∑
π,σ∈Sq/2

A⊗q/d[π(I), σ(J)]

= 1
q! ·

∑
π,σ∈Sq/2

q/d∏
`=1

A[(π(I))`;d/2, (σ(J))`;d/2].

We perform the trace method to bound ‖M‖2. Let p be an even integer, that will be
eventually taken as Θ(logn). Tr(M) can be written as (let Ip+1 := I1)

E

 ∑
I1,...,Ip∈[n]q/2

p∏
`=1

M [I`, I`+1]
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=
∑

I1,...,Ip

E

 p∏
`=1

(
∑

πj ,σj∈Sq/2

q/d∏
m=1

A[(π(I`))m;d/2, (σ(I`+1))m;d/2)])

.
Let E(I1, . . . , Ip) := E

[∏p
`=1M [I`, I`+1]

]
, which is the expected value in the right hand

side. To analyze E(I1, . . . , Ip), we first introduce notions to classify I1, . . . , Ip depending
on their intersection patterns. For any I1, . . . , Ip ∈ [n]q/2, let ek denote the k-th smallest
element in

⋃̀
, j

{i`j}. For any c1, . . . , cs ∈ [q/2]p, let

C(c1 . . . cs) :={
(I1, . . . , Ip)

∣∣∣# (I1, . . . , Ip
)

= s, ∀k ∈ [s], ` ∈ [p], ek appears ck` times in I`
}
.

The following two observations on c1, . . . , cs can be easily proved.

I Observation 11. If C(c1, . . . , cs) 6= φ,∣∣C(c1, . . . , cs)∣∣ ≤ ns

s! ×
((q/2)!)p∏

`∈[p]
c1` ! . . . cs` !

.

Moreover,∣∣∣{(c1, . . . , cs) ∈ ([q/2]p)s
∣∣∣ C(c1, . . . , cs) 6= φ

}∣∣∣ ≤ 2O(pq)p pq/2.

The following lemma bounds E(I1, . . . , Ip) in terms of the corresponding c1, . . . , cs.

I Lemma 12. Consider any c1, . . . , cs ∈ [q/2]p and (I1, . . . , Ip) ∈ C(c1, . . . , cs). We have

E(I1, . . . , Ip) ≤ 2O(pq) p
1/2+1/2d

q1/2−1/2d

∏
`∈[p]

c1` ! . . . cs` !

Proof. Consider any c1, . . . , cs ∈ [q/2]p and (I1, . . . , Ip) ∈ C(c1, . . . , cs). We have

E(I1, . . . , Ip)

= E

[
p∏
`=1

M [I`, I`+1]
]

=
∑

πj ,σj∈Sq/2

E

 p∏
`=1

q/d∏
m=1

A[(π(I`))m;d/2, (π(I`+1))m;d/2]


=
(∏

`

∏
s(cs` !)2

((q/2)!)2p

)
·

∑
(J`,K`∈O(I`))`∈[p]

E

 p∏
`=1

q/d∏
m=1

A[J`m;d/2,K
`+1
m;d/2]

 (4.1)

Thus, E(I1, . . . , Ip) is bounded by the number of choices for J1, . . . , Jp,K1, . . . ,Kp such
that J`,K` ∈ O

(
I`
)
for each ` ∈ [p], and E

[∏p
`=1
∏q/d
m=1A[J`m;d/2,K

`+1
m;d/2]

]
is nonzero.

Given J1, . . . , Jp and K1, . . . ,Kp, consider the (pq/d)-tuple T where each coordinate is
indexed by (`,m)`∈[p],m∈[q/d] and has a d-tuple T`,m := (J`m;d/2)⊕ (K`+1

m;d/2) ∈ Rd as a value.
Note that

∑
`,m α(T`,m)) = (2o1, . . . , 2on) where or is the number of occurences of r ∈ [n] in

(pq/2)-tuple ⊕p`=1I
`. The fact that E

[∏p
`=1
∏q/d
m=1A[jm;d/2, km;d/2]

]
6= 0 means that every

d-tuple occurs even number of times in T .

