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Abstract
In this paper we relate two generalisations of the finite monoid recognisers of automata theory
for the study of circuit complexity classes: Boolean spaces with internal monoids and typed
monoids. Using the setting of stamps, this allows us to generalise a number of results from
algebraic automata theory as it relates to Büchi’s logic on words. We obtain an Eilenberg
theorem, a substitution principle based on Stone duality, a block product principle for typed
stamps and, as our main result, a topological semidirect product construction, which corresponds
to the application of a general form of quantification. These results provide tools for the study
of language classes given by logic fragments such as the Boolean circuit complexity classes.
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1 Introduction

Complexity theory and the theory of regular languages are intimately connected through
logic. As with classes of regular languages, many computational complexity classes are model
classes of appropriate logic fragments on finite words [12]. For example, AC0=FO[arb],
ACC0= (FO + MOD)[arb], and TC0=MAJ[arb] where arb is the set of all predicates on the
positions of a word, FO is first-order logic, and MOD and MAJ stand for the modular and
majority quantifiers, respectively. On the one hand, the presence of arbitrary (numerical)
predicates, and on the other hand, the presence of the majority quantifier is what brings one
far beyond the scope of the profinite algebraic theory of regular languages.

Most results in complexity theory are proved with combinatorial, probabilistic, and
algorithmic methods [18]. However, there are a few connections with the topo-algebraic tools
for regular languages. A famous result of Barrington, Compton, Straubing, and Thérien [2]
states that a regular language is in AC0 if and only if its syntactic homomorphism is quasi-
aperiodic. Although this result relies on [5] and no purely algebraic proof is known, being able
to characterise the class of regular languages in AC0 gives some hope that the non-uniform
classes might be amenable to treatment by the generalised topo-algebraic methods.

Indeed, the hope is that one can generalise the tools of algebraic automata theory. In
the paper Logic Meets Algebra: the case of regular languages [17], Thérien and Tesson lay
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13:2 Stone Duality and the Substitution Principle

out the theory used to characterise logic classes in the setting of regular languages in terms
of their recognisers. Here we add topology to the picture, using Stone duality, to obtain
corresponding tools that apply beyond the setting of regular languages.

Two ways of breaking the regular barrier already exist. Typed monoids [14], which still
have a finite component, must be studied in families, while Boolean spaces with internal
monoids [7, 10] generalise the profinite monoids of the classical theory and provide single
topological objects of study relative to each alphabet. In Section 3 we relate these via an
Eilenberg theorem improving on [3] by identifying tighter closure properties.

Using typed stamps, i.e. morphisms from finitely generated free monoids to typed monoids,
we show that the Stone dual of predicate substitution is given by a transduction (Section 4),
and that transduced languages are the ones recognised by a generalised version of the block
product (Section 5). Thus we identify this important connection between logical generation
and algebraic recognition as a case of Stone duality in a very general setting.

The topological recognisers provide access to equations as in Eilenberg-Reiterman the-
ory [9], and thus to tools for separation and, in the finite case, decidability. The main result
of the paper, Theorem 23, is a general form of the classical result by Almeida and Weil [1],
which provides a semidirect product construction for Boolean spaces with dense monoids
characterising the block product of varieties of typed stamps. Finally, in Section 7, we
illustrate how these tools may be applied in the study of Boolean circuit classes.

2 Preliminaries on Stone duality

In this section we present the basics of Stone duality as used in the rest of the paper. See [6, 8]
for an adapted introduction or [13] for further details.

The most basic duality we use, also known as discrete duality, provides a correspondence
between powerset Boolean algebras (these are the complete and atomic Boolean algebras)
and sets. Given such a Boolean algebra B, its dual is its set of atoms, denoted At(B) and,
given a set X, its dual is the Boolean algebra P(X). Clearly going back and forth yields
isomorphic objects. If h : B → A preserves arbitrary meets and joins, the dual of h, denoted
At(h) : At(A)→At(B) is given by the adjunction:

∀ a∈A and ∀x∈At(B) ( At(h)(x) ≤ a ⇐⇒ x ≤ h(a) ) .

For example, if ι : B ↪→ P(X) is the inclusion of a finite Boolean subalgebra of a
powerset, then At(ι) : X � At(B) is the quotient map corresponding to the finite partition
of X given by the atoms of B. Conversely, given a function f : X→Y , the dual is just
P(f)=f−1 : P(Y )→P(X).

Generally Boolean algebras do not have enough atoms, and we have to consider ultrafilters
instead (which may be seen as ‘searches downwards’ for atoms). Given an arbitrary Boolean
algebra B, an ultrafilter of B is a non-empty subset µ of B satisfying:

µ is an upset, i.e., a∈µ and a ≤ b implies b∈µ;
µ is closed under finite meets, i.e., a, b∈µ implies a ∧ b∈µ;
for all a ∈ B exactly one of a and ¬a is in µ.

Here, we will denote the set of ultrafilters of B by XB, and we will consider it as a
topological space equipped with the topology generated by the sets â = {µ ∈ XB | a ∈ µ}
for a ∈ B. The last property in the definition of ultrafilters implies that these basic open
sets are also closed (and thus clopen). The resulting spaces are compact, Hausdorff, and
have a basis of clopens. Such spaces are called Boolean spaces. Conversely, given a Boolean
space, its clopen subsets form a Boolean algebra and one can show that going back and forth
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results in isomorphic objects. Given a homomorphism h : A → B between Boolean algebras,
one can show that the inverse image of an ultrafilter is an ultrafilter and thus h−1 induces a
continuous map XB → XA. Finally, given a continuous function f : X → Y , the inverse map
restricts to clopens and yields a homomorphism of Boolean algebras.

Boolean spaces are also the profinite sets, see Appendix A. This is fundamental for the
toggling between the two generalisations of finite monoids given below. Finally, for a set S,
the dual space of P(S), denoted β(S), is the Stone-Čech compactification of S. For each
s ∈ S, the set ι(s) = {P ∈ P(S) | s ∈ P} is the principal ultrafilter generated by s, and the
induced map ι : S ↪→ β(S) is an injection with dense image.

3 Recognition of languages

The notion of recognition originates in automata theory where the classical recognisers
are monoid morphisms into finite monoids. Many important classes of regular languages
correspond to pseudovarieties of finite monoids, that is, classes closed under homomorphic
images, subalgebras, and finite products. Eilenberg’s theorem characterises the corresponding
classes of regular languages, called varieties of regular languages. All the languages recognised
by a monoid of a given pseudovariety, no matter the recognising morphism used, belong to
the corresponding variety of languages. However, not all language classes of interest form
varieties. In fact, many classes corresponding to fragments of logic contain all the languages
recognised by one morphism into a finite monoid but not the ones recognised via another
morphism into the same monoid. It follows that such classes are not closed under inverse
images for arbitrary morphisms between finitely generated free monoids, and one has to keep
track of classes of morphisms from free monoids to finite ones, so-called stamps. Stamps, and
a notion of pseudovariety of stamps, were introduced by Straubing [16] to study language
classes coming from logic on words.

If one is interested in classes that contain non-regular languages, one needs more complex
recognisers based on infinite monoids. In [7] a notion of compact topological recognisers
was introduced and in [10] a more duality-friendly variant, so-called Boolean spaces with
internal monoids, was given. These recognisers, based on Boolean spaces, provide a notion of
recognition appropriate also for non-regular languages, but the finiteness is lost. Independently
[3] introduced typed monoids, which are infinite monoids equipped with a finite set-quotient.
These have a finite component but must be studied in families. Here we show how these two
notions fit together and provide a variant of Eilenberg’s variety theorem in the setting of
stamps for languages that are not necessarily regular.

3.1 Generalising finite monoids

The basic recognisers of automata theory are finite monoids. Here, we consider recognisers
which separate the attributes of being finite and of being a monoid.

I Definition 1. A typed monoid is a tuple R = (M,p,X), where X is a finite set, M is a
monoid and p : M � X is a surjective set function. A typed submonoid of R is given by a
submonoid N of M by restriction of p and its image, R|N = (N, p|N , p[N ]). A morphism of
typed monoids, Φ: (M,p,X)→ (N, q, Y ), is a pair Φ = (g, ϕ) where g : M → N is a monoid
morphism and ϕ : X → Y is a set function, so that ϕ ◦ p = q ◦ g. The image of Φ is the typed
submonoid of (N, q, Y ) given by g[N ]. We say that (M,p,X) recognises the language L ⊆ A∗
when there is a monoid morphism µ : A∗ →M and C ⊆ X such that L = (p ◦ µ)−1(C).

