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Abstract
We consider the stochastic unsplittable flow problem: given a graph with edge-capacities, k
source-sink pairs with each pair {sj , tj} having a size Sj and value vj , the goal is to route the
pairs unsplittably while respecting edge capacities to maximize the total value of the routed
pairs. However, the size Sj is a random variable and is revealed only after we decide to route
pair j. Which pairs should we route, along which paths, and in what order so as to maximize
the expected value?

We present results for several cases of the problem under the no-bottleneck assumption. We
show a logarithmic approximation algorithm for the single-sink problem on general graphs, con-
siderably improving on the prior results of Chawla and Roughgarden which worked for planar
graphs. We present an approximation to the stochastic unsplittable flow problem on directed
acyclic graphs, within less than a logarithmic factor of the best known approximation in the non-
stochastic setting. We present a non-adaptive strategy on trees that is within a constant factor
of the best adaptive strategy, asymptotically matching the best results for the non-stochastic
unsplittable flow problem on trees. Finally, we give results for the stochastic unsplittable flow
problem on general graphs.

Our techniques include using edge-confluent flows for the single-sink problem in order to
control the interaction between flow-paths, and a reduction from general scheduling policies to
“safe” ones (i.e., those guaranteeing no capacity violations), which may be of broader interest.
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1 Introduction

We consider the following stochastic problem of routing uncertain demands in a network.
We are given a graph G = (V,E) with edge capacities ce and a set J of k source-sink pairs
{sj , tj} (called jobs). We want to route some flow from each source to its corresponding sink,
but the amount of flow to be sent for job j (called its size) is not known a priori. We only
know that its size is a random variable Sj , with a known distribution. (We assume that the
sizes of jobs are independent of each other.) Each job has a value vj . We will operate under
the prevalent no-bottleneck assumption (NBA). In our setting, this means that the maximum
size in the support of any job’s distribution is at most the minimum capacity of any edge in
the graph.
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7:2 Stochastic Unsplittable Flows

We want a routing strategy that decides on jobs to route in the network. This involves us
repeatedly choosing an uninstantiated job j and a path Pj for it, and routing this job along
the path. Once we do this, the size Sj is instantiated, drawn according to the given probability
distribution. If Sj is at most the residual capacity (which initially equals capacity) on each
edge of path Pj , the routing is considered successful, we get its value vj and the residual
capacity of all edges in Pj reduces by Sj . Else if there is some edge e ∈ Pj with residual
capacity less than Sj , the routing is unsuccessful and we do not get its value. Moreover, each
such “violated” edge is henceforth considered “forbidden” and cannot be used on subsequent
paths. When a job j is routed unsuccessfully on a path, it still uses up capacity Sj on all
edges along that path that do not become forbidden. The goal is to find a strategy that
maximizes the expected cumulative value of jobs it routes successfully. This problem is the
stochastic version of the well-known unsplittable flow problem (UFP), and as such, we call it
the stochastic unsplittable flow problem (sUFP).

A strategy for routing jobs is allowed to be adaptive, i.e., it can use results of its previous
decisions to make its current decision. In contrast non-adaptive policies provide a sequence
of jobs to route upfront. Storing as well as finding adaptive policies can potentially be
exponential in the size of the input and so finding non-adaptive policies of expected value
close to the optimal expected value of an adaptive strategy is desirable. The adaptivity gap is
the ratio of the value of the optimal adaptive strategy to the optimal non-adaptive strategy.

The stochastic knapsack problem was first studied by Dean, Goemans and Vondrak [15]
who showed that it has a constant adaptivity gap. The stochastic knapsack is the special
case of the sUFP on a graph with a single edge. Subsequent work of Dean et al. [14] also
considered several versions of the stochastic packing problem, which is a generalization of
the sUFP. Over a universe of size d, they showed an O(

√
d) adaptivity gap for stochastic

set-packing, and O(d) for general packing problems. Bansal et al. [2] gave an O(k)-adaptivity
gap for stochastic set-packing with sets of size at most k.

The sUFP was first studied by Chawla and Roughgarden [8]. They studied the single-sink
stochastic routing problem (SSSR), where all the targets ti are the same vertex t, and assumed
the stronger α-NBA, i.e., the size of each job is supported on [0, αcmin] for some α < 1. For
planar graphs, they presented a logarithmic approximation algorithm which guaranteed no
capacity violations. This work left open several interesting directions: can we work under
the NBA instead of the stronger α-NBA? Can we go beyond planar graphs to handle general
graphs? How about going beyond single-sink instances, and giving results for more general
unsplittable flow instances?

In this paper, we initiate a broader study of the sUFP, and answer these questions in the
positive. As is common in the existing research on their deterministic versions, we assume
that the underlying graph G is undirected for purposes of the sUFP on trees and general
graphs, and that G is a digraph in our treatment of the SSSR and the sUFP on DAGs.

1.1 Our Results
Single-Sink Stochastic Routing Problem (SSSR). Our main result is for the SSSR; as
defined above, here all the sinks are co-located. For this result, define the weight of job j as
wj := vj/µj , where vj is the value and µj = E[Sj ] is the expected size of the job.

I Theorem 1.1 (SSSR). The single-sink stochastic routing problem (under the no-bottleneck
assumption) has a poly-time O(min(log k, logW ))-approximation algorithm. Here k is the
number of jobs in the instance, and W := maxj wj

minj wj
is the maximum ratio between the weights

of the jobs.
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Chawla and Roughgarden [8] showed a safe O( logW
1−α )-approximation for planar SSSR

instances under the α-NBA; here, safe means the policy is guaranteed to have no edge-capacity
violations. No results prior to ours were known for the SSSR on general graphs. In fact, we
can also extend Theorem 1.1 to show that under the α-NBA, we get a safe O( min(log k,logW )

1−α )
approximation for the SSSR on general graphs. Recall that for the non-stochastic version of
this problem, Dinitz et al. [16] gave a constant-factor approximation algorithm. To obtain
the aforementioned logarithmic approximation, we will show a simple general reduction
from edge-confluence to node-confluence that was proposed as an open direction by Chen et
al. [13].

Stochastic Unsplittable Flow Problem (sUFP) on Directed Acyclic Graphs. Chekuri et
al. [10] gave an O(

√
n) approximation for the UFP. We obtain an analogous result in the

stochastic setting, giving away further a factor of O(
√

log k). Recall that k is the number of
jobs.

I Theorem 1.2 (sUFP on DAGs). The stochastic unsplittable flow problem (under the no-
bottleneck assumption) has a poly-time O(

√
n log k)-approximation algorithm on directed

acyclic graphs.

