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Abstract
We introduce the logic ITLe, an intuitionistic temporal logic based on structures (W,4, S), where
4 is used to interpret intuitionistic implication and S is a 4-monotone function used to interpret
temporal modalities. Our main result is that the satisfiability and validity problems for ITLe are
decidable. We prove this by showing that the logic enjoys the strong finite model property. In
contrast, we also consider a ‘persistent’ version of the logic, ITLp, whose models are similar to
Cartesian products. We prove that, unlike ITLe, ITLp does not have the finite model property.
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1 Introduction

Intuitionistic logic [6, 22] and its modal extensions [9, 27, 28] play a crucial role in the area
of computer science and artificial intelligence. For instance, Pearce’s Equilibrium Logic [26],
which characterises the Answer Set semantics [21, 23] of logic programs (ASP), is defined
in terms of the intermediate logic of Here and There [15], together with a minimisation
criterion. Extensions of Here and There logic allowed the ASP paradigm, already used in
a wide range of domains [1, 3, 14, 16, 25], to be applied to reasoning about temporal or
epistemic scenarios [5, 10] while satisfying the theorem of strong equivalence [4, 20, 10],
central to logic programming and nonmonotonic reasoning.

Such modal extensions of Here and There logic are simple cases of a modal intuitionistic
logic; in general, the study of such logics can be a challenging enterprise [28]. In particular,
there is a huge gap that must be filled regarding combinations of intuitionistic and linear-time
temporal logic. Nevertheless, there have been several efforts in this direction, including logics
with ‘past’ and ‘future’ tenses [9] or with ‘next’ , ’eventually’ ♦ and/or ‘henceforth’ �
modalities. The main contributions to the field include the following:

Davies’ intuitionistic temporal logic with [7] was provided Kripke semantics and a
complete deductive system by Kojima and Igarashi [18].
Logics with ,� were axiomatized by Kamide and Wansing [17], where � was interpreted
over bounded time.
Nishimura [24] provided a sound and complete axiomatization for an intuitionistic variant
of the propositional dynamic logic PDL.
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14:2 A Decidable Intuitionistic Temporal Logic

Balbiani and Diéguez [2] axiomatized the Here and There variant of LTL with ,♦,�.
Davoren [8] introduced topological semantics for temporal logics and Fernández-Duque
[11] proved the decidability of a logic with ,♦ and a universal modality based on
topological semantics.

With the exception of [8, 11], semantics for intuitionistic LTL use frames of the form
(W,4, S), where 4 is a partial order used to interpret the intuitionistic implication and S
is a binary relation used to interpret temporal operators. Since we are interested in linear
time, we will restrict our attention to the case where S is a function. Thus, for example, p

is true on some world w ∈ W whenever p is true on S(w). Note, however, that S cannot
be an arbitrary function. Intuitionistic semantics have the feature that, for any formula ϕ
and worlds w 4 v ∈ W , if ϕ is true on w then it must also be true on v; that is, truth is
monotone. If we want this property to be preserved by formulas involving , we need for
4 and S to satisfy certain confluence properties. In the literature, one generally considers
frames satisfying
1. w 4 v implies S(w) 4 S(v) (forward confluence, or simply confluence), and
2. if u < S(w), there is v < w such that S(v) = u (backward confluence).
We will call frames satisfying these conditions persistent frames (see Sec. 3), mainly due to
the fact that they are closely related to (persistent) products of modal logics [12]. Persistent
frames for intuitionistic LTL are the frames of the modal logic S4 × LTL, which is non-
axiomatizable. For this reason, it may not be surprising that it is unknown whether the
intuitionistic temporal logic of persistent frames, which we denote ITLp, is decidable.

However, as we will see in Proposition 1, only forward confluence is needed for truth
of all formulas to be monotone, even in the presence of ♦ and �. The frames satisfying
this condition are, instead, related to expanding products of modal logics [13], which are
often decidable even when the corresponding product is non-axiomatizable. This suggests
that dropping the backwards confluence could also lead to a more manageable intuitionistic
temporal logic. This logic, which we denote ITLe, is the focus of the present paper and, as
we will prove in this paper, it enjoys a crucial advantage over ITLp: ITLe has the strong
finite model property1 (hence it is decidable), but ITLp does not. In fact, to the best of our
knowledge, ITLe is the first known decidable intuitionistic temporal logic that
1. is conservative over propositional intuitionistic logic,
2. includes (or can define) the three modalities ,♦,�, and
3. is interpreted over infinite time.