CSL 2017



13:4 Stone Duality and the Substitution Principle

For instance, LEq = {w ∈ {a, b}∗| |w|a = |w|b}, where |w|a and |w|b stand, respectively, for
the number of a’s and of b’s in w, is recognised by (Z, p, {0, 1}), where p(n) = 1 if and only if
n= 0. The recognising morphism hEq sends a to 1 and b to −1 and LEq =h−1

Eq ({1}).
Finite monoids provide invariants that are useful in describing and understanding classes

of regular languages. Their pertinence arises from the fact that many classes of languages
of interest are closed under quotients by words. That is, if L ⊆ A∗ is in the class and
u ∈ A∗ then u−1L = {w ∈ A∗ | uw ∈ L} and Lu−1 = {w ∈ A∗ | wu ∈ L} are also in the
class. Note that the Boolean algebra of all languages recognised by a morphism µ : A∗ →M

is closed under quotients. However, this is not true for typed monoids in general and,
given a non-regular language, the closure under quotienting is necessarily infinite, so we
need to capture infinite Boolean subalgebras of P(M) for M an infinite monoid. For this
purpose, we recall that a biaction of the monoid M on a set X is given by a two-sided
action map α : M ×X ×M →M satisfying α(1, x, 1) = x where 1 is the identity element of
M and α(m1, α(m′1, x,m′2),m2)=α(m1m

′
1, x,m

′
2m2) for all m1,m

′
1,m

′
2,m2 ∈ M . The left

component of the action at m is the map λm : X → X given by x 7→ α(m,x, 1), while the right
component at m is ρm : x 7→ α(1, x,m). As derived in [10], the following topological notion
captures Boolean subalgebras of a monoid which are closed under the quotient operations.

I Definition 2. A Boolean space with an internal monoid (BiM) is a triple (M,p,X) where X
is a Boolean space equipped with a biaction of a monoid M whose right and left components
at each m ∈ M are continuous and a map p : M → X which has dense image and is a
morphism of sets with M -biactions. That is, for each m ∈ M , the following diagrams
commute:

M

XM

X

rm ρm

p

p

M

XM

X

`m λm

p

p

with `m : n 7→m ·n and rm : n 7→n ·m the components at m of the biaction of M on itself.

I Example 3. The Boolean algebra closed under quotients that is generated by LEq defined
above is recognised by the BiM (Z, p,Z ∪ {∞}) via the morphism hEq. Here, Z ∪ {∞} is the
one-point compactification of Z, p is just the inclusion map, and the left and right actions
are given by the usual addition on Z augmented by n+∞ =∞ =∞+ n, for every n ∈ Z.

The weaker structure (M,p,X) where M is a monoid, X is a Boolean space, and p has
dense image we will call a Boolean space with a dense monoid, or simply a B-monoid. Note
that typed monoids are precisely the finite B-monoids (those for which X is finite). Moreover,
a B-submonoid of (M,p,X) is given by a submonoid N of M by restricting p and viewing it
as a map into the topological closure of its image.

Alternatively, we can capture infinite Boolean subalgebras of P(M) closed under the
quotients using subfamilies S ⊆TM = {(M,p,X) | (M,p,X) is a typed monoid}. For this
purpose, we define a quasiorder on TM given by (M,p,X) ≥ (M, q, Y ) provided (M, q, Y ) is a
quotient of (M,p,X) for which the map g is the identity. The family S is then a downset of TM
provided it is closed under such quotients, and S is directed provided (M,p,X), (M, q, Y ) ∈ S
implies the existence of (M, r, Z) ∈ S with quotient maps p′ : Z → X and q′ : Z → Y so that
p= p′ ◦ r and q= q′ ◦ r. Also, we say that S is multiplicative provided for all (M,p,X) ∈ S
and m ∈ M , there are (M, q, Y ), (M, r, Z)∈S and maps λm : Y → X and ρm : Z → X so
that λm ◦ q(m′) = p(mm′) and ρm ◦ r(m′) = p(m′m), for every m′ ∈M .

Stone duality yields the following proposition.
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I Proposition 4. For a monoid M , there are bijections between each of the following:
1. the set of Boolean subalgebras closed under quotients B ⊆ P(M);
2. the set of directed and multiplicative downsets S ⊆ TM of typed monoids based on M ;
3. the set of Boolean spaces with internal monoids (M,p,X) based on M .

Proof Sketch. The bijections are given as follows. Given a Boolean subalgebra B of P(M)
closed under quotients, the corresponding directed and multiplicative downset is

SB = {(M,At(ι),At(B′)) | B′ ⊆ B is a finite Boolean subalgebra and ι : B′ ↪→ P(M)}.

In turn, given a directed and multiplicative downset of typed monoids S ⊆ TM , the limit
of the projective system of maps pi : M � Xi with (M,pi, Xi) ∈ S defines a BiM, see
Appendix A. Finally, given a BiM (M,p,X), the corresponding Boolean algebra is

B(M,p,X) = {p−1(K) | K ⊆ X is clopen}. J

3.2 Stamps for non-regular languages
I Definition 5. A Boolean space with a dense stamp (or B-stamp for short) is a tuple
R = (A,µ,M, p,X) where µ : A∗ � M is a monoid quotient and (M,p,X) is a B-monoid.
A B-stamp is called a BiM presentation when (M,p,X) is a BiM and a typed stamp when
(M,p,X) is a typed monoid.

A morphism between B-stamps R = (A,µ,M, p,X) and S = (B, ν,N, q, Y ) is a triple
Φ = (h, g, ϕ), where h : A∗ → B∗ and g : M → N are monoid morphisms, ϕ : X → Y is a
continuous function, and the following diagram commutes:

A∗ M

B∗ N

X

Y

h g ϕ

µ

ν

p

q

When h is the identity on A∗, we say that S factors through R. Further, each morphism
h : A∗ → B∗ defines a substamp (h[A], ν′, N ′, q′, Y ′) of S, where the elements of h[A] are
regarded as letters, ν′ : h[A]∗ → N ′ is the surjective co-restriction of the monoid morphism
sending u ∈ h[A] to ν(u), and (N ′, q′, Y ′) is the sub of (N, q, Y ) given by N ′.

B-stamps R encode two types of behaviour: algebraic behaviour given by the monoid
presentation (A,µ,M) and topological behaviour given by the B-monoid (M,p,X). The
interplay between these two is a key ingredient in this paper. We say that a language L is
recognised by R provided there exists a clopen subset C ⊆ X such that L = (p ◦ µ)−1(C).
Notice that the set of all languages recognised by a B-stamp always forms a Boolean algebra.

I Definition 6. Let B ⊆ P(A∗) be a Boolean algebra of languages. Then the syntactic
B-stamp of B is RB = (A,µB,MB, pB, XB) where XB is the dual space of B and MB=A∗/∼B
where the syntactic congruence ∼B is given by

w ∼B w′ ⇐⇒ ∀L ∈ B, ∀u, v ∈ A∗ (uwv ∈ L ⇐⇒ uw′v ∈ L).

The quotient map µB : A∗ � A∗/∼B is the syntactic morphism of B. The restriction to
A∗ of the dual of the inclusion ι : B ↪→ P(A∗) is a map ι̃ : A∗ → XB with dense image. Since
∼B is the least monoid congruence containing the kernel of ι̃, it factors through µB. That is,
there is a map pB : MB → XB so that ι̃ = pB ◦ µB. Clearly, the image of pB is dense in X.

I Proposition 7. A B-stamp R recognises a Boolean algebra closed under quotients B if and
only if the syntactic B-stamp of B factors through R.