Stochastic Unsplittable Flow Problem (sUFP) on Trees. Our next result is for the sUFP
on trees. Here, the sj-tj paths are unique, which means the routing strategy merely has to
decide the sequence of jobs to route.

I Theorem 1.3 (sUFP on Trees). The stochastic unsplittable flow problem on trees (under
the no-bottleneck assumption) has a non-adaptive poly-time O(1)-approximation algorithm.

To the best of our knowledge, this is the first result for the sUFP on trees. Our result
follows as a corollary to a more general result, where each job corresponds to a “spider”;
we present this result in the full version of this paper. The non-stochastic unsplittable flow
problem on trees admits a constant factor approximation under the NBA, by a result of
Chekuri et al. [11], and hence our result extends this to the stochastic realm.

Stochastic Unsplittable Flow Problem (sUFP) on General Graphs. For UFP on general
graphs, Chakrabarti et al. [7] gave an O(FG logn) = O(∆α−1 log2 n) approximation for
the UFP. Here FG denotes the flow number, α denotes the expansion and ∆ denotes the
maximum degree of the graph. (These quantities will be formally defined in Section 4.) Our
next result shows how to match these approximation guarantees in the stochastic setting.
The proof is contained in the full version of the paper.

I Theorem 1.4 (sUFP). The stochastic unsplittable flow problem (under the no-bottleneck
assumption) has a non-adaptive poly-time O(d)-approximation algorithm if the LP relaxation
sends flows along paths of length at most d. This can be extended to an O(FG logn) =
O(∆α−1 log2 n)-approximation algorithm on general graphs.

Safe Routing Strategies. Finally, we give an approach to convert a general strategy (under
the NBA) to a safe one (assuming the α-NBA). For the sUFP on general graphs, directed
acyclic graphs and trees, we can convert policies under the NBA to safe policies under the
α-NBA by sacrificing a factor of O( 1

1−α ) for α ∈ (0, 1
2 ]. For stochastic knapsack and the

SSSR such a transformation can be performed for all α ∈ (0, 1).

APPROX/RANDOM’17
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1.1.1 Our Techniques
A primary question when dealing with stochastic problems is this: how can we argue about
the optimal strategy, which is given by an (exponential-sized) decision-tree? One appealing
approach – which we employ here – is to write an “average” LP relaxation which tries to
send the average amount of flow for each job. A feasible solution to this linear program is to
set the variables for job j based on the probability that the optimal strategy routes j, and
hence the LP value gives us an upper bound on the optimal value. However, for stochastic
problems, it is not enough to round the solution to integers: indeed, an integer solution to
this LP does not directly give us a good strategy (the constraints suffice only when each job
behaves like its expectation). Hence we need to “interpret” this solution to get a feasible
strategy.

For example, in the SSSR, suppose we are given unsplittable flows that send µj = E[Sj ]
amount of flow from sj to the sink t, for every job j. We may hope to say that each job can
be routed with constant probability. However, the flow-paths can interfere in complicated
ways, and it is difficult to lower bound the probability that there is “enough room” for some
job deep in the process. Our new idea is to alter the flow paths to make them confluent –
i.e., when two flows use a common edge, they flow together from that point on to the sink.
The logarithmic losses come from this step. The confluent flows now behave in a tree-like
fashion, and the bottleneck edges are now those incident to the root. We can then argue
that these edges are not over-congested with reasonable probability.

For the sUFP in directed acyclic graphs we crucially use our confluence techniques along
with idea of v-separation inspired by Chekuri et al for rounding “small” jobs on long flow
paths. The other cases are handled using the rounding techniques mentioned above.

To translate arbitrary policies on general graphs to safe policies on unit-capacity graphs,
we show how to transform the given set of jobs into new jobs with the same expected size
but truncated job sizes, on which we can run the general non-safe strategy. The saved space
can then be used to ensure that our real jobs never run out of space.

The sUFP on paths and trees is a natural extension of the well-studied stochastic knapsack
problem, and can be viewed as a set of spatially-correlated knapsack problems. Here, we
show that for jobs with “large” expected size, we can get good value (comparable to the
LP value) by routing an essentially “disjoint” set of jobs. Jobs with small expected size are
routed using a scaled-down version of their LP variables. We can then go over the jobs in a
certain order, and show that each job, if routed, has a constant probability of having enough
capacity to be able to successfully route. A similar plan works for Theorem 1.4 for the sUFP
on general graphs: the union bound is over the d edges, and we lose an O(d) term. The
translation to the flow number and expansion is standard. The proofs for our results for the
sUFP on paths and trees and on general graphs can be found in the full version of this paper.

1.2 Related Work
After the pioneering work of [15], improved algorithms for the stochastic knapsack problem
were given by Bhalgat et al. [4, 3], by combining bi-criteria adaptive strategies (another
bi-criteria algorithm was given by Li and Yuan [21]), and an LP-rounding approach; we
do not know how to implement such adaptive strategies in our case. Work on stochastic
knapsack was extended to multi-armed bandits (see, e.g., [17, 18]), and correlated rewards and
sizes [19, 21, 22]; all these write more sophisticated LPs to capture correlations. Extending
our routing/packing problems to these correlated settings seems non-trivial, and remains
an exciting direction for future work. The only prior work on stochastic routing is that of
Chawla and Roughgarden [8] discussed above.
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Our work on sUFP on trees is directly inspired by work by Chakrabarti et al. [6, 7] and
Chekuri et al. [11] on resource-allocation problems and unsplittable flow on paths and trees.
These papers get better approximations by combining LP rounding approaches with dynamic
programming (DP) for large item sizes, but extending the DP approach to the stochastic
case seems difficult. Some variants of the sUFP on Trees (e.g., equal edge-capacities, packing
subtrees) are given in the Master’s thesis of the second-named author [20]. Algorithms
removing the NBA also rely heavily on dynamic programming (see [5, 1] and references),
though the LP-based approaches of Chekuri et al. [9] offer hope as well. The unsplittable
flow problem, both on general graphs and on trees/paths has been widely studied; see, e.g.,
the references in [9]. Our results for the sUFP on directed acyclic graphs are based on the
work by Chekuri et al [10].

For the single-sink routing problem, we are unable to directly extend the constant-factor
approximation of Dinitz et al. [16] to the stochastic case. Instead we use ideas based on
confluent flows, which were first developed by Chen et al. [13, 12]. In very recent work,
Shepherd, Vetta, and Wilfong [24] showed that for general capacitated networks, under the
NBA, there is a O(log6 n)-approximation algorithm for the demand maximization problem.
Shepherd and Vetta [23] give hardness results for such problems.