APPROX/RANDOM’17



31:12 Sum-of-Squares Certificates for Maxima of Random Tensors on the Sphere

We count the number of (pq/d)-tuples T = (T`,m)`∈[p],m∈[q] that
∑
`,m α(T`,m) =

(2o1, . . . , 2on) and every d-tuple occurs an even number of times. Let Q = (Q1, . . . , Qpq/2d),
R = (R1, . . . , Rpq/2d) be two (pq/2d)-tuples of d-tuples where for every d-tuple P , the number
of occurences of P is the same in Q and R, and

∑pq/2d
`=1 α(Q`) =

∑pq/2d
`=1 α(R`) = (o1, . . . , on).

At most 2pq/d tuples T can be made by interleaving Q and R – for each (`,m), choose T`,m
from the first unused d-tuple in either Q or R. Furthermore, every tuple T that meets our
condition can be constructed in this way.

Due to the condition
∑pq/2d
`=1 α(Q`) = (o1, . . . , on), the number of choices for Q is at most

the number of different ways to permute I1⊕ · · ·⊕ Ip, which is at most (pq/2)!/
∏
m∈[s](c̄m)!,

where c̄m :=
∑
`∈[p] c

m
` for m ∈ [s]. For a fixed choice of Q, there are at most (pq/2d)! choices

of R. Therefore, the number of choices for (J`,K` ∈ O
(
I`
)
)`∈[p] with nonzero expected value

is at most

2pq/d · (pq/2)!∏
m∈[s](c̄m)! · (pq/2d)! = 2O(pq) · (pq)1/2+1/2d∏

m∈[s](c̄m)! .

Combining with Eq. (4.1),

E(I1, . . . , Ip) ≤
(

2O(pq) (pq)1/2+1/2d∏
m∈[s](c̄m)!

)
·
(∏

`

∏
s(cs` !)2

((q/2)!)2p

)
≤ 2O(pq) · p

1/2+1/2d

q1/2−1/2d ·
∏
`

∏
s

cs` !

as desired. J

I Lemma 13. For all I1, . . . , Ip ∈ [n]q/2, if E(I1, . . . , Ip) 6= 0, #
(
I1, . . . , Ip

)
≤ pq

4 + q
2 .

Proof. Note that E(I1, . . . , Ip) 6= 0 implies that there exist J1, . . . , Jp,K1, . . . ,Kp such
that J`,K` ∈ O

(
I`
)
and every d-tuple occurs exactly even number of times in ((J`m;d/2)⊕

(K`+1
m;d/2))`∈[p],m∈[q/d]. Consider the graph G = (V,E) defined by

V :=
⋃
`∈[p]

⋃
k∈[q/2]

{
I`k
}

E :=
⋃

m∈[q/2]

{{
J1
m,K

2
m

}
,
{
J2
m,K

3
m

}
, . . . ,

{
Jpm,K

1
m

}}
.

The even multiplicity condition implies that every element in E has even multiplicity and
consequently |E| ≤ pq/4. We next show that E is the union of q/2 paths. To this end, we
construct G1 ∈ O

(
I1), . . . , G` ∈ O

(
I`
)
as follows:

1. Let G2 := K2

2. For 3 ≤ ` ≤ p do:
a. Since G` ∈ O

(
J`
)
, there exists π ∈ Sq/2 s.t. π(J`) = G`.

b. Let G`+1 := π(K`+1).
We observe that by construction,⋃

m∈[q/2]

{{
J1
m, G

2
m

}
,
{
G2
m, G

3
m

}
, . . . ,

{
Gpm, G

1
m

}}
=

⋃
m∈[q/2]

{{
J1
m,K

2
m

}
,
{
J2
m,K

3
m

}
, . . . ,

{
Jpm,K

1
m

}}
= E

which establishes that E is a union of q/2 paths.
Now since E is the union of q/2 paths G has at most q/2 connected components, and one

needs to add at most q/2− 1 edges make it connected, we have |V | ≤ |E|+ (q/2− 1) + 1 ≤
pq/4 + q/2. But #

(
I1, . . . , Ip

)
= |V |, which completes the proof. J
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Finally, E [Tr(Mp)] can be bounded as follows.