2 Syntax and semantics

We will work in the language L of LTL given by the following grammar:

ϕ,ψ := p | ⊥ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ→ ψ | ϕ | ♦ϕ | �ϕ,

where p is an element of a countable set of propositional variables P. Given any formula ϕ,
we write SF(ϕ) for the set of subformulas of ϕ and |ϕ| for the cardinality of SF(ϕ).

A dynamic poset is a tuple (W,4, S), where W is a non-empty set of states, 4 is a partial
order, and S is a function from W to W that satisfies the following (forward) confluence
condition:

for all w, v ∈W , if w 4 v then S(w) 4 S(v). (1)

1 That is, there is a computable function bounding the size of the smallest model, if there is one.
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◦a

◦b • c

Figure 1 Example of an ITLe modelM = (W,4, S, V ), where 4 is the reflexive closure of the
(already transitive) relation indicated by the solid arrows, S is the relation indicated by the dashed
arrows, and a black dot indicates that the variable p is true, so that we only have p ∈ V (c). Then,
the reader may readily verify thatM, b � p butM, b 2 p, whileM, c � p butM, c 2 p. From
this it follows thatM, a 2 ( p→ p) ∨ (p→ p).

An intuitionistic dynamic model, or simply a model, is a tupleM = (W,4, S, V ) consisting
of a dynamic poset equipped with a valuation function V from W to sets of propositional
variables satifying the monotonicity condition:

for all w, v ∈W , if w 4 v then V (w) ⊆ V (v). (2)

In the standard way, we define S0(w) = w and, for all k > 0, Sk(w) = S
(
Sk−1(w)

)
. Then

we define the satisfaction relation |= inductively by:

M, w � p iff p ∈ V (w)
M, w � ϕ iffM, S(w) � ϕ
M, w � ⊥ never
M, w � ♦ϕ iff ∃k s.t. M, Sk(w) � ϕ
M, w � ϕ ∧ ψ iffM, w � ϕ andM, w � ψ

M, w � �ϕ iff ∀k, M, Sk(w) � ϕ
M, w � ϕ ∨ ψ iffM, w � ϕ orM, w � ψ

M, w � ϕ→ ψ iff ∀v < w, ifM, v � ϕ thenM, v � ψ

Given a modelM = (W,4, S, V ), a set Σ of formulas, and w ∈W , we write ΣM(w) for the
set {ψ ∈ Σ | M, w � ψ}; the subscript ‘M’ is omitted when it is clear from the context. An
eventuality inM is a pair (w,ϕ), where w ∈W and ϕ is a formula such that either ϕ = ♦ψ
for some formula ψ and M, w � ϕ, or ϕ = �ψ for some formula ψ and M, w 2 ϕ. The
fulfillment of an eventuality (w,ϕ) is the finite sequence v0 . . . vn of states of the model such
that
1. for all k ≤ n, v0 = Sk(w),
2. if ϕ = ♦ψ thenM, vn � ψ and for all k < n,M, vk 2 ψ, and
3. if ϕ = �ψ thenM, vn 2 ψ and for all k < n,M, vk � ψ.

A formula ϕ is satisfiable over a class Ω of models if there is a modelM∈ Ω and a world w
so thatM, w � ϕ, and valid over Ω if, for every world w of every modelM∈ Ω,M, w � ϕ.
Satisfiability (resp. validity) over the class of all intuitionisitic dynamic models is called
satisfiability (resp. validity) for the expanding domain intuitionisitic temporal logic ITLe. We
will justify this terminology in the next section. First, we remark that dynamic posets impose
the minimal conditions on S and 4 in order to preserve the upwards-closure of valuations of
formulas. Below, we will use the notation JϕK = {w ∈W | M, w � ϕ}.

CSL 2017



14:4 A Decidable Intuitionistic Temporal Logic

I Proposition 1. Let D = (W,4, S), where (W,4) is a poset and S : W → W is any
function. Then, the following are equivalent:
1. S satisfies the confluence property (1);
2. for every valuation V on W and every formula ϕ, JϕK is upwards-closed under 4.