CSL 2017



13:6 Stone Duality and the Substitution Principle

3.3 C-varieties of languages and an Eilenberg theorem
As mentioned earlier, we are interested in classes of languages that may not be closed
under preimages of arbitrary morphisms. In what follows, we fix a class C of morphisms
between finitely generated free monoids which is closed under composition and contains
all length-preserving morphisms (i.e. the ones sending generators to generators), written
lp-morphism (we will see why lp-morphisms are important in the treatment of logic on words
in Section 4.2). A C-variety of languages is an assignment, for each finite alphabet A, of
a Boolean algebra closed under quotients V(A) of languages over A such that, for every
morphism h : B∗ → A∗ in C, if L ∈ V(A) then h−1(L) ∈ V(B). In this subsection, we identify
the classes of typed stamps that correspond to C-varieties of languages. For this, we need
some definitions.

A morphism Φ = (h, g, ϕ) of typed stamps is a C-morphism provided h∈C and a C-
substamp is a typed substamp given by h∈C. Let {Ri=(A,µi,Mi, pi, Xi)}i∈I be a family of
B-stamps. Their product is the B-stamp �i∈IRi = (A,µ,M, p,X) where µ : w 7→ (µi(w))i∈I
is the surjective co-restriction of the product map and (M,p,X) is the B-submonoid given by
the image of µ in the product of the (Mi, pi, Xi)’s. This construction yields a B-stamp, the
product of BiM presentations is a BiM presentation, but the product of typed stamps may
not be a typed stamp. Thus we define the restricted product with respect to a finite subset
F ⊆ I to be the B-stamp obtained from the product by composing p : M → X with the
restriction of

∏
j∈F πj where πj : ΠXi → Xj are the projections. Note that every restricted

product of typed stamps is a typed stamp.
Let M be a monoid and S ⊆TM . We say S is separating provided whenever m1,m2 ∈M

are distinct, there is (M,p,X)∈S such that p(m1) 6= p(m2). Finally, for a monoid presentation
(A,µ,M) and a family of typed stamp F , denote by TypF (A,µ,M) the set of all typed
monoids (M,p,X) such that (A,µ,M, p,X) belongs to F . A monoid quotient g : M � N

is said to be F-compatible provided {(N, q, Y ) ∈ TN | (M, q ◦ g, Y ) ∈ TypF (A,µ,M)} is
separating. A stamp S=(A, ν,N, q, Y ) is an F-compatible quotient of R=(A,µ,M, p,X)
provided S factors through R and the corresponding quotient map M � N is F -compatible.

I Definition 8. A family of typed stamps V is called a C-pseudovariety provided
(V.1) V is closed under taking C-substamps and V-compatible quotients;
(V.2) V is closed under taking arbitrary restricted products;
(V.3) TypV(A,µ,M) is a multiplicative and separating downset whenever (A,µ,M) is a

monoid presentation of a typed stamp in V.
We are now able to state the main result of this section.

I Theorem 9. There is a one-to-one correspondence between C-varieties of languages and
C-pseudovarieties of typed stamps.

Proof Sketch. The correspondence is given as follows: for each C-pseudovariety of typed
stamps V, we define V(A) to be the set of all languages over A that are recognised by some
element of V. Conversely, given a C-variety of languages V, for each finite alphabet A, the
syntactic BiM of V(A) is a BiM presentation RA. In turn, the BiM presentations that factor
through RA are given by projective limit systems of typed stamps. Altogether, these form
a C-pseudovariety. Finally one can show that these two constructions are inverse to each
other. J

Observe that, unlike what happens for classical stamps on finite monoids, not all classes
of typed stamps generate C-pseudovarieties. For this to be the case, the multiplicative closure
of the class has to be separating for each of the monoid presentations of the class.
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3.4 Using profinite alphabets
Let V be a C-pseudovariety of typed stamps, and V the corresponding C-variety of languages.
For each finite alphabet A, the class of typed stamps in V based on A forms a projective
limit system whose projective limit is a BiM presentation, which we will denote by ΣA(V).
As indicated by the proof sketch for Theorem 9, the point is that ΣA(V) is also the syntactic
B-stamp of V(A). In case V consists entirely of regular languages, ΣA(V) is essentially what
is usually denoted by ΩA(Vmon) or F̂A(Vmon) and is called the free A-generated pro-Vmon
monoid, where Vmon is the pseudovariety of all finite monoids M for which (M, id,M) is the
B-monoid component of a stamp in V.

As in the setting of regular languages, it is sometimes useful to extend varieties to
profinite alphabets. This will be crucial for our main result, Theorem 23. Let Y be a profinite
alphabet and let {πi : Y � Yi}i∈I be the set of all finite continuous quotients of Y . Further
let {hi,j : Yi � Yj | πj = hi,j ◦ πi} be the diagram of all quotient maps commuting with
the projections. Then this is a projective limit system, and it is a well-known fact that
Y is the projective limit of this system (see Appendix A). On the other hand, since V is
a C-variety, each of the maps hi,j defines a unique monoid quotient map h∗i,j : Y ∗i � Y ∗j ,
which dually defines an embedding of Boolean algebras (h∗i,j)−1 : V(Yj) ↪→ V(Yi). Therefore,
using a slight adaptation of Proposition 7, we have that there exists a morphism of the
form Φi,j = (hi,j , gi,j , ϕi,j) from ΣYi

(V) to ΣYj
(V). Thus, the family {ΣYi

(V)}i∈I defines a
projective system with connecting morphisms Φi,j .

I Proposition 10. The projective limit of the family {ΣYi
(V)}i∈I exists and it is a BiM

presentation (Y, µ,M, p,X) on the profinite alphabet Y , which we denote by ΣY (V).

4 Logic on Words

Logic on words (see, e.g. [15]), is a logical language whose intended models are words, that is,
elements of the free monoid A∗, for a fixed finite alphabet A. We shall consider formulas
that are recursively built as follows:

letter predicates are formulas: for each a ∈ A, we have a letter predicate Pa(x);
numerical predicates are formulas: given k ≥ 0, a k-ary numerical predicate is given by a
relation R that assigns to each element n of N a subset Rn of {1, . . . , n}k (for instance,
the (binary) numerical predicate x < y assigns to each n the set {(i, j) | 1 ≤ i < j ≤ n});
Boolean combinations of formulas are formulas: if ϕ and ψ are formulas, then so are
ϕ ∧ ψ, ϕ ∨ ψ, and ¬ϕ;
unary quantification of a formula with respect to a variable is a formula: a quantifier is
given by a map Q : {0, 1}∗ → {0, 1} (for instance, the existential quantifier ∃ maps the
word ε1 · · · εk ∈ {0, 1}∗ to 1 if and only if there exists an index i such that εi = 1).

Sentences with letter predicates from A have words of A∗ as models. More generally,
models of formulas with free variables in Υ = {x1, . . . , xk} are given by Υ-structures,
wx1=i1,...,xk=ik , where w ∈ A∗ and i1, . . . , ik ∈ {1, . . . , |w|} (cf. [15, Chapter II]). We denote
by A∗ ⊗ Υ the set of all Υ-structures. The semantics of a formula can then be defined
inductively as follows. The {x}-structure wx=i satisfies Pa(x) if and only if its i-th letter
is an a, and wx1=i1,...,xk=ik satisfies the atomic formula R(x1, . . . , xk), where R is a k-ary
numerical predicate, if and only if (i1, . . . , ik) belongs to R|w|. The Boolean connectives and
∧, or ∨, and not ¬ are interpreted classically. A quantifier Q : {0, 1}∗ → {0, 1} is interpreted
as follows: w satisfies Qx ϕ(x) if and only if Q(δϕ(x)(w)) = 1, where δϕ(x) : A∗ → {0, 1}∗
sends w = a1 · · · ak to ε1 · · · εk where εi = 1 if and only if wx=i satisfies ϕ(x). Important

CSL 2017



13:8 Stone Duality and the Substitution Principle

examples of quantifiers are given by the existential quantifier ∃ mentioned above, modular
quantifiers ∃rq, for each q ∈ N and 0 ≤ r < q, mapping a word of {0, 1}∗ to 1 if and only if the
number of 1’s is congruent to r modulo q, and the majority quantifier Maj which sends an
element of {0, 1}∗ to 1 if and only if it has strictly more occurrences of 1 than of 0. Finally,
for a fixed set of free variables Υ, given a formula ϕ with free variables in Υ, we denote by
Lϕ the set of all Υ-structures satisfying ϕ.