E [Tr(Mp)]

=
∑

I1,...,Ip∈[n]q/2

E(I1, . . . , Ip)

=
∑

s∈[pq/4+q/2]

∑
# (I1,...,Ip)=s

E(I1, . . . , Ip) (by Lemma 13)

=
∑

s∈[pq/4+q/2]

∑
c1,...,cs∈[q/2]p

∑
(I1,...,Ip)∈C(c1...cs)

E(I1, . . . , Ip)

=
∑

s∈[pq/4+q/2]

∑
c1,...,cs∈[q/2]p

∑
(I1,...,Ip)∈C(c1...cs)

E(I1, . . . , Ip)

≤
∑

s∈[pq/4+q/2]

∑
c1,...,cs∈[q/2]p∑

(I1,...,Ip)∈C(c1...cs)

2O(pq) p
(1/2+1/2d)pq

q(1/2−1/2d)pq

∏
`∈[p]

c1` ! . . . cs` ! (by Lemma 12)

≤
∑

s∈[pq/4+q/2]

2O(pq) n
s

s! p
(1+1/2d)pqqpq/2d (by Observation 11)

≤
∑

s∈[pq/4+q/2]

2O(pq) npq/4+q/2

s! qpq/4+q/2−s p
(1/2+1/2d)p1q(1/2−1/2d)pq (assuming q ≤ n)

≤
∑

s∈[pq/4+q/2]

2O(pq) n
pq/4+q/2 p(1+1/2d)pq

q(1/4−1/2d)pq

≤ 2O(pq) n
pq/4+q/2 p(1+1/2d)pq

q(1/4−1/2d)pq .

Choose p to be even and let p = Θ(logn). Applying Markov inequality shows that with high
probability,(

Λ
(
fq/d

))d/q
≤ (‖M‖2)d/q ≤ (E [Tr(Mp)])d/pq = Od

(
nd/4 · (logn) d+1/2

q d/4−1/2

)
.

Thus we obtain

I Theorem 14. For even d, let A ∈ IR[n]d be a d-tensor with i.i.d. ±1 entries. Then for
any even q such that q ≤ n, we have that with probability 1− nΩ(1),

SoSq(A(x))
Amax

≤

(
Õ(n)
q

)d/4−1/2

.

5 Proof of SoS Lower Bound in Theorem 1

For even q, let A ∈ IR[n]q be a q-tensor with i.i.d. ±1 entries and let A ∈ IR[n]q/2×[n]q/2
be the

matrix flattening of A, i.e., A[I, J ] = A[I ⊕ J ] (recall that ⊕ denotes tuple concatenation).
Also let f(x) := A(x) = 〈A, x⊗q〉. This section proves the lower bound in Theorem 1, by
constructing a moment matrix M that is positive semidefinite, SoS-symmetric, Tr(M) = 1,
and 〈A,M〉 ≥ 2−O(q) · n

q/4

qq/4 . In Section 5.1, we construct the matrix Ŵ that acts as a
SoS-symmetrized identity matrix. The moment matrix M is presented in Section A.

APPROX/RANDOM’17
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5.1 Wigner Moment Matrix
In this section, we construct an SoS-symmetric and positive semidefinite matrix Ŵ ∈
IRNnq/2×N

n
q/2 such that λmin(Ŵ)/Tr

(
Ŵ
)
≥ 1/(2q+1 · |Nnq/2|), i.e. the ratio of the minimum

eigenvalue to the average eigenvalue is at least 1/2q+1.

I Theorem 15. For any positive integer n and any positive even integer q, there exists a
matrix Ŵ ⊆ IRNnq/2×N

n
q/2 that satisfies the following three properties: (1) Ŵ is degree-q SoS

symmetric. (2) The minimum eigenvalue of Ŵ is at least 1
2 . (3) Each entry of Ŵ is in [0, 2q].