2 Additional Notation

Here we recall some essential notation introduced in §1 and introduce some new notation.
An instance of sUFP consists of a set J containing k jobs, each having a source-sink pair
{sj , tj}, a value vj , and random size Sj . We assume that the distribution of the r.v. Sj is
known to us; most of our algorithms only require knowing the mean µj . Each edge e of the
given graph G = (V,E) has a capacity ce. Let cmin := mine ce be the minimum capacity
of any edge, and Dmax := min{d | Pr[Sj > d] = 0 ∀j ∈ J}. The no-bottleneck assumption
(NBA) requires that Dmax ≤ cmin. By scaling we will always imagine that cmin = 1, hence
under the NBA, we can assume that maxe ce ≤ k, where k is the total number of jobs. If the
sizes are deterministic, we call the problem the unsplittable flow problem (UFP); the goal
is to route the maximum value set of jobs while respecting edge-capacities. If all sizes are
deterministic and equal, we get the capacitated EDP (edge-disjoint paths) problem. (In this
case we assume that all the jobs are unit-sized, and all the capacities are integers.)

2.1 An LP Relaxation
Given edge capacities ce ∈ R≥0, and a set J of jobs with demands µj , we upper-bound the
expected value of the optimal adaptive strategy using the following multicommodity-flow
linear program LPUFP (J, c):

φ(J, c) := max
∑
j(vj/µj)xj (LPUFP )

xj ≤ µj ∀j ∈ J
xj =

∑
P∈P(sj ,tj) fP ∀j ∈ J∑

P :e∈P fP ≤ ce ∀e ∈ E
fP ≥ 0 ∀P

Here P(u, v) is the set of all paths from vertex u to v. The same linear program is valid for
both directed and undirected instances, with the definition of P varying between the two.
The following theorem is analogous to a result of [15] for stochastic knapsack, and has been
used previously [8, 7, 14].

APPROX/RANDOM’17
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I Theorem 2.1. The value of the optimal adaptive strategy for a stochastic routing problem
with edge capacity vector c (under the NBA, where Dmax ≤ cmin = 1) and a set J of jobs
with expected sizes µµµ is at most φ(J, c + 1). Using NBA and scaling, we get φ(J, c + 1) ≤
φ(J, 2c) ≤ 2φ(J, c).

3 Single-Sink Stochastic Routing

We now give a logarithmic approximation for the single-sink stochastic routing (SSSR)
problem (under the NBA) on general directed graphs. This improves on the logarithmic
guarantee given by Chawla and Roughgarden for planar instances. To understand why this
problem is not just the single-sink UFP problem, suppose we are given a routing sending the
µj flow from each source unsplittably to the sink. To solve the stochastic problem, we have
to account for the randomness in the sizes – if we route P1 and it takes on size greater than
its expectation µj , what should we do next?

Our main insight is the use of edge-confluent flows, which may be somewhat unexpected
but is natural in hindsight. A flow in a single-sink network is confluent if any two flows which
“meet” are merged from there onwards. (One can have edge-confluent or node-confluent flows;
the formal definitions appear below.) To get a high-level idea, observe that if we solve the
relaxation (LPUFP ), and the flow happens to be edge-confluent, the interference between
flow-paths can be controlled by controlling the interference on the edges incoming into the
sink t.

Our approach is the following: we convert the non-confluent solution to (LPUFP ) to an
edge-confluent flow. This is not immediate: existing results deal with node-confluence and
are applicable only for unit-capacity networks, whereas our SSSR instances have general
capacities. Next, we reduce this edge-confluent flow to several instances of the stochastic
knapsack problem, one corresponding to every edge incoming to the sink in the unit-capacity
network. Our algorithm is adaptive, but only “mildly” so: the adaptivity arises only from the
preemption of jobs in each stochastic knapsack instance in order to keep the used-capacity
within control. We use the NBA during the conversion to edge-confluent flows. Under the
stronger α-NBA, the algorithm is safe.

3.1 Confluent Flows
Given a directed graph G = (V,E) with a special sink vertex t, and a set of sources
S = {s1, s2, . . . , sk} ⊆ V , a node-confluent flow is a flow from the sources to the sink such
that for each non-sink vertex v ∈ V , all the flow exiting v uses a single arc leaving v. An
edge-confluent flow is one where for each arc e ∈ E, all flow using this edge must subsequently
share the same arcs in their journey to the sink. Equivalently, for an edge-confluent flow
f , there exists a mapping φv : E → E that maps for each vertex v the in-arcs Iv of v to its
out-arcs Ov, such that for each out-arc e = (v, w) ∈ Ov, fe =

∑
e′∈Iv :φv(e′)=e fe′ .

For our edge-confluence results, we will operate in a setting where all edges have unit capa-
city. In this context, we define the the congestion of a flow f as cong(f) = max{1,maxe∈E fe}.
We denote the total amount of flow reaching sink t by |f |. The results of Chen et al. [12] for
node-confluence can be transferred to edge-confluence to get the following result.

I Theorem 3.1. Consider a directed single-sink flow network with unit edge-capacities under
the NBA, and a flow f sending di units of flow from source si to the sink, respecting edge-
capacities. (I.e., cong(f) ≤ 1.) Then the following exist and can be found in polynomial
time.
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1. An edge-confluent flow f ′ that for each i ∈ [k] sends di flow from si to t (i.e., |f ′| = |f |)
so that

cong(f ′) ≤ 1 + ln k and |f ′| = |f | .

2. A subset R ⊆ S and an edge-confluent flow f ′′ which for each i ∈ R sends di flow from si
to t such that

∑
i∈R di ≥

1
3
∑
i∈[k] di, and so that

cong(f ′′) = 1 and |f ′′| ≥ |f |3 .

Hence, the first result presents a way to route all the jobs while incurring logarithmic
congestion, and the second result presents a way to route a large subset of the jobs and incur
unit congestion.

Proof Sketch. The idea is to construct the line graph H of the given digraph G (plus one
extra node) so that node-confluent flows in the given network correspond to edge-confluent
flows in the constructed network. (See Figure 1.) Now given a fractional flow in G, we can
map this flow to H, use a result of Chen et al. on transforming general flows to node-confluent
flows in H, and transform the resulting node-confluent flow back to an edge-confluent flow in
G. The formal proof appears in Appendix A.2. J

I Corollary 3.2. Consider a directed single-sink flow network with unit edge-capacities under
the NBA, and a flow f sending di units of flow from source si to the sink, respecting edge-
capacities. (I.e., cong(f) ≤ 1.) Moreover, each source si has weight wi, and let w denote the
vector of weights.