In what follows, we fix a logical signature with set of numerical predicates N and set
of unary quantifiers Q. For each finite alphabet A and each finite set of variables Υ, we
denote by QA[N ](Υ) the corresponding set of first-order formulas with free variables in Υ,
and letter predicates for a ∈ A. For reasons which will become apparent in Section 4.1, we
are interested in studying fragments of logic allowing the alphabet to vary.

I Definition 11. A logic class Γ is a map that associates to each finite alphabet A and
finite set Υ of first-order variables, a set of formulas ΓA(Υ) ⊆ QA[N ](Υ) which satisfies the
following properties:
(LC.1) If Υ ⊆ Υ′, then ΓA(Υ) ⊆ ΓA(Υ′);
(LC.2) Each set ΓA(Υ) is closed under Boolean connectives ∧ and ¬ (and thus, under ∨);
(LC.3) Every map ζ : A→ B between finite alphabets induces a map ζΓ,Υ : ΓB(Υ)→ ΓA(Υ)

which sends ϕ ∈ ΓB(Υ) to the formula obtained by substituting, for every occurrence in
ϕ of a predicate Pb(x) with b ∈ B, the formula

∨
ζ(a)=b Pa(x). Note that if b is not in the

image of ζ, then Pb(x) is replaced by the empty join, which is logically equivalent to the
always-false proposition.

The intuitive idea behind the definition of a logic class is to model what is usually referred
to as a fragment of logic. For instance, considering all formulas of quantifier depth less than
k in a given logic defines a logic class.

We consider formulas up to semantic equivalence, and thus, by (LC.2), each ΓA(Υ) is
a Boolean algebra. The associated partial order relation is given by semantic implication:
ϕ ≤ ψ if and only if Lϕ ⊆ Lψ. That is, ΓA(Υ) is isomorphic to the Boolean algebra of
languages {Lϕ | ϕ ∈ ΓA(Υ)}.

Restricting to sentences, we obtain a language class A 7→ LA(Γ) = {Lϕ | ϕ ∈ ΓA(∅)}.
Note that property (LC.3) of logic classes implies that the associated class of languages
is closed under inverse images of lp-morphisms. Therefore, if each LA(Γ) is closed under
quotienting by words, then the language class is (at least) an lp-variety.

4.1 Substitution
The concept of substitution for the study of logic on words, as in [17], is quite different from
substitution in predicate logic. Substitution in predicate logic works on terms, whereas the
notion of substitution in [17] works at the propositional level of the predicate logic. As such
it provides a method for decomposing complex formulas into simpler ones. The core idea is
to enrich the alphabet over which the logic is defined in order to be able to substitute large
subformulas through letter predicates.

Roughly speaking, substitution is a tool for decomposing formulas into simpler ones. For
instance, the sentence ψ = ∃x ϕ(x) may be obtained from the sentence ∃x Pb(x) by replacing
Pb(x) by ϕ(x). Then, understanding ψ amounts to understanding both the sentence ∃x Pb(x)
and the formula ϕ(x). If we want to substitute away several subformulas in this way, we
must account for their logical relations. The idea of an alphabet is that the corresponding
predicates {Pa(x)}a∈A interpret in any word as a finite set F of formulas satisfying:
(A.1) ∨ϕ∈F ϕ is the always-true proposition;
(A.2) for every ϕ1, ϕ2 ∈ F distinct, ϕ1 ∧ ϕ2 is the always-false proposition.
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We formalise this concept of substitution. Suppose we are given two logic classes Λ and Γ.1
Further let C be a finite alphabet and ξ : C → ΛA(Υ ∪ {x}), where x /∈ Υ, a map whose
image satisfies (A.1) and (A.2). Note that, this is equivalent to requiring that the formulas
in the image of ξ are precisely the atoms of the Boolean algebra B generated by the image of
ξ. Now we may define the substitution given by ξ to be the map σξ : ΓC(∅) → QA[N ](Υ)
defined by substituting for any occurrence of a letter predicate Pc(z) in a sentence ψ ∈ ΓC(∅),
the formula ξ(c)(x/z) (that is, the formula obtained by substituting z for x in the formula
ξ(c) ∈ ΛA(Υ ∪ {x})). Note that here we assume (without loss of generality) that things have
been arranged so that the variables occurring in ψ, such as z, do not occur in the formulas
in the image of ξ. Since the only constraints on the interpretation of letters in a word are
given by the properties (A.1) and (A.2), it follows by a simple structural induction that σξ is
a morphism of Boolean algebras. We denote the image of this morphism by Γ ◦ B.

Note this name makes sense as Γ ◦ B is uniquely determined by B. Indeed, instead of
starting from a map ξ whose image satisfies (A.1) and (A.2), we could start with a finite
Boolean subalgebra B of ΛA(Υ∪{x}). Then we obtain a finite alphabet by letting CB = At(B)
and a map ξB given by the inclusion of At(B) in ΛA(Υ ∪ {x}). The resulting substitution,
which we will denote by σB (instead of σξB), has Γ ◦ B as its image. With this notation
in place, we can now compare the substitution maps obtained for different finite Boolean
subalgebras of ΛA(Υ ∪ {x}). In fact, in what follows, we shall argue that the concept of
substitution is naturally extendable to infinite Boolean algebras.

Let B1 ⊆ B2 be finite Boolean subalgebras of ΓA(Υ∪{x}). Then the dual of the inclusion
map B1 ↪→ B2 sends each atom of B2 to the unique atom of B1 that is above it (in the
order on B2). This yields a map ξ1,2 : C2 � C1, where Ci = At(Bi), for i = 1, 2, are the
corresponding alphabets. Now since Γ is a language class, by property (LC.3), ξ1,2 yields a
morphism ι1,2 : ΓC1(∅)→ ΓC2(∅). Moreover, since every element of B1 is logically equivalent
to the disjunction of the atoms of B2 below it, the morphism ι1,2 is in fact an embedding
and the following diagram commutes:

ΓC1(∅)

ΓC2(∅)

QA[N ](Υ)ι1,2

σB1

σB2

That is, B1 ⊆ B2 yields Γ ◦ B1 ⊆ Γ ◦ B2. Thus we have a direct system of subalgebras of
QA[N ](Υ) (see Appendix A). This allows us to extend the composition to infinite Boolean
algebras of formulas and thereby also to language classes.

I Definition 12. Let Λ and Γ be logic classes. For each finite set Υ of variables, and each
finite alphabet A, we define

(Γ ◦ Λ)A(Υ) =
〈

lim
−→
{Γ ◦ B | B ⊆ ΛA(Υ ∪ {x}) is a finite Boolean algebra} ∪ ΛA(Υ)

〉
BA
,

where the connecting morphisms are the inclusions Γ ◦ B1 ⊆ Γ ◦ B2 whenever B1 ⊆ B2.

I Proposition 13. Let Λ and Γ be logic classes. Then, Γ ◦ Λ is also a logic class.

1 We will only use the sentences of Γ, so we may assume that Γ consists entirely of sentences. It may for
example be all the depth one sentences using some quantifier of interest.
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4.2 Substitution and Duality: The Substitution Principle
Substitution allows us to describe logic classes as compositions of simpler ones. In Section 5
we treat recognition for languages given by formulas obtained by substitution in terms of
recognisers of the components. Key ingredients for this are the dual of the substitution map,
which we describe in Proposition 14, and the concrete description of the languages given by
formulas obtained by substitution (Corollary 15) that it provides.