Theorem 15 is proved by explicitly constructing independent random variables x1, . . . , xn
such that for any n-variate polynomial p(x1, . . . , xn) of degree at most q

2 , E[p2] is bounded
away from 0. The proof consists of three parts. The first part shows the existence of a
desired distribution for one variable xi. The second part uses induction to prove that E[p2]
is bounded away from 0. The third part constructs Ŵ ⊆ IRNnq/2×N

n
q/2 from the distribution

defined.

Wigner Semicircle Distribution and Hankel Matrix

Let k be a positive integer. In this part, the rows and columns of all (k+ 1)× (k+ 1) matrices
are indexed by {0, 1, . . . , k}. Let T be a (k+ 1)× (k+ 1) matrix where T [i, j] = 1 if |i− j| = 1
and T [i, j] = 0 otherwise. Let e0 ∈ IRk+1 be such that (e0)0 = 1 and (e0)i = 0 for 1 ≤ i ≤ k.
Let R ∈ IR(k+1)×(k+1) be defined by R := [e0, T e0, T

2e0, . . . , T
ke0]. Let R0, . . . , Rk be the

columns or R so that Ri = T ie0. It turns out that R is closely related to the number of ways
to consistently put parantheses. Given a string of parantheses ‘(’ or ‘)’, we call it consistent
if any prefix has at least as many ‘(’ as ‘)’. For example, ((())( is consistent, but ())(( is not.

I Claim 16. R[i, j] is the number of ways to place j parantheses ‘(’ or ‘)’ consistently so
that there are i more ‘(’ than ‘)’.

Proof. We proceed by the induction on j. When j = 0, R[0, 0] = 1 and R[i, 0] = 0 for all
i ≥ 1. Assume the claim holds up to j − 1. By the definition Rj = TRj−1.

For i = 0, the last parenthesis must be the close parenthesis, so the definition R[0, j] =
R[1, j − 1] still measures the number of ways to place j parantheses with equal number
of ‘(’ and ‘)’.
For i = k, the last parenthesis must be the open parenthesis, so the definition R[k, j] =
R[k − 1, j − 1] still measures the number of ways to place j parantheses with k more ‘(’.
For 0 < i < k, the definition of R gives R[i, j] = R[i− 1, j − 1] + R[i+ 1, j − 1]. Since
R[i − 1, j] corresponds to plaincg ‘)’ in the jth position and R[i + 1, j] corresponds to
placing ‘(’ in the jth position, R[i, j] still measures the desired quantity.

This completes the induction and proves the claim. J

Easy consequences of the above claim are (1) R[i, i] = 1 for all 0 ≤ i ≤ k, and R[i, j] = 0
for i > j, and (2) R[i, j] = 0 if i+ j is odd, and R[i, j] ≥ 1 if i ≤ j and i+ j is even.

Let H := (RT )R. Since R is upper triangular with 1’s on the main diagonal, H = (RT )R
gives the unique Cholesky decomposition, so H is positive definite. It is easy to see that
H[i, j] = 〈Ri, Rj〉 is the total number of ways to place i+ j parantheses consistently with
the same number of ‘(’ and ‘)’. Therefore, H[i, j] = 0 if i+ j is odd, and if i+ j is even (let
l := i+j

2 ), H[i, j] is the lth Catalan number Cl := 1
l+1
(2l
l

)
. In particular, H[i, j] = H[i′, j′]

for all i+ j = i′ + j′. Such H is called a Hankel matrix.
Given a sequence of m0 = 1,m1,m2, . . . of real numbers, the Hamburger moment problem

asks whether there exists a random variable W supported on IR such that E[W i] = mi. It
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is well-known that there exists a unique such W if for all k ∈ N, the Hankel matrix H ∈
IR(k+1)×(k+1) defined by H[i, j] := E[W i+j ] is positive definite [17]. Since our construction
of H ∈ IR(k+1)×(k+1) ensures its positive definiteness for any k ∈ N, there exists a unique
random variable W such that E[W i] = 0 if i is odd, E[W i] = C i