Then we can find, in polynomial time, an edge-confluent flow f̂ sending d̂i units of flow
from si to the sink respecting edge-capacities (i.e., cong(f̂) = 1), such that each d̂i ∈ [0, di],

〈w, d̂〉 ≥ 〈w,d〉 · 1
min{1 + ln k, 6(1 + log2 W )} ,

where W := maxj wj

minj wj
.

Proof. We want to find a flow f̂ for which 〈w, d̂〉 is within a logarithmic factor of 〈w,d〉 =∑k
i=1 widi. Apply Theorem 3.1(1) to the flow f to obtain edge-confluent flow f ′. Scaling the

flow f ′ down by a factor of 1 + ln k gives us a flow f̂ with 〈w, d̂〉 =
∑
i∈[k] wi · d̂i ≥

〈w,d〉
1+ln k .

Next, bucket the weights wi into dyadic intervals. By averaging, there exists some interval
I = (2j , 2j+1] such that jobs with weights in this interval have

∑
i:wi∈I wi · di ≥

〈w,d〉
1+log2 W

.
Use Theorem 3.1(2) to get R ⊆ {i : wi ∈ I} and flow f ′′ that sends flow |f ′′| =

∑
i∈R di ≥

1
3
∑
i:wi∈I di. Since the weights of jobs in I are within a factor of 2 of each other, we get that∑

i∈R wi · di ≥
1
6
∑
i:wi∈I wi · di ≥

〈w,d〉
6(1+log2 W ) . The better of these two edge-confluent flows

gives us the claim. J

3.2 Approximate Single-Sink Stochastic Routing using Confluent Flows
Consider an instance of the SSSR on the directed graph G = (V,E) under the no-bottleneck
assumption (NBA) scaled so that cmin = 1. Assume that each source si is a unique vertex in
G with a single out-edge of capacity 1. This assumption is without loss of generality, since
we can always create a new vertex for each source and attach it using a unit-capacity edge
to the old location. This does not change feasibility because of the NBA.

APPROX/RANDOM’17



7:8 Stochastic Unsplittable Flows

For each edge e, define Ke = dbcec/2e. Note that Ke > ce/3 for all e. Given such a
digraph G = (V,E), define a (multi)graph G′ = (V,E′) where for each edge e = (u, v) ∈ E(G),
we have Ke parallel unit-capacity edges (u, v) in E′.

The following corollary states a way to obtain a confluent solution to LPUFP for G′
within a logarithmic factor of the optimal solution to LPUFP for G. Define the weight wj
for source Sj as vj/µj . Before we state it, recall the definition of LPUFP for G from §2.1
and note that an optimal solution (x, f) to it is a flow f in the graph G such that the total
weight of this flow 〈w,x〉 =

∑
j∈J wjxj = φ(J, c).

I Corollary 3.3. Given a solution (x, f) to LPUFP for the SSSR instance on the graph G,
there exists an edge-confluent solution (x′, f ′) to LPUFP on the unit-capacity graph G′, such
that

〈w,x′〉 ≥ 〈w,x〉 · Ω
(

1
min{log k, logW}

)
,

where the weight of job sj is wj = vj/µj , and W := maxj wj

minj wj
. Moreover, all the x′j ≤ µj units

of flow from sj to the sink is unsplittably routed. Finally, this flow can be found in time
poly(n, k).

Proof. The solution (x, f) on G can be ported to a solution (x̃, f̃) on G′ via scaling down
by at most a factor of 3, since the parallel edges replacing each edge e have total capacity
Ke > ce/3. Now apply Corollary 3.2 with dj = x̃j , and wj = (vj/µj) to get an edge-confluent
flow (x′, f ′) with the claimed value.

Moreover, since each source has a single out-edge, all flow from sj to the sink in G′ must
use this edge. Now edge-confluence ensures that this flow must be routed unsplittably to the
sink.

To bound the run-time, observe that the NBA implies that each edge in G need have
capacity at most k. Hence G′ has at most n2k edges. Finally, constructing the graph G′ and
converting the flow to an unsplittable one can be implemented in polynomial time. J

As noted previously, Corollary 3.3 above can be used to obtain an edge-confluent solution
(x′, f ′) which is within a logarithmic factor of φ(J, c) where f is a flow in the graph G′. Let
∂−(t) denote the set of edges going into the sink in the graph G′. For each such unit-capacity
edge e = {v, t} ∈ ∂−(t), look at the flow over this edge according to (x′, f ′). Define Ee as
the edges this flow uses on its way from the sources to the sink. By the edge-confluence, if
e 6= e′ are two edges into the sink, then Ee ∩ Ee′ = ∅. Moreover, since the flow from each
source is routed unsplittably, each job j with x′j 6= 0 has all its flow along edges belonging to
a unique Ee. Let Je be the jobs which are routed along e ∈ ∂−(t).

We will now present a strategy for the original SSSR instance on graph G which has
expected value at least a constant fraction of 〈w,x′〉. This, along with Theorem 2.1 and
Corollary 3.3 will imply that its expected value is within a logarithmic factor of the optimal
adaptive strategy for the SSSR instance and prove Theorem 1.1. Note that since the sets
(Je)e∈∂−(t) form a partition of {j ∈ J | x′j > 0} we have that

〈w,x′〉 =
∑

j∈J:x′
j
>0

wjx
′
j =

∑
e∈∂−(t)

∑
j∈Je

wjx
′
j

Consider some edge e in ∂−(t). All flow from sources in Je flows through e, and hence it
is the most congested edge among the ones used by sources in Je. Indeed, (x′, f ′) restricted
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to these sources gives us a solution to (LPUFP ) for a single edge – i.e., for the stochastic
knapsack instance IK with a unit-capacity knapsack, and a set of jobs Je.

φK(Je, 1) = max
{∑
j∈Je

wjxj |
∑
j∈Je

xj ≤ 1, xj ≤ µj ∀j ∈ Je
}
.

Having identified these stochastic knapsack instances, let us state the O(1) approximation
for the stochastic knapsack provided by Dean, Goemans and Vondrak [15] which we will use
to complete the proof.

I Theorem 3.4 (Stochastic Knapsack [15]). Given an instance of stochastic knapsack with
a set of jobs J ′ there is a non-adaptive strategy ADGV which gets expected value at least

7
16 φ(J ′, 1) ≥ 7

32 OPT .

We now run the non-adaptive algorithm in Theorem 3.4 which attains a value Ω(1) ·
φK(Je, 1). For each source si ∈ Je routed by this algorithm, we route it along the path from
si to t taken by the confluent flow f ′. Once the cumulative size of the routed jobs exceeds 1,
we stop routing jobs from Je. The NBA implies that the jobs in Je use up a capacity of at
most 2.