Let Γ and Λ be logic classes and A a finite alphabet. In this subsection, our goal is to
describe the languages in LA(Γ ◦ Λ), or equivalently, the languages defined by sentences of
(Γ ◦ Λ)A(∅). If B is a finite Boolean subalgebra of ΛA(x) and CB=At(B), then B defines
a substitution morphism σB: ΓCB (∅)→ (Γ ◦ Λ)A(∅), which may be seen as a morphism
σB:LCB (Γ) → LA(Γ ◦ Λ) between the corresponding Boolean algebras of languages given
by Lψ 7→ LσB(ψ). Let ΣB be the Stone dual of σB. Since LA(Γ ◦ Λ) and LCB (Γ) are
Boolean algebras of languages over A∗ and C∗B, respectively, we have maps p : A∗ → XLA(Γ◦Λ)
and q : C∗B → XLCB (Γ) with dense images obtained as the restrictions of the dual maps of
the inclusions LA(Γ ◦ Λ)↪→P(A∗) and LCB (Γ)↪→P(C∗B), respectively. A continuous map
XLA(Γ◦Λ)→XLCB (Γ) need not restrict to the dense images of the monoids, however this is
indeed the case for the maps ΣB. This is a consequence of the following stronger result.
I Proposition 14. Let B be a finite Boolean subalgebra of ΛA(x), CB = At(B), and let
ξ : A∗ ⊗ {x} → CB be the dual to the embedding B ↪→ P(A∗ ⊗ {x}). Then, the function
τB : A∗ → C∗B defined by τ(w) = ξ(wx=1) · · · ξ(wx=|w|) makes the diagram commute:

A∗

XLCB (Γ)XLA(Γ◦Λ)

C∗B
τB

ΣB

rp q

Recall, by Definition 12, that (Γ ◦ Λ)A(∅) is generated as a Boolean algebra by ΛA(∅) and
the sentences of the form σB(ψ) for ψ ∈ ΓCB (∅) for B a finite Boolean subalgebra of ΛA(x).
From the proof of Proposition 14 (see (4) in Appendix C.2), we obtain a concrete description
of the languages corresponding to LA(Γ ◦ Λ).
I Corollary 15 (Substitution Principle). The Boolean algebra LA(Γ ◦ Λ) is generated by the
languages of LA(Λ) together with the languages of the form τ−1

B (K), where B ⊆ ΛA(x) is a
finite Boolean subalgebra and K ∈ LCB (Γ).
Dualising the direct limit system {Γ ◦ B}B discussed in Section 4.1, we obtain a projective
system (see Appendix A):
I Proposition 16. The class of morphisms

{τB : A∗ → C∗B | B ⊆ ΛA(x) is a finite Boolean subalgebra}

forms a projective limit system, where the connecting morphisms are the morphisms of
monoids C∗B2

→ C∗B1
induced by the dual maps of inclusions B1 ↪→ B2. The limit of this

system is the map τ : A∗ → X∗ΛA(x) sending a word w ∈ A∗ to the word µ1 · · ·µ|w| with
µi = {ϕ(x) ∈ ΛA(x) | wx=i satisfies ϕ(x)}, and XΛA(x) is the dual of ΛA(x).
Note that the maps τB are all length preserving, thus the above system factors into projective
limit systems {τB : An → (CB)n | B ⊆ ΛA(x) is a finite Boolean subalgebra} for each n ∈ N,
and each of these systems has a profinite limit in the usual sense. The space X∗ΛA(x) obtained
in Proposition 16 is then seen as the union over n ∈ N of the spaces Xn

ΛA(x), each one of
those being a Boolean space when equipped with the product topology.
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5 The Block Product Principle

It is well-known that when the logic classes considered define only regular languages, the
decomposition of first-order formulas given by the Substitution Principle is modelled by the
usual block product of finite monoids (see [17] for a survey). In this section, we consider
a notion of block product that generalises the usual one from a logic perspective, thereby
obtaining a Block Product Principle for lp-pseudovarieties of typed stamps (cf. Theorem 21).

The Substitution Principle justifies the interest in studying the family of maps τB
parameterised by finite Boolean subalgebras B ⊆ ΛA(x). In turn, each language defined by a
formula ϕ(x) may be seen as a language over the extended alphabet A× 2{x}, and therefore
it is recognised by some typed stamp over the alphabet A× 2{x}. The following notion of
transduction encodes the maps τB in terms of recognition (cf. Proposition 18).

I Definition 17. Let S = (A× 2{x}, ν,N, q, Y ) be a typed stamp. We let CS be the alphabet
contained in Y given by the image q ◦ ν[A∗ ⊗ {x}]. The transduction determined by S is the
map τS : A∗ → C∗S given by τS(w) = q ◦ ν(wx=1) · · · q ◦ ν(wx=|w|).

I Proposition 18. Let B ⊆ ΛA(x) be a finite Boolean algebra, and S = (A× 2{x}, ν,N, q, Y )
be the syntactic typed stamp of the Boolean subalgebra of P((A× 2{x})∗) generated by the set
of languages definable by a formula of B. Then, CS is isomorphic as a set to CB = At(B),
and τS = τB.

Now, in view of the Substitution Principle and of Proposition 18, our goal is to identify
the recognisers of languages of the form τ−1

S (K) when K ⊆ C∗S is recognised by a given
typed stamp R. The block product R� S, that we introduce in Definition 19 below, has the
property of recognising these languages and little more (cf. Proposition 20).

Recall that, given monoids M and N , their block product, M �N , is the monoid with
underlying set MN×N×N and binary operation given by (f, n)(f ′, n′) = (h, n ·n′), where
h(n1, n2) = f(n1, n

′ ·n2) + f ′(n1 ·n, n2). Here, in order to improve readability, we are
denoting the operation on M additively and that on N multiplicatively, although neither is
assumed to be commutative.

I Definition 19. Let R = (CS, µ,M, p,X) and S = (A × 2{x}, ν,N, q, Y ) be typed stamps.
For each letter a ∈ A, we define the function fa : N ×N →M by

fa(n1, n2) = µ ◦ q(n1 ν(a, {x})n2),

and we let FR,S be the set of all such functions. Then, the block product of R and S, denoted
R�S, is the typed stamp

(A,µ�q ν, 〈FR,S × ν(A)〉, p� q,X × Y ),

where 〈FR,S×ν(A)〉 is the submonoid of the usual block product of monoidsM �N generated
by FR,S × ν(A), µ�q ν is the unique homomorphism mapping a ∈ A to (fa, ν(a)), and p� q
sends (f, n) to (p ◦ f(1, 1), q(n)).

We now state the local version of the Block Product Principle.

I Proposition 20. Let R = (CS, µ,M, p,X) and S = (A× 2{x}, ν,N, q, Y ) be typed stamps.
Then, a language L ⊆ A∗ is recognised by R�S if and only if it is a Boolean combination
of languages of the form τ−1

S (K1) ∩ K2 for some language K1 ⊆ C∗S recognised by R and
some language K2 ⊆ A∗ recognised by the lp-substamp of S defined by the injective map
A ↪→ A× 2{x} sending a to (a, ∅).
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13:12 Stone Duality and the Substitution Principle

Given lp-pseudovarieties V and W of typed stamps, we denote by V�W the lp-pseudo-
variety generated by R� S for R ∈ V and S ∈W typed stamps over suitable alphabets. Note
that, the multiplicative closure of this set of block products forms a separating set for each
of the monoid presentations. We denote by V �W the corresponding lp-variety of languages
(recall Theorem 9). As a consequence of Proposition 20 we obtain:

I Theorem 21 (Block Product Principle). Let V and W be lp-pseudovarieties of typed stamps.
Then, the Boolean algebra (V �W)(A) is generated by the languages of W(A) together with
the languages of the form τ−1(K), where τ is a transduction defined by an element of W and
K belongs to V(C) for a suitable alphabet C.

6 A generalisation of Semidirect Product

In Section 5, we showed that the block product of typed stamps is suitable for the recognition
of languages defined by formulas obtained by substitution. In this section, we describe the
structure of the syntactic B-stamp ΣA(V�W) of the Boolean algebra of languages recognised
by some element of V�W, when V and W are two given lp-pseudovarieties (cf. Theorem 23).
This may be considered as analogue to the result of Almeida and Weil [1] describing the
A-generated free pro-(V∗∗W) monoid as a two-sided semidirect product of the free pro-V
and pro-W monoids over suitable alphabets. In their result, V and W are pseudovarieties of
finite monoids in the usual sense (recall the beginning of Section 3.4) and V∗∗W denotes the
pseudovariety generated by the (usual) block product of monoids, M �N , for M ∈ V and
N ∈W.

Let M and N be monoids. Again, we denote the operation on M additively and that on
N multiplicatively.

A monoid biaction of N on M is a biaction of N on the underlying set of M , satisfying
the following additional properties:

n1 · (m1 +m2) · n2 = n1 ·m1 · n2 + n1 ·m2 · n2, for all n1, n2 ∈ N , and m1,m2 ∈M ;
n1 · 0 · n2 = 0, for all n1, n2 ∈ N .