2
if i is even. It is known as

the Wigner semicircle distribution with radius R = 2.
I Remark. Some other distributions (e.g., Gaussian) will give an asymptotically weaker
bound. Let G be a standard Gaussian random variable. The quantitative difference comes
from the fact that E[W 2l] = Cl = 1

l+1
(2l
l

)
≤ 2l while E[G2l] = (2l − 1)!! ≥ 2Ω(l log l).

Multivariate Distribution

Fix n and q. Let k = q
2 . Let H ∈ IR(k+1)×(k+1) be the Hankel matrix defined as above,

and W be a random variable sampled from the Wigner semicircle distribution. Consider
x1, . . . , xn where each xi is an independent copy of W

N for some large number N to be
determined later. Our Ŵ is later defined to be Ŵ[α, β] = E[xα+β ] ·Nq so that the effect of
the normalization by N is eventually cancelled, but large N is needed to prove the induction
that involves non-homogeneous polynomials.

We study E[p(x)2] for any n-variate (possibly non-homogeneous) polynomial p of degree
at most k. For a multivarite polynomial p =

∑
α∈Nn≤k

pαx
α, define `2 norm of p to be

‖p‖`2
:=
√∑

α p
2
α. For 0 ≤ m ≤ n and 0 ≤ l ≤ k, let σ(m, l) := infp E[p(x)2] where the

infimum is taken over polynomials p such that ‖p‖`2
= 1, deg(p) ≤ l, and p depends only on

x1, . . . , xm.

I Lemma 17. There exists N := N(n, k) such that σ(m, l) ≥ (1− m
2n )

N2l for all 0 ≤ m ≤ n and
0 ≤ l ≤ k.

Proof. We prove the lemma by induction on m and l. When m = 0 or l = 0, p becomes the
constant polynomial 1 or −1, so E[p2] = 1.

Fix m, l > 0 and a polynomial p = p(x1, . . . , xm) of degree at most l. Decompose
p =

∑l
i=0 pix

i
m where each pi does not depend on xm. The degree of pi is at most l − i.

E[p2] = E[(
l∑
i=0

pix
i
m)2] =

∑
0≤i,j≤l

E[pipj ] E[xi+jm ].

Let Σ = diag(1, 1
N , . . . ,

1
N l

) ∈ IR(l+1)×(l+1). Let Hl ∈ IR(l+1)×(l+1) be the submatrix of
H with the first l + 1 rows and columns. The rows and columns of (l + 1)× (l + 1) matrices
are still indexed by {0, . . . , l}. Define Rl ∈ IR(l+1)×(l+1) similarly from R, and rt (0 ≤ t ≤ l)
be the tth column of (Rl)T . Note Hl = (Rl)TRl =

∑l
t=0 rtr

T
t . Let H ′ = ΣHlΣ such that

H ′[i, j] = E[xi+jm ]. Finally, let P ∈ IR(l+1)×(l+1) be defined such that P [i, j] := E[pipj ]. Then
E[p2] is equal to

Tr(PH ′) = Tr(PΣHlΣ) = Tr
(
PΣ(

l∑
t=0

rtr
T
t )Σ

)

=
l∑
t=0

E[(pt
1
N t

+ pt+1
(rt)t+1

N t+1 + · · ·+ pl
(rt)l
N l

)2],

where the last step follows from the fact that (rt)j = 0 if j < t and (rt)t = 1. Consider the
polynomial

qt := pt
1
N t

+ pt+1
(rt)t+1

N t+1 + · · ·+ pl
(rt)l
N l

.
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Since pi is of degree at most l− i, qt is of degree at most l− t. Also recall that each entry of
R is bounded by 2k. By the triangle inequality,

‖qt‖`2
≥ 1
N t

(
‖pt‖`2

−
(
‖pt+1‖`2

(rt)t+1

N
+ · · ·+ ‖pl‖`2

(rt)l
N l−t

))
≥ 1
N t

(
‖pt‖`2

− k2k

N

)
,

and

‖qt‖2`2
≥ 1
N2t

(
‖pt‖2`2

− 2k2k

N

)
.