Note that interference can occur only between instances corresponding to multiple edges
e′ ∈ G′ which correspond to the same edge e in the original graph G. However, there are
only Ke = dbcec/2e such instances and each instance consumes at most 2 units of capacity,
the total capacity used is at most 2Ke ≤ bcec+ 1, and the set of jobs routable in G′ are also
routable in G. To see this, note that there is 2 units of space for all but the last of the Ke

instances, and for the last instance we still have 1 unit of space which is enough to get full
value from each job routed successfully by the stochastic knapsack algorithm in Theorem 3.4.
Note that the per-instance preemption of jobs is the reason why our strategy is adaptive,
and the availability of less than 2 units of space on the last of the Ke instances is the reason
that it is unsafe. This completes the proof of Theorem 1.1.

To obtain safe policies for the SSSR under the stronger assumption of the α-NBA, we first
use the approach of Theorem 5.2 to get a safe O( 1

1−α )-approximation for stochastic knapsack
under the α-NBA. Now using this for each of the stochastic knapsack instances above gives
us a safe approximation for SSSR under the α-NBA. Note that under the stronger α-NBA
we can afford to choose Ke = bcec since we use the safe version of the underlying stochastic
knapsack algorithm.

To conclude the section on the SSSR, we note that if we could improve the logarithmic
factor in Corollary 3.2 to a constant, then we could use our techniques to get a O(1)-
approximation for the SSSR problem. This would be implied by a stronger conjecture from
Chen et al. [12] that says that given any flow in a network with node congestion 1, one
can color the sources using a constant number of colors, such that each chromatic class is
node-confluently routable with congestion 1.

4 sUFP on Directed Acyclic Graphs

In this section we give an approximation algorithm for the sUFP on DAGs that extends the
work of Chekuri et al. [10, Corollary 1.2] which showed an O(

√
n) approximation for the

UFP.
The first idea, as with many UFP results, is to divide the jobs into small jobs and large

jobs. Let us define δ = 1/8. Jobs which have an expected size larger than δ are considered
large jobs and the rest are small. Let Js be the set of small jobs and J` be the set of
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large jobs. Observe that φ(Js, c) + φ(J`, c) ≥ φ(J, c). Now if we could give, for instances
consisting exclusively of small and large jobs, non-adaptive algorithms that obtain at least
an 1/γs-fraction and 1/γ`-fraction of the respective LP values, then choosing the one with
higher guaranteed expected value would give us a non-adaptive strategy obtaining expected
value at least an 1/(γs + γ`)-fraction of the optimal adaptive strategy. (See Fact 1.1.)

For large jobs, we will use the existing result by Chekuri et al. [10, Theorem 1.1]. For
small jobs, we use the idea of v-separation from this work [10, Section 3.2] together with our
confluence-based techniques to obtain a O(

√
n log k) approximation for the sUFP on DAGs

(Theorem 1.2). Recall that n is the number of vertices and k is the number of jobs.

4.1 Routing Large Jobs

Let I = (G, c, J) be an instance having optimal payoff OPT where all jobs j satisfy µj ≥ δ.
For these, define the following instance of the UFP on DAGs: let the edge-capacities become
ĉe := bcec, and we want to find for each job j a unit-sized sj-tj path Pj subject to these
capacities to maximize the value of the routed paths. The natural LP relaxation for this
problem is:

φ̂(J, c) := max
{∑

j

vjxj |
∑
j:e∈Pj

xj ≤ ĉe ∀e ∈ E, x ∈ [0, 1]k
}
. (LPEDP )

The theorem in the work by Chekuri et al. [10, Theorem 1.1] implies that we can find,
in polynomial-time, a subset S ⊆ J which is feasible for (LPEDP ), such that

∑
j∈S vj ≥

1
O(
√
n) · φ̂(J, ĉ). For the large jobs, assume that all jobs are unit-sized, find the set S, and try

to route each of the jobs in S. The NBA implies that the sizes of the jobs are at most 1, and
even unit-sized jobs would not violate the edge-capacities. Hence with probability 1 we get
a feasible solution to the stochastic UFP on DAGs with value 1

O(
√
n) φ̂(J, ĉ) ≥ δ

O(
√
n) OPT .

Having shown the approximation result for large jobs, observe that the arguments used above
are quite general, and let us record the following theorem for future use.

I Theorem 4.1 (Large Jobs Theorem). Consider an instance I = (G, c, J`) of the sUFP
(under the NBA). Suppose all jobs are δ-large – i.e., they have expected sizes at least
δ = δcmin. If the integrality gap of the capacitated EDP on the graph G is at most γ, then
there is a safe1 non-adaptive strategy A` for sUFP that, with probability 1, guarantees that
value(A`) ≥ 1

γ · φ̂(J`, ĉ) ≥ δ
4γ ·OPT`.

4.2 Routing Small Jobs

Let us now examine the case where all jobs are small. The quantity φ(J, c) represents the
weighted flow from the set of sources to the set of sinks. Recall that this quantity is at least
half of OPT by Theorem 2.1. We consider all flow paths and partition them into short paths
and long paths. For our purposes, paths of length at most

√
n(1 + ln k) will be called short

paths and the rest will be called long paths. Either the amount of weighted flow along short
paths is at least φ(J, c)/2 or that along long paths is at least φ(J, c)/2. We will handle both
these cases separately. We will use randomized rounding in both cases.

1 Note that the strategy described above guarantees that no edge-capacity is violated and is hence safe.
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4.2.1 Randomized Rounding for Short Flow Paths
Let x be the part of the solution to LPUFP which corresponds to the flow along the short
paths. If wi denotes vi/µi then we know that

∑
j∈J wjxj is at least φ(J, c)/2. We decide to

route job j with probability αxj/µj and job j, if so chosen, is routed on path P ∈ P(sj , tj)
with probability fP /xj . With the remaining probability 1− αxj/µj we choose not to route
job j. Let YPj be the indicator r.v. for whether path P was picked for job j.

We define a random indicator variable ZPj which indicates if the algorithm A decides to
route job j along path P and there is at least 1/2 residual capacity on each edge of P at the
time of routing it.

ZPj =


1 if YPj = 1 and

∑
i<j

∑
P ′3e

P ′∈P(si,ti)

SiYP ′i ≤ ce − 1/2 for all e ∈ P

0 otherwise
.

If we choose α = 1
4
√
n(1+ln k)

, we get:

Pr[ZPj = 0 | YPj = 1] ≤
∑
e∈P

Pr
[ ∑
i<j

∑
P ′3e

P ′∈P(si,ti)

SiYP ′i > ce/2
]
.