Given such a biaction, we may define a new monoid, called the two-sided semidirect product,
usually denoted by M∗∗N . It has underlying set M ×N , and operation defined by

(m1, n1)(m2, n2) = (m1 · n2 + n1 ·m2, n1n2).

An example of this construction is given by the usual block product of monoids.
More generally, if R = (M,p,X) and S = (N, q, Y ) are B-monoids and N bi-acts

on M , one may define the two-sided semidirect product of R and S to be the B-monoid
(M∗∗N, p×q,X×Y ) whereM∗∗N is the usual semidirect product of monoids with respect to
the given biaction. Note that, even if R and S are both BiM’s, the resulting semidirect product
need not be a BiM. Let ΣA×2(W) = (A× 2{x}, ν,N, q, Y ) and ΣY (V) = (Y, µ,M, p,X). In
order to understand the structure of the BiM component of ΣA(V�W), we start by showing
that N naturally bi-acts on X. Intuitively, that is a consequence of V(C) being closed under
quotients for every finite alphabet C.

I Proposition 22. There is a biaction of N on X whose left and right components at each
n ∈ N , ψ`,n and ψr,n, respectively, are continuous maps that satisfy

ψ`,n ◦ p ◦ µ(y1, . . . , yk) = p ◦ µ(λn(y1), . . . , λn(yk)), (1)
ψr,n ◦ p ◦ µ(y1, . . . , yk) = p ◦ µ(ρn(y1), . . . , ρn(yk)). (2)
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In particular, N bi-acts on M and hence, there is a well-defined two-sided semidirect
product (M,p,X)∗∗(N, q, Y ). Moreover, each homomorphism h : C∗ →M∗∗N defines a B-
stamp ΣY (V)∗∗ΣA×2(W) over the alphabet C, whose B-monoid component is a B-submonoid
of (M,p,X)∗∗(N, q, Y ). We are now able to state the main result of this section.

I Theorem 23. Let V and W be lp-pseudovarieties of typed stamps. Then, the BiM present-
ation ΣA(V�W) is isomorphic to a two-sided semidirect product ΣY (V)∗∗ΣA×2(W).

Proof Sketch. Let ΣA(V�W) = (A, η, P, r, Z), and let τ : A∗ → Y ∗ be the map given by

τ(w) = (q ◦ ν(wx=1), . . . , q ◦ ν(wx=|w|)),

for w ∈ A∗. In other words, the co-restriction of τ to its image is the limit of the projective
system described in Proposition 16. We claim that the homomorphism h : A∗ → M∗∗N
sending the word w to the pair (µ◦τ(w), ν(w)) defines a semidirect product ΣY (V)∗∗ΣA×2(W),
which is isomorphic to ΣA(V�W).

Using the Block Product Principle, we may prove the existence of an onto morphism of
Boolean algebras Clopen(X)⊕Clopen(Y )� (V �W)(A), which dually defines an embedding
of Boolean spaces θ : Z ↪→ X × Y . On the other hand, one may also prove the inclusion
ker(η) ⊆ ker(h), and thus, there is a homomorphism g : P →M∗∗N satisfying g ◦ η = h and
θ ◦ r = (p× q) ◦ g. In particular, g is necessarily injective and this proves the claim. J

7 Applications to logic

In this section, we show how to apply the results of the paper to decompose a logic class
Q[N ] under the assumption that it admits a prenex normal form. That is, each formula
is equivalent to one in which a string of quantifiers is applied to a quantifier free formula.
Requiring a logic signature to admit prenex normal forms is a mild condition which is satisfied
as soon as the logical language is sufficiently expressive. Indeed, this is the case for many
standard classes considered in Boolean circuit complexity, such as those referred to in the
introduction.

Given a set of quantifiers Q, we let ΓQ be the logic class of sentences assigning to the
finite alphabet A the Boolean algebra generated by formulas of the form Qx

∨
a∈B Pa(x),

with Q ∈ Q and B ⊆ A. In turn, if N is a set of numerical predicates, then ΛN is the logic
class in which ΛN ,A(Υ) consists of all Boolean combinations of numerical predicates from N ,
letter predicates for letters in A, and having free variables in Υ.

Suppose we are given a finite Boolean subalgebra B ⊆ ΛN ,A({x1, . . . , xk−1, xk}). The
substitution map defined by B in Section 4.1 has image ΓQ ◦ B, which is a finite Boolean
subalgebra of (ΓQ ◦ ΛN )A({x1, . . . , xk−1}) (when we take Υ = {x1, . . . , xk−1}). We may
now consider the substitution map defined by ΓQ ◦ B, thereby obtaining a finite Boolean
subalgebra of (ΓQ ◦ (ΓQ ◦ ΛN ))A({x1, . . . , xk−2}). By successively iterating the operation
Λ 7→ (ΓQ ◦ Λ), one is able to produce all the prenex normal form sentences of QA[N ](∅) of a
given quantifier depth. Thus we obtain:

I Proposition 24. Let Q be a set of quantifiers and N a set of numerical predicates such
that every formula of QA[N ] admits a prenex normal form. Then,

QA[N ](∅) =
⋃
n∈N

ΓQ ◦ (· · · ◦ (ΓQ︸ ︷︷ ︸
n times

◦ΛN ) . . . )A(∅).

In order to be able to apply the results of previous section and, through Proposition 24, ob-
tain recognisers for the languages definable in Q[N ], one should identify the lp-pseudovarieties
of typed stamps that recognise the languages definable in the logic classes ΓQ and ΛN .
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I Proposition 25. Given a quantifier Q : {0, 1}∗ → {0, 1}, we let LQ be the language Q−1(1)
and RQ its syntactic typed stamp. Then, a language is defined by a sentence of ΓQ,A(∅) if and
only if it is recognised by a restricted product of typed lp-substamps of RQ over the alphabet A.

As a consequence, we have that the lp-variety of languages VQ mapping the finite alphabet
A to the closure under quotients of the Boolean algebra of languages definable in ΓQ,A(∅)
corresponds to the lp-pseudovariety of typed stamps that is generated by the elements of the
form RQ, with Q ∈ Q (recall Theorem 9).

We illustrate Proposition 25 by instantiating Q with some of the most relevant examples
of quantifiers appearing in the literature.

I Example 26. Let B = {0, 1} be the two-element join semilattice. Then, R∃ is given by
the typed stamp ({0, 1}, µ∃,B, p∃, {0, 1}), where both µ∃ restricted to {0, 1} and p∃ are the
identity map between the respective underlying sets. On the other hand, for the quantifier ∃rq,
one has R∃r

q
= ({0, 1}, µ∃r

q
,Z/qZ, p∃r

q
, {0, 1}), where µ∃r

q
(0) = [0], µ∃r

q
(1) = [1], and p∃r

q
([k])

is mapped to 1 if and only if k − r is divisible by q. Finally, one may check that RMaj is the
typed stamp ({0, 1}, µMaj,Z, pMaj, {0, 1}) with µMaj(0) = −1, µMaj(1) = 1, and pMaj(k) = 1 if
and only if k > 0.

Next, we illustrate how to define a typed stamp recognising a given numerical predicate.
The intuitive idea is to use a product of monoids of the form M1 ×M2 ×M3 where M1
encodes the length of a word,M2 encodes the first position marked by each variable, whileM3
encodes the last one. Let (R : n 7→ Rn) be a k-ary numerical predicate, and Υ = {x1, . . . , xk}
a set of k variables. For each ` ∈ N we define the map α` : B → N by setting α`(0) = `

and α`(1) = 0. We let N ◦ B and N ◦r B be, respectively the usual wreath and reversed
wreath product of monoids, and N the submonoid of N × (N ◦ B)k × (N ◦r B)k generated
by {1} × ({α1} × B)k × ({α1} × B)k. An easy computation shows that every element of
N belongs to N × ({α`}`∈N × B)k × ({α`}`∈N × B)k. For each subset S ⊆ Υ and each
variable x ∈ Υ we set nS,x = (α1, 1) if x ∈ S and nS,x = (α1, 0) otherwise. Finally, we let
SR = (A× 2Υ, νR, N, qR, {0, 1}) be the typed stamp defined by

νR(a, S) = (1, (nS,xi
)ki=1, (nS,xi

)ki=1)
qR(n, (α`i , εi)ki=1, (αki , δi)ki=1) = 1 ⇐⇒ ∀i (εi = δi = 1 and ki = n− `i + 1)

and (`1, . . . , `k) ∈ Rn.