Finally,

E[p2] =
l∑
t=0

E[q2
t ]

≥
l∑
t=0

σ(m− 1, l − t) · ‖qt‖2`2

≥
l∑
t=0

σ(m− 1, l − t) · 1
N2t

(
‖pt‖2`2

− 2k2k

N

)

≥
l∑
t=0

(1− m−1
2n )

N2l−2t · 1
N2t ·

(
‖pt‖2`2

− 2k2k

N

)

=
(1− m−1

2n )
N2l ·

l∑
t=0

(
‖pt‖2`2

− 2k2k

N

)
≥

(1− m−1
2n )

N2l ·
(
1− 2K22k

N

)
.

Take N := 4nK22k so that
(
1 − m−1

2n
)
·
(
1 − 2K22k

N

)
≥ 1 − m−1

2n −
2K22k
N = 1 − m

2n . This
completes the induction and proves the lemma. J

Construction of Ŵ

We now prove Theorem 15. Given n and q, let k = q
2 , and consider random variables

x1, . . . , xn above. Let Ŵ ∈ IRNnk×N
n
k be such that for any α, β ∈ Nnk , Ŵ[α, β] = E[xα+β ] ·N2k.

By definition, Ŵ is degree-q SoS symmetric. Since each entry of Ŵ corresponds to a
monomial of degree exactly q and each xi is drawn independently from the Wigner semicircle
distribution, each entry of Ŵ is at most the q

2 th Catalan number C q
2
≤ 2q. For any unit vector

p = (pS)S∈Nn
k
∈ IRNnk , Lemma 17 shows pT Ŵp = E[p2] ·N2k ≥ 1

2 where p also represents a
degree-k homogeneous polynomial p(x1, . . . , xn) =

∑
α∈([n]

k ) pαx
α. Therefore, the minimum

eigenvalue of Ŵ is at least 1
2 .

Due to space constraints, we defer the final construction of the moment matrix to the
appendix (see Section A).
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A Constructing the Moment Matrix Realizing the Lower Bound

For even d, let A ∈ IR[n]q be a q-tensor with i.i.d. ±1 entries and let A ∈ IR[n]q/2×[n]q/2
be the

matrix flattening of A, i.e., A[I, J ] = A[I ⊕ J ] (recall that ⊕ denotes tuple concatenation).
Also let f(x) := A(x) = 〈A, x⊗q〉. Our lower bound on fmax by is proved by constructing a
moment matrix M ∈ R[n]q/2×[n]q/2 that satisfies
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Tr(M) = 1.
M � 0.
M is SoS-symmetric.
〈A,M〉 ≥ 2−O(q) · nq/4/qq/4,

where A ∈ IR[n]q/2×[n]q/2
is any matrix representation of f (SoS-symmetry of M ensures

〈A,M〉 does not depend on the choice of A).
Let A be the SoS-symmetric matrix such that for any I = (i1, . . . , iq/2) and J =

(j1, . . . , jq/2),

A[I, J ] =
{
fα(I)+α(J)

q! , if i1, . . . , iq/2, j1, . . . , jq/2 are all distinct.
0 otherwise.

We bound ‖A‖2 in two steps. Let ÂQ ∈ IRNnq/2×N
n
q/2 be the quotient matrix of A defined by

ÂQ[β, γ] := A[I, J ] ·
√
|O(β)| · |O(γ)|,

where I, J ∈ [n]q/2 are such that β = α(I), γ = α(J).

I Lemma 18. With high probability, ‖ÂQ‖2 ≤ 2O(q) · n
q/4

qq/4 .