Note that LPUFP implies

E
[∑
i<j

∑
P ′3e

P ′∈P(si,ti)

SiYP ′i

]
=
∑
i<j

∑
P ′3e

P ′∈P(si,ti)

µi · (αfP ′ /µi) ≤ αce = ce

4
√
n(1 + ln k)

.

It follows from Markov’s inequality that

Pr[ZPj = 0 | YPj = 1] ≤
∑
e∈P

1
2
√
n(1 + ln k)

≤ 1/2.

We can now complete the proof of the claim, using Markov’s inequality once again:

Pr[value obtained from job j]
= vj · Pr[Job j is successfully routed]

= vj ·
∑
P

(
Pr[YPj = 1] · Pr[ZPj = 1 | YPj = 1]

· Pr[Job j is successfully routed along P | ZPj = 1, YPj = 1]
)

≥ vj ·
∑
P

(
α · fP

µj
· 1

2 ·
3
4

)
= 3vj

8 ·
xj
µj
· 1

4
√
n(1 + ln k)

= 3wjxj
32
√
n(1 + ln k)

.

4.2.2 Randomized Rounding for Long Flow Paths
Recall that long paths are path of length more than

√
n(1 + ln k). We examine the case

where flow of weight at least φ(J, c)/2 is routed along long paths. As in the proof of SSSR in
Section 3, we will convert the flow on the given graph to a flow on a corresponding multigraph
with edges of unit capacity. As before, we assume without loss of generality (because of the
NBA) that the sources sj are unique vertices, each with a single out-edge of capacity 1 and
similarly, that the targets tj are unique vertices, each with single in-edge of capacity 1.
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As before, we define corresponding to each edge e, an integer Ke = dbcec/2e. For the given
directed acyclic graph G = (V,E), define a (multi)graph G′ = (V,E′) where for each edge
e = (u, v) ∈ E, we have Ke parallel unit-capacity edges (u, v) in E′. Note that Ke > ce/3
for all e and hence the flow along long paths in G, after being scaled down by a factor of
3 can be converted to a flow in G′ preserving flow path lengths. Let this flow, which is of
weight at least φ(J, c)/6 correspond to the solution F = (x, f) to LPUFP for G′.

All flow paths are long and hence the sum over vertices of the weighted flow routed through
each vertex is at least weight(F) ·

√
n(1 + ln k). Since the total number of vertices is n, there

must exist at least one vertex v through which flow of weight at least φ(J, c)/6 ·
√

(1 + ln k)/n
is routed. Let Fv = (xv, fv) be the solution to LPUFP corresponding to the part of F routed
through v. G′ is a directed acyclic multigraph and hence the vertex v splits the flow F
into a single-sink instance G′in and a single-source instance G′out. Let us denote the two
corresponding flows by Fv,in and Fv,out. We infer2 from Theorem 3.1 that there exists in
G′in an edge-confluent flow F ′v,in of weight weight(Fv,in)/(1 + ln k) and in G′out an edge-
confluent flow F ′v,out of weight weight(Fv,out)/(1 + ln k). The flow-per-job and hence the
weights of Fv,in and Fv,out are same as the corresponding quantities of Fv. Furthermore
these quantities are uniformly scaled down by a factor of (1 + ln k) in the flows F ′v,in and
F ′v,out. Hence these two flows can be combined to obtain a flow F ′v = (x′v, f ′v) of weight
weight(Fv)/(1 + ln k) ≥ φ(J, c)/(6

√
n(1 + ln k)) which is confluent in both the partitions

G′in and G′out.
We will now devise a routing strategy which has expected value within a constant factor

of weight(F ′v) by randomly rounding this flow. Note that despite the confluence properties
of the flow F ′v, we cannot directly reduce this v-separable instance to two instances of the
Stochastic Knapsack problem as we did in SSSR, because the routings for both parts must
synchronize.

We make an initial decision to route job j with probability αx′vj/µj and job j, if so
chosen, is routed on path P ∈ P ′(sj , tj) with probability f ′vP /xj . Here P ′(sj , tj) denotes the
possible set of paths for job j in graph G′. With the remaining probability 1− αx′vj/µj we
choose not to route job j. Let YPj be the indicator r.v. for whether path P was picked for
job j. Again, we define a random indicator variable ZPj which indicates if the algorithm
A makes an initial decision to route job j along path P and there is at least 1/2 residual
capacity on each edge of P just before making a decision for job j. If ZPj = 0 even though
YPj = 1 the initial decision is overruled and job is not routed. Otherwise the initial decision
holds.

ZPj =


1 if YPj = 1 and

∑
i<j

∑
P ′3e

P ′∈P(si,ti)

SiZP ′i ≤ 1/2 for all e ∈ P

0 otherwise
.

We choose α = 1/8. The event {ZPj = 0 | YPj = 1} occurs if there is at least one edge
along P which is congested, i.e., it has residual capacity less than 1/2 at the time of making
a decision for job j. Let ein and eout denote the edges on P which are incoming to and
outgoing from v. Since F ′v is confluent in both G′in and G′out, we infer that if at least one

2 We scale down by a factor of (1 + ln k) to ensure unit congestion
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edge along P is congested, then either ein or eout must be congested. Hence

Pr[ZPj = 0 | YPj = 1] ≤
∑

e∈{ein,eout}

Pr[
∑
i<j

∑
P ′3e

P ′∈P(si,ti)

SiYP ′i > 1/2].

Note that LPUFP implies

E[
∑
i<j

∑
P ′3e

P ′∈P(si,ti)

SiYP ′i] =
∑
i<j

∑
P ′3e

P ′∈P′(si,ti)

µi · (αf ′vP ′ /µi) ≤ 1/8.

Markov’s inequality implies that Pr[ZPj = 0 | YPj = 1] ≤ 1/2. We use Markov’s inequality
again to infer:

Pr[value obtained from job j]
= vj · Pr[Job j is successfully routed]

= vj ·
∑
P

(
Pr[YPj = 1] · Pr[ZPj = 1 | YPj = 1]

· Pr[Job j is successfully routed along P | ZPj = 1, YPj = 1]
)

≥ vj ·
∑
P

(
α · fP

µj
· 1

2 ·
3
4

)
= 3wjxj

64 .

Hence the expected value of this rounding strategy is within a constant factor of
weight(F ′v). Finally note that this routing strategy ensures that each edge in G′ reaches
capacity at most once and hence the capacity consumed on it is at most 2. The definition of
G′ is such that all but one of the Ke edges in G′ will not obstruct each other’s jobs from
being routed in G if none of the edges ever reaches more than 2 units of congestion and for
the last edge the remaining capacity is at least 1, enough to get value from the successfully
routed jobs. This completes the proof of Theorem 1.2.