I Proposition 27. The typed stamp SR recognises LR, the language of (A× 2Υ)∗ defined by
R, via the subset {1}.

We let VN be the lp-pseudovariety generated by the typed stamps SR, for R ∈ N an
|Υ|-ary numerical predicate.

Combining these constructions with Proposition 24, we have the following:

I Proposition 28. Let Q be a set of quantifiers and N a set of numerical predicates such
that every formula of QA[N ] admits a prenex normal form. Every language definable in
Q[N ] is recognised by some typed stamp in⋃

n∈N
VQ� (. . . � (VQ︸ ︷︷ ︸

n times

�VN ) . . . ). (3)

On the other hand, as a consequence of the next result, we have that the elements of (3)
do not recognise much more languages than the ones definable in Q[N ].
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I Proposition 29. Let S be the syntactic typed stamp of a formula ϕ ∈ QA[N ](Υ). Then,
every language recognised by a typed lp-substamp of S is definable in (FO +Q)[{=} ∪ N ].

Proof Sketch. We consider the case where Υ = {x} and ϕ(x) has one free variable x. The
general one is handled similarly. Let S = (A× 2{x}, ν,N, q, Y ) be the syntactic typed stamp
of ϕ(x), let B be a finite alphabet, and h : B∗ → (A× 2{x})∗ an lp-morphism. It suffices to
show that the language L = (q ◦ ν ◦ h)−1(1), is definable in (Q+ FO)[N ∪ {=}]. Take

φ = ∃!z ϕ(z) ∧ (∨h(b)∈A×{{x}}Pb(z)).

Then, one may check that L = Lφ. J

We finish this section with an example of application of Theorem 23.

I Example 30. Let N be a set of unary numerical predicates and Q = {∃}.
We write ΣA×2{x}(VN ) = (A× 2{x}, ν,N, q, Y ). By Example 26 we have that VQ is the

lp-pseudovariety generated by R∃. Applying Theorem 23 and using a well-known fact about
the structure of the space component of ΣY (VQ), we may derive that the BiM component of
ΣA(VQ�VN ) is the Schützenberger product of (N, q, Y ) introduced in [10]. In the mentioned
paper, the goal was to define a recogniser for the language L∃x ϕ(x) given a recogniser for
Lϕ(x), and the Schützenberger product of a BiM recognising Lϕ(x) played that role. We thus
provide a different explanation for their result.

8 Discussion

In Proposition 14, we have shown that the transductions are bona fide duals of substitution in
terms of Stone duality. This is crucial to the link between logic on words and topo-algebraic
methods. Our main result, Theorem 23, allows one to compute the syntactic space of the
Boolean algebra obtained by applying a very general form of quantifier to a variety of not
necessarily regular languages. This result was first proved by Almeida and Weil in [1] for
varieties of regular languages and quantifiers given by such. Several surprises have to be
overcome for the generalisation: the closure properties of pseudovarieties of typed stamps
are delicate, in the block-product of typed monoids, the ‘right’ finitely generated monoid
must be identified. Finally, the B-monoid based on the semidirect product in Theorem 23 is
not a BiM – even though the B-submonoid we seek is a BiM. More recently, the result of
Theorem 23 in the special cases of the classical existential quantifier [10] and of quantifiers
arising from finite semirings [11] has been obtained using codensity monads and transducers.

Boolean spaces are promising objects for separation results. As laid out in Section 7,
the block product and substitution principle and their connection to semidirect products of
B-monoids allow us, by induction, to compute the relevant spaces for important Boolean
circuit complexity classes. The equations satisfied by these spaces may in turn help in finding
a way of showing separations [9, 4].
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A Projective and direct limits

A projective system (also known as an inverse limit system, or a cofiltered diagram) F of
sets assigns to each element i of a directed partially ordered set I, a set Si, and to each
ordered pair i ≥ j in I, a map fi,j : Si → Sj so that for all i, j, k ∈ I with i ≥ j ≥ k we have
fi,i = idSi

and fj,k ◦ fi,j = fi,k. The projective limit (or inverse limit or cofiltered limit) of
F , denoted lim

←−
F , comes equipped with projection maps πi : lim

←−
F → Si compatible with

the system. That is, for i, j ∈ I with i ≥ j, fi,j ◦ πi = πj . Further, it satisfies the following
universal property: whenever {π′i : S′ → Si}i∈I is a family of maps satisfying fi,j ◦ π′i = π′j
for all i ≥ j, there exists a map g : S′ → lim

←−
F satisfying π′i = πi ◦ g, for all i ∈ I.

There are several things worth noting about this notion. First, the projective limit of F
may be constructed as follows:

lim
←−
F =

{
(si)i∈I ∈

∏
i∈I

Si | fi,j(si) = sj whenever i ≥ j
}
.

Second, projective limits of finite sets, called profinite sets, are equivalent to Boolean spaces.
If each Si is finite, then it is a Boolean space in the discrete topology, and the projective limit
is a closed subspace of the product and thus again a Boolean space. Conversely, a Boolean
space is the projective limit of the projective system of its finite continuous quotients.

Third, one also has projective systems and projective limits of richer structures than sets,
such as algebras, topological spaces, maps between sets, etc. In these enriched settings the
connecting maps are then required to be morphisms of the appropriate kind. A very useful
fact, which is used throughout this work, is that in all these settings, the projective limits
are given as for sets with the obvious enriched structure.

The notion dual to projective limit, obtained by reversing the directions of the maps, is
that of direct limit (also known as an injective limit or inductive limit or filtered colimit),
and it is denoted lim

−→
. It corresponds to the construction invoked in Definition 12.

B Appendix to Section 3

B.1 Proof of Proposition 7
We write R = (A,µ,M, p,X) and we let RB = (A,µB,MB, pB, XB) be the syntactic B-stamp
of B. It is clear that if RB factors through R, then every language recognised by RB is also
recognised by R and, in particular, B is recognised by R. Conversely, suppose that B is
recognised by R. Then, the kernel of µ is contained in the syntactic congruence ∼B, and
therefore, the syntactic morphism µB factors through µ, say g ◦ µ = µB. On the other hand,
the dual of the embedding B ↪→ Clopen(X) yields a continuous quotient map ϕ form X to
XB. Is is easy to check that the triple (id, g, ϕ) indeed defined a morphism from R to RB. J

C Appendix to Section 4

C.1 Proof of Proposition 13
For a given map ζ : A→ B between finite alphabets, and a set Υ = {x1, . . . , xk} of variables,
we define the map ζ⊗Υ : A∗⊗Υ→ B∗⊗Υ by (ζ⊗Υ)(wx1=i1,...,xk=ik ) = ζ∗(w)x1=i1,...,xk=ik .
Recall that, by Property (LC.3) of a logic class, ζ induces a map ζΓ,Υ : ΓB(Υ) → ΓA(Υ).
We first observe the following:
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I Lemma 31. Let Γ be a logic class, Υ a finite set of variables, and ζ : A → B a map
between finite alphabets. Then, for every formula ϕ ∈ ΓB(Υ) and Υ-structure u ∈ A∗ ⊗Υ,
we have

u |= ζΓ,Υ(ϕ) ⇐⇒ (ζ ⊗Υ)(u) |= ϕ.

The proof is omitted as it follows straightforward from induction on the construction of a
formula.

To prove Proposition 13 we shall also argue by induction on the construction of a formula.
This requires a slight extension of the substitution map defined in Section 4.1.

I Definition 32. Let Γ and Λ be logic classes, Υ a finite set of variables, and x a variable
that does not belong to Υ. Given a finite Boolean subalgebra B ⊆ ΛA(Υ ∪ {x}) and a finite
set of variables Ψ disjoint from Υ ∪ {x}, the map σB,Ψ : ΓCB (Ψ)→ QA[N ](Ψ ∪Υ ∪ {x}) is
the natural extension of the substitution map σB.