Proof. Consider any y ∈ IRNnq/2 s.t. ‖y‖ = 1. Since

yT · ÂQ · y =
∑

β+γ≤ 1

ÂQ[β, γ] · yβ · yγ

=
∑

β+γ≤ 1

yβ · yγ
∑

α(I)+α(J)
=β+γ

A[I, J ] ·
√
|O(β)||O(γ)|
|O(β + γ)|

=
∑

I,J∈[n]q/2

A[I, J ]
∑

β+γ≤ 1
β+γ=

α(I)+α(J)

√
|O(β)||O(γ)|
|O(β + γ)| · yβ · yγ

So yT · ÂQ · y is a sum of independent random variables∑
I,J∈[n]q

A[I, J ] · cI,J

where each A[I, J ] is independently sampled from the Rademacher distribution and

cI,J :=
∑

β+γ≤ 1
β+γ=

α(I)+α(J)

√
|O(β)||O(γ)|
|O(β + γ)| · yβ · yγ .

Fix any I, J ∈ [n]q/2 and let α := α(I) + α(J). By Cauchy-Schwarz,

c2I,J ≤
( ∑
β+γ=α

|O(β)||O(γ)|
|O(α)|2

)
·
( ∑
β+γ=α

y2
β ·y2

γ

)
≤ 2O(q)

|O(α)| ·
∑

β+γ=α
y2
β ·y2

γ =: c2α ,

(A.1)
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since there are at most 2O(q) choices of β and γ with β + γ = α, and |O(β)| · |O(γ)| ≤ |O(α)|.
Therefore, yT · ÂQ · y is the sum of independent random variables that are centred and
always lie in the interval [−1,+1]. Furthermore, by Eq. (A.1), the total variance is∑
I,J∈[n]q/2

c2I,J ≤
∑
α∈Nnq

c2α ·|O(α)| ≤ 2O(q) ·
∑

β,γ∈Nn
q/2

y2
β ·y2

γ = 2O(q) ·
( ∑
β∈Nn

q/2

y2
β

)2 = 2O(q)

The claim then follows from combining standard concentration bounds with a union bound
over a sufficiently fine net of the unit sphere in |Nnq/2| ≤ 2O(q) · n

q/2

qq/2 dimensions. J

I Lemma 19. For any SoS-symmetric A ∈ IR[n]q/2×[n]q/2
, ‖A‖2 ≤

∥∥∥ÂQ
∥∥∥

2
.

Proof. For any u, v ∈ IR[n]q/2
s.t. ‖u‖ = ‖v‖ = 1, we have

uTAv

=
∑

I,J∈[n]q/2

A[I, J ]uIvJ

=
∑

I,J∈[n]q/2

ÂQ[α(I), α(J)]√
|O(I)| |O(J)|

· uIvJ

=
∑

α,β∈Nn
q/2

A[α, β]√
|O(α)| |O(β)|

〈u|O(α)
, 1〉〈v|O(β)

, 1〉

= aT ÂQ b where aα :=
〈u|O(α)

, 1〉√
|O(α)|

, bα :=
〈v|O(α)

, 1〉√
|O(α)|

≤
∥∥∥ÂQ

∥∥∥
2
‖a‖ · ‖b‖

=
∥∥∥ÂQ

∥∥∥
2

√√√√√ ∑
α∈Nn

q/2

〈u|O(α)
, 1〉2

|O(α)|

√√√√√ ∑
α∈Nn

q/2

〈v|O(α)
, 1〉2

|O(α)|

≤
∥∥∥ÂQ

∥∥∥
2

√ ∑
α∈Nn

q/2

‖u|O(α)
‖2
√ ∑
α∈Nn

q/2

‖u|O(α)
‖2 (by Cauchy-Schwarz)

≤
∥∥∥ÂQ

∥∥∥
2
‖u‖ · ‖v‖ =

∥∥∥ÂQ
∥∥∥

2
.