5 Safe Strategies

In this section we address the issue of routing jobs in a way such that we are guaranteed
to never overshoot the capacity of any edge. This concept was first studied by Chawla
and Roughgarden [8], who called such strategies “safe” strategies. To get non-trivial safe
strategies, one has to make an assumption slightly stronger than the NBA. Indeed, we assume
that Dmax, the supremum of the values that any job can take on with non-zero probability,
is α where α ∈ (0, 1) – i.e., the support of each random variable Sj is now [0, α]. We refer
to this assumption as the α-NBA. As before we have assumed by scaling that cmin = 1.
Note that we can now get a better upper bound on OPT than what Theorem 2.1 provides :
OPT ≤ φ(J, c + α1) ≤ (1 + α)φ(J, c).

5.1 The Case α ≤ 1/2

In case α ∈ (0, 1/2], any strategy for sUFP that is good with respect to the LP relaxation
(LPUFP ) can be easily converted to a safe strategy with a loss of a factor of (1− α).

I Theorem 5.1. For α ∈ (0, 1/2], let instance I = (G, c, J) of the sUFP satisfy the α-NBA.
Hence, the instance I ′ = (G, c(1− α), J) satisfies the NBA. Given a strategy A that is an
γ-approximation for the instance I ′ w.r.t. the LP relaxation (LPUFP ), we can obtain a
strategy that is an γ(1+α)

1−α -approximation for I.
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Proof. Observe that φ(J, c(1− α)) ≥ 1−α
1+α · φ(J, c(1 + α)). We know that the strategy A for

I ′ achieves expected value at least 1
γ · φ(J, c(1− α)) ≥ 1−α

γ(1+α) ·OPT (I). We claim that this
run will not violate the actual capacities c of the edges. Indeed, we can assume, w.l.o.g., that
A does not route any jobs that use any edges that are already forbidden. Hence, just before
an edge capacity is violated in the run of A on I ′, it was used to at most (1− α)ce, and the
α-NBA ensures that the job can take on size at most α ≤ α ce. So the total used-up capacity
on each edge e is at most ce(1− α) + α ≤ ce, completing the proof. Note that if α > 1/2 the
instance I ′ does not satisfy the NBA. J

5.2 The Case α ≥ 1/2

In this case we give a reduction that takes an arbitrary strategy for sUFP on unit-capacity
networks which is good with respect to the LP solution, and transforms it into a safe strategy.
We use this e.g., on our result for single-sink UFP.

I Theorem 5.2. Let α ∈ (0, 1) and γ ≥ 1. Consider a flow network G with unit-capacity
edges; i.e., c = 1. (We allow parallel arcs.) Suppose we have strategy Ã that for any
instance Ĩ = (G,1, J̃) of the sUFP on G satisfying the NBA, achieves expected value at least
1/γ ·φ(J̃ ,1). Then there exists a safe algorithm A which for all instances I = (G,1, J) of the
sUFP satisfying the α-NBA achieves expected value at least (1−α)

6γ · φ(J̃ ,1) ≥ (1−α)
6γ(1+α) ·OPT .

Proof. First, we can assume that for all jobs j ∈ J , we have Pr[Sj = 0] = 0, by losing a
factor of 2 in the approximation. To prove this, first imagine there are no jobs having mean
size zero, since these can be routed without using any capacity. Let µmin := minj∈J µj be
the least mean job size. We transform the jobs in J to be supported on [µmin, α] by defining
their new size to be S′j := max{µmin, Sj}. This increases the mean µj of each job j to
µj′ ≤ µj + µmin ≤ 2µj , but still satisfies the α-NBA. Consequently, the value of the LP has
decreased by at most 2 and our strict positivity assumption is justified. Any strategy safe for
the modified instance is also safe for the original instance. An advantage of having strictly
positive job sizes is that we can argue that if the given strategy Ã routes a job on some path
P , all edges on the path have strictly positive residual capacity (and are not forbidden, of
course). If not, if there were some edge of capacity zero, or a forbidden edge, the routing
would necessarily be unsuccessful, and we could drop it without any loss in value.

Now define α′ := 1− α and δ := α′/2. Separate the jobs into δ-large (those with µj ≥ δ)
and δ-small (the remaining). For the δ-large jobs, apply Theorem 4.1 to obtain a safe
(1 + α)γ/δ-approximation. Observe that to apply Theorem 4.1, we need an algorithm for the
capacitated UFP problem – however, our assumed algorithm Ã for sUFP is at least as powerful,
and hence suffices. (The approximation factor is better than claimed in Theorem 4.1, since
(i) we start with unit edge-capacities, and hence we do not need to round down the capacities
(ii) We use the better (1 + α)φ(J, c) upper bound on the OPT)

For the δ-small jobs Js, let us denote the original small instance by I = (G,1, Js), and
define a modified instance I ′ = (G,α′1, J ′s). For each job j ∈ Js, find a threshold `j ≤ µj
such that

E[max(`j ,min(Sj , α′))] = µj .

In words, we “clip” the job size Sj at α′ on the upper side, and at `j on the lower side, and
want the mean to remain unchanged. This is possible since µj ≤ δ < α′, so the upper clipping
brings the mean down, which the lower clipping can remedy. Now define the size of the new
job j′ to be Sj′ := max(`j ,min(Sj , α′)), this clipped random variable, and let µj′ := E[Sj′ ].
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Observe that Sj , Sj′ are coupled by definition, such that conditioned on Sj′ < α′, we know
that Sj′ ≥ Sj .

Observe that the value of the LP relaxation φ(J ′s, α′1) ≥ α′ · φ(Js,1). Moreover, the
instance I ′ = (G,α′1, J ′s) satisfies the NBA, and hence running Ã on J ′s achieves an expected
value of at least 1/γ · φ(J ′s, α′1). So we can imagine executing the algorithm Ã on I ′, whilst
actually routing the jobs in I. I.e., when Ã asks to route job j′, we actually run job j, it
takes on size Sj , and we report back the size Sj′ to the algorithm Ã. As argued above, we
assume that Ã does not route any job on forbidden edges, or edges of zero capacity.

The crucial observation is that conditioned on an edge e’s capacity having been used up
to less than α′, the actual usage (according to the real job sizes Sj) is no more than the
usage according to the job sizes Sj′ reported to Ã. This is because, conditioned on Sj′ < α′,
we know that Sj′ ≥ Sj .