Proof of Proposition 13. Properties (LC.1) and (LC.2) follow immediately from the fact
that Γ and Λ are logic classes and from the definition of Γ ◦ Λ. To prove (LC.3), we fix a
map ζ : A→ B and, in order to simplify, we take Υ = ∅. No additional difficulty arises from
the general case. By definition of Γ ◦ Λ, it suffices to show that, for every finite Boolean
subalgebra B ⊆ ΛB(x), the image of ζΓ◦Λ,∅ ◦ σB is contained in (Γ ◦ Λ)A(∅). Since Λ is
a logic class, the function ζ defines a morphism ζΛ,{x} : ΛB(x) → ΛA(x). Let B′ be the
Boolean algebra generated by ζΛ,{x}(B). We claim that the set of atoms of B′ is given by
ζΛ,{x}(At(B)). Indeed, this follows from the equivalence

wx=i |= ζΛ,{x}(ϕ) ⇐⇒ ζ(w)x=i |= ϕ, for every ϕ ∈ B and w ∈ A∗,

which is given by Lemma 31. Hence, the bijection ζ ′ : CB → CB′ induced by ζΛ,{x} defines a
map ζ ′Γ,∅ : ΓCB (∅)→ ΓCB′ (∅), and one may check the equality σB′ ◦ ζ ′Γ,∅ = ζΓ◦Λ, ◦ σB. This
completes the proof. J

C.2 Proof of Proposition 14
Let w ∈ A∗, u ∈ C∗B, and c ∈ CB, and denote by ϕc(x) the atom of B that the letter c stands
for. Then the fact that ξ is dual to the inclusion means

wx=i � ϕc(x) ⇐⇒ c = ξ(wx=i)

and by the definition of letter predicates we have

ux=i � Pc(x) ⇐⇒ ui = c.

So, by definition of τB, for each i ∈ {1, . . . , |w|} and each c ∈ CB, we have

wx=i � ϕc(x) ⇐⇒ (τB(w))x=i � Pc(x).

Since the validity of quantifiers is determined by the truth values of the formulas in their
scope at all points of the model, and since ψ ∈ ΓCB (∅) and τB(ψ) are built up identically once
the substitutions of Pc(x) by ϕc(x) have been made, it follows that, for each ψ ∈ ΓCB (∅), we
have

τB(w) ∈ Lψ ⇐⇒ w ∈ LσB(ψ). (4)
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However

w ∈ LσB(ψ) ⇐⇒ LσB(ψ) ∈ p(w) ⇐⇒ Lψ ∈ ΣB(p(w))

so that

τB(w) ∈ Lψ ⇐⇒ Lψ ∈ ΣB(p(w))

and thus ΣB(p(w)) = q(τB(w)) as required. J

D Appendix to Section 5

D.1 Proof of Proposition 20
It is enough to prove the claim for languages of the form

L = ((p� q) ◦ (µ�q ν))−1(x, y),

for some (x, y) ∈ X × Y . Note that every other language recognised by R�S is a Boolean
combination of languages of this form. Let w ∈ A∗ be a word. By the definitions, w belongs
to L if and only if

(p ◦ µ ◦ τS(w), q ◦ ν(w)) = (x, y).

But this means that L = τ−1
S (K1) ∩K2 where K1 = (p ◦ µ)−1(x) and K2 = (q ◦ ν)−1(y) are

languages recognised, respectively, by R and by the lp-substamp of S determined by the
injective map A∗ ↪→ (A× 2{x})∗ sending a to (a, ∅). J

E Appendix to Section 6

E.1 Proof of Proposition 22
In Section 3.4 we defined the B-stamp ΣY (V) to be the projective limit of a certain family
of BiM presentations. We use the notation of that section in the rest of the proof, which we
briefly recall here. If I is the set indexing the finite continuous quotients of Y , which are
denoted πi : Y � Yi, we say that i ≥ j provided there exists a quotient map hi,j : Yi � Yj
such that hi,j ◦ πi = πj . In particular, writing ΣYi

(V) = (Yi, µi,Mi, pi, Xi), we have a
connecting morphism Φi,j = (hi,j , gi,j , ϕi,j) whenever i ≥ j.

We start by defining the left action of N on X. Given n ∈ N , we let λn : Y → Y be the
left action of N on Y (recall Definition 2). For each i ∈ I, the co-restriction to the image
of the map πi ◦ λn is a continuous quotient of Y . Thus, there exists an index ε(i) ∈ I such
that πε(i) is the co-restriction of πi ◦ λn to Yε(i). In order to make more explicit at each
step the set to which a certain element belongs, we denote by hi : Yε(i) ↪→ Yi the inclusion
map. In particular, the equality hi ◦ πε(i) = πi ◦ λn holds. Since V is a C-pseudovariety,
the map hi yields a representation of ΣYε(i)(V) as a B-substamp of ΣYi(V). We denote by
gi : Mε(i) ↪→ Mi and ϕi : Xε(i) ↪→ Xi the corresponding inclusion maps. In particular, we
have the equality

ϕi ◦ pε(i) ◦ µε(i) = pi ◦ µi ◦ h∗i . (5)

On the other hand, whenever i ≥ j, it is an easy observation that the codomain of the map
hi,j ◦ hi is precisely Yε(j). Therefore, we also have ε(i) ≥ ε(j). Note that, for κ ∈ {h, g, ϕ},
we have

κj ◦ κε(i),ε(j) = κi,j ◦ κi. (6)
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To define the map ψ`,n, we remark that X is the subspace of
∏
i∈I Xi that consists of

the tuples (xi)i∈I satisfying ϕi,j(xi) = xj for every i ≥ j. Then, we set

ψ`,n((xi)i∈I) = (ϕi(xε(i)))i∈I . (7)

This is a well-defined continuous map provided ϕj(xε(j)) = ϕi,j ◦ ϕi(xε(i)), whenever i ≥ j.
But this follows immediately from the definition of X, together with (6) for κ = ϕ. More
generally, we define ψr,n.

Finally, it is easy to see that setting n · x = ψ`,n(x) and x · n = ψr,n(x), for n ∈ N and
x ∈ X, defines a biaction.

Now, given (y1, . . . , yk) ∈ Y ∗, we may compute:

ψ`,n ◦ p ◦ µ(y1, . . . , yk) = ψ`,n[(pi ◦ µi ◦ π∗i (y1, . . . , yk))i∈I ] by definition of X
= (ϕi ◦ pε(i) ◦ µε(i) ◦ π∗ε(i)(y1, . . . , yk))i∈I by (7)

= (pi ◦ µi ◦ h∗i ◦ π∗ε(i)(y1, . . . , yk))i∈I by (5)

= (pi ◦ µi ◦ π∗i ◦ λ∗n(y1, . . . , yk))i∈I because πi ◦ λn = hi ◦ πε(i).

This computation proves (1). Equality (2) is derived similarly. J

F Appendix to Section 7

F.1 Proof of Proposition 25
It suffices to consider the case where we are given a sentence of the form

ϕ = (Qx
∨
a∈B

Pa(x)),

for a certain subset B ⊆ A. Let h : A∗ → {0, 1}∗ be the unique homomorphism that sends
the letter a to 1 if and only if a belongs to B. Then, by the way quantifiers are interpreted,
we have that the models of ϕ are precisely the elements of (Q ◦ h)−1(1) and thus, Lϕ is
recognised by the typed lp-substamp of RQ defined by h. J

F.2 Proof of Proposition 27
We illustrate the proof in the case R is a unary predicate. We first observe that, for every
`, `1, `2 ∈ N, the equalities

α` · 0 = α` = 0 · α`; α` · 1 = α0 = 1 · α`; and α`1 + α`2 = α`1+`2 ;

hold. Given a word u = (a1, S1) · · · (am, Sm) ∈ (A× 2{x})∗ with at least one marked position,
we set

imin = min{j | Sj 6= ∅} and imax = max{j | Sj 6= ∅}.

Then, one may compute

νR(u) = (m, (αimin , 1), (αm−imax+1, 1))

Thus, u belongs to A∗ ⊗ {x} if and only if imin = m− imax + 1, and in that case the unique
marked position of w is imin. This means that u is a model of R if and only if pR ◦ νR(u) = 1.
On the other hand, if w is a word over A, then we have

νR(w) = (α`, 0),

for some ` ∈ N. Thus, pR ◦νR(w) = 0. This proves that LR = (pR ◦νR)−1(1) as intended. J
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