J

The above two lemmas imply that ‖A‖2 ≤ ‖ÂQ‖2 ≤ 2O(q) · n
q/4

qq/4 . Our moment matrix M
is defined by

M := 1
c1

(
1
c2
· q

3q/4

n3q/4 A + W
nq/2

)
,

where W is the direct extension of Ŵ constructed in Theorem 15 – W[I, J ] := Ŵ[α(I), α(J)]
for all I, J ∈ [n]q/2, and c1, c2 = 2Θ(q) that will be determined later.

We first consider the trace of M . The trace of A is 0 by design, and the trace of W is
nq/2 · 2O(q). Therefore, the trace of M can be made 1 by setting c1 appropriately. Since both
A and W are SoS-symmetric, so is M. Since E[W, A] = 0 and for each I, J ∈ [n]q/2 with
i1, . . . , iq/2, j1, . . . , jq/2 all distinct we have E[A[I, J ]A[I, J ]] = 1

q! , with high probability

〈A,M〉 = 1
c1
· 〈A,

(
1
c2
· q

3q/4

n3q/4 A + W
nq/2

)
〉 ≥ 2O(−q) · q

3q/4

n3q/4 ·
nq

qq
= 2O(−q) · n

q/4

qq/4
.
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It finally remains to show that M is positive semidefinite. Take an arbitrary vector v ∈ R[n]q/2 ,
and let

p =
∑

α∈Nn
q/2

xαpα =
∑

α∈Nn
q/2

xα ·
( ∑
I∈[n]q/2:α(I)=α

vI

)

be the associated polynomial. If p = 0, SoS-symmetry of M ensures vMvT = 0. Normalize v
so that ‖p‖`2

= 1. First, consider another vector vm ∈ [n]q/2 such that

(vm)I =
{
pα(I)

(q/2)! , if i1, . . . , iq/2 are all distinct.
0 otherwise.

Then

‖vm‖22 ≤
∑

α∈Nn
q/2

p2
α/(q/2)! = 1

(q/2)! ,

so ‖vm‖2 ≤ 2O(q)

qq/4 . Since A is SoS-symmetric, has the minimum eigenvalue at least −2O(q) · n
q/4

qq/4 ,
and has nonzero entries only on the rows and columns (i1, . . . , iq/2) with all different entries,

vTAv = (vm)TA(vm) ≥ 2−O(q) · n
q/4

q3q/4 .

We finally compute vTWv. Let vw ∈ [n]q/2 be the vector where for each α ∈ Nnq/2,
we choose one I ∈ [n]q/2 arbitrarily and set (vw)I = pα (all other (vw)I ’s are 0). By
SoS-symmetry of W,

vTWv = (vw)TW(vw) = pT Ŵp ≥ 1
2 ,

by Theorem 15. Therefore,

vT ·M·v = 1
c1
·vT ·

(
1
c2
· q

3q/4

n3q/4 A+ W
nq/2

)
·v ≥ 1

c1
·
(

1
c2
·2−O(q)· n

q/4

q3q/4 ·
q3q/4

n3q/4 +1
2 ·

1
nq/2

)
≥ 0,

by taking c2 = 2Θ(q). So M is positive semidefinite, and this finishes the proof of the lower
bound in Theorem 1.
Thus we obtain,

I Theorem 20 (Lower bound in Theorem 1). For even q ≤ n, let A ∈ IR[n]q be a q-tensor
with i.i.d. ±1 entries. Then with probability 1− nΩ(1),

SoSq(A(x))
Amax

≥
(

Ω(n)
q

)q/4−1/2
.

As a side note, observe that by applying Lemma 19 and the proof of Lemma 18 to the
SoS-symmetric matrix representation of f(x) = A(x) (instead of A), we obtain a stronger
SoS upper bound (by polylog factors) for the special case of d = q:

I Theorem 21 (Upper bound in Theorem 1). For even q ≤ n, let A ∈ IR[n]q be a q-tensor
with i.i.d. ±1 entries. Then with probability 1− nΩ(1),

SoSq(A(x))
Amax

≤
(
O(n)
q

)q/4−1/2
.
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