Now to see that this strategy is safe for I, consider an edge on some path P on which Ã
routes some job j. Previously e’s capacity was used up to less than α′ (since it had non-zero
residual capacity by our assumption on Ã), and even if the current job uses it to its maximum
size α = 1− α′, we will not violate the actual capacity. Hence, any job that is routed in Ã’s
run on I ′ will also be successful routed in the run on I.

This gives us an (1+α)γ/α′-approximation algorithm for small jobs. Using Fact 1.1 the
better of the two gives us a 3γ(1+α)

(1−α) -approximation. Moreover, losing another factor of 2 for
the transformation to strictly positive job sizes gives us the result. J

Theorem 5.2 is the only result in our paper where we require knowing more information
about the distribution of Sj beyond just the expectation µj . Now we can use Theorems 5.1
and 5.2 to give a safe strategy for variants of the sUFP. In particular, applying this to the
stochastic knapsack result from Theorem 3.4 gives us a safe algorithm for that problem, and
hence for the SSSR.

6 Conclusions and Discussion

In this paper we gave approximation algorithms for stochastic routing problems under the
no-bottleneck assumption. These problems generalize the classical unsplittable flow problem.
Our results include improved results for the single-sink case, constant-factor approximations
for stochastic routing on trees and paths, and results for general graphs as well. We also
gave techniques to convert unsafe strategies into safe ones, for unit capacity networks. Many
interesting open questions remain: E.g., can we get a constant-factor for the single-sink
setting? Can we give results without the no-bottleneck assumption?
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A Missing Proofs

A.1 Combining Results for Small and Large Jobs
I Fact 1.1 (Combination). Consider an instance I = (G, c, J) of the sUFP with optimal
payoff OPT specified by the graph G, edge-capacity vector c and the set of jobs J . Let J1
and J2 form a partition of J and consider instances I1 = (G, c, J1) and I2 = (G, c, J2)
with optimal payoffs OPT1 and OPT2. Suppose for each instance Ii, there exists a polytime
non-adaptive algorithm Ai, a polytime computable quantity ξi and a quantity γi ≥ 1 such
that E[payoff(Ai)] ≥ ξi ≥ 1

γi
OPTi. Then the algorithm A that returns the solution for the

instance Ii with the higher ξi has

E[payoff(A)] ≥ 1
γ1 + γ2

OPT .

Proof. Since J1 and J2 form a partition of J , OPT ≤ OPT1 +OPT2 ≤ γ1ξ1 + γ2ξ2. Hence
max(ξ1, ξ2) ≥ OPT

γ1+γ2
.

As an example application, suppose we have two different LP rounding algorithms that
on instances Ji produce solutions with values ξi = 1

γi
OPTi. Then taking the larger one is an

(γ1 + γ2)-approximation. J

A.2 Reducing Edge-Confluence to Node-Confluence
The results of Chen et al. [12], along with most other literature address node-confluence. We
show how to get Theorem 3.1 on edge-confluence from these resuts. The existing result of
Chen et al. that we use is the analog of Theorem 3.1 for node-confluent flows under node-
congestion. The node-congestion of a flow is defined as n-cong(f) = max{1,maxv∈V \{t} fv}
where fv denotes the flow passing though vertex v.

Proof. Theorem 3.1 Consider any digraph G = (V,E) with sources SG ⊆ V , sink node t, and
unit edge-capacities, in which we have a general flow f respecting edge capacities(i.e. cong(f) =
1) that we wish to convert to an edge-confluent flow. We assume w.l.o.g. that this flow is
acyclic and that each source has exactly one outgoing edge from it and no edges incoming
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7:18 Stochastic Unsplittable Flows

Figure 1 Reducing edge-confluence to node-confluence. Edge-confluent flows in the network
above correspond to node-confluent flows in the one below. The sink is shaded grey. The sources
are shaded with a gradient.

into it. To justify the latter, note we can augment the graph by adding a new source for each
orginal source, connected to it by a unit-capacity edge. Under the NBA, this transformation
does not change congestion and flows which are edge-confluent in the augmented graph are
also edge-confluent in the original graph.

We construct another graph H with unit node-capacities, which is essentially the directed
line graph of G (plus one extra node). This construction is demonstrated in Figure 1. The
graph H has a node vpq for every arc (p, q) in G. There is an arc from vpq to vrs exactly
when q = r. Moreover, it has node vt, with arcs from all nodes vpt to vt. Finally, for every
source s there is exactly one graph (s, xs) leaving s as per our assumption. The set of sources
in the new graph H is defined by SH = {vsxs | s ∈ S}.

Now given the flow f in G from sources S to sink t, take any path decomposition of
the flow f . Each flow path P can be mapped in a natural way to a flow-path in H: if
P = 〈s, a, b, . . . , z, t〉, then it is mapped to path 〈vsa, vab, . . . , vzt, vt〉 in H. Doing this for
all flow-paths gives a flow h in H. The node-capacities in H are satisfied by h because
the edge-capacities in G were satisfied by f . This is a injection from unit edge-congestion
flows in G into unit node-congestion flows in H. Note that the procedure can be reversed to
obtain a surjection from unit node-congestion flows in H onto unit edge-congestion flows in
G. These mappings are not inverses since several flows in H may correspond to a single flow
in G3. Under these mappings, any edge-confluent flow f from SG to t in G is mapped to a
node-confluent flow h from SH to vt in H, and vice versa. Since the flow though an edge in
G equals flow through the corresponding vertex in H we note that cong(f) = n-cong(h).

Hence, to prove Theorem 3.1, we do the following: we take the unit-congestion flow f in
G and convert it into a unit-node-congestion flow h in H. Now we can use results of Chen et
al. [12] on node-confluent flows in unit-capacity graphs. They show how to convert h into:

A node-confluent flow h′ with n-cong(h′) = 1 + ln k.
A node-confluent flow h′′ respecting node-capacities (i.e. n-cong(h′′) = 1) that routes
flow from a subset of the sources in SH having total flow at least a third of the total
original flow in h.

Mapping these flows back to G gives us the flows claimed in Theorem 3.1. J

3 Consider node c in Figure 1 and note that (a → c → e, b → c → f) and (a → c → f, b → c → e) can be
two different alternatives for path decomposition.
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A reduction from node-confluence to edge-confluence is easy as Chen et al. [13] had
previously observed. This result thus identifies an interconvertability between node-confluence
and edge-confluence. Note that we have used this construction for unit capacity networks only
since it suffices our purpose of addressing the SSSR. However this argument also extends in
a straightforward way to capacitated graphs. Hence it can also be used to obtain a O(log6 n)
approximate edge-confluent flow of congestion 2 corresponding to the recent node-confluence
results of Shepherd, Vetta, and Wilfong [24, Theorem I.7].
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