Proof. That 1 implies 2 follows by a standard structural induction on ϕ. The case where
ϕ ∈ P follows from the condition on V and most inductive steps are routine. Consider the
case where ϕ = �ψ, and suppose that w 4 v and w ∈ JϕK. Then, for all i ∈ N,M, Si(w) � ψ.
Since S is confluent, an easy induction shows that, for all i ∈ N, Si(w) 4 Si(v). Therefore,
from the induction hypothesis we obtain thatM, Si(v) � ψ for all i, hence v ∈ JϕK. Other
cases are similar or easier.

Now we prove that 2 implies 1 by contrapositive. Suppose that (W,4, S) does not
satisfy (1), so that there are w 4 v such that S(w) 64 S(v). Choose p ∈ P and define
V (u) = {p} if S(w) 4 u, V (u) = ∅ otherwise. It is easy to see that V satisfies the
monotonicity condition (2). But, p 6∈ V (S(v)), from which it follows that (D, V ), w � p but
(D, V ), v 2 p. J

We are concerned with the satisfiability and validity problems for ITLe. Observe that
satisfiability in propositional intuitionistic logic is equivalent to satisfiability in classical
propositional logic. This is because, if ϕ is classically satisfiable, it is trivially intuitionistically
satisfiable in a one-world model; conversely, if ϕ is intuitionistically satisfiable, it is satisfiable
in a finite model, hence in a maximal world of that finite model, and the generated submodel
of a maximal world is a classical model. Thus it may be surprising that the same is not the
case for intuitionistic temporal logic:

I Lemma 2. Any formula ϕ of the temporal language that is classically satisfiable is satisfiable
in a dynamic poset. However, there is a formula satisfiable on a dynamic poset that is not
classically satisfiable.

Proof. If ϕ is satisfied on a classical LTL modelM, then we may regardM as an intuitionistic
model by letting 4 be the identity. On the other hand, consider the formula ¬ p ∧ ¬ ¬p
(recall that ¬θ is a shorthand for θ → ⊥). Classically, this formula is equivalent to ¬ p∧ p,
and hence unsatisfiable. Define a modelM = (W,4, S, V ), where W = {w, v, u}, x 4 y if
x = y or x = v, y = u, S(w) = v and S(x) = x otherwise, V (u) = {p} and V (v) = V (w) = ∅.
Then, one can check thatM, w � ¬ p ∧ ¬ ¬p. J

Hence the decidability of the intuitionistic satisfiability problem is not a corollary of
the classical case. In Section 5, we will prove that both the satisfiability and the validity
problems are decidable.

3 Expanding and persistent frames

In this section, we discuss expanding and persistent models, and compare them to dynamic
models as we have defined above.

3.1 Expanding model property
The logic ITLe is closely related to expanding products of modal logics [13]. In this subsection,
we introduce stratified and expanding frames, and show that satisfiability and validity on
arbitrary models is equivalent to satisfiability and validity on expanding models. To do this,
it is convenient to represent posets using acyclic graphs.
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I Definition 3. A directed acyclic graph is a tuple (W, ↑), where W is a set of vertices,
↑ ⊆ W ×W is a set of edges whose reflexive, transitive closure ↑∗ is antisymmetric. We
will tacitly identify (W, ↑) with the poset (W, ↑∗). A path from w1 to w2 is a finite sequence
v0 . . . vn ∈W such that v0 = w1, vn = w2 and for all k < n, vk ↑ vk+1. A tree is an acyclic
graph (W, ↑) with an element r ∈ W , called the root, such that for all w ∈ W there is a
unique path from r to w. A poset (W,4) is also a tree if there is a relation ↑ on W ×W
such that (W, ↑) is a tree and 4 = ↑∗.

I Definition 4. A modelM = (W,4, S, V ) is stratified if there is a partition {Wn}n<ω of
W such that
1. each Wn is closed under 4,
2. for all n, there is relation ↑n such that (Wn,4�Wn

) is a tree, and
3. if w ∈Wn then S(w) ∈Wn+1.
If M is stratified, we write 4n, Sn, and Vn instead of 4�Wn

, S�Wn
, and V �Wn

and write
Mn = (Wn,4n, Vn). If moreover we have that S(w) 4 S(v) implies w 4 v, then we say that
M is an expanding model.

Given a finite, non-empty set of formulas Σ closed under subformulas, a model M =
(W,4, S, V ), and a state w ∈W , we will construct a stratified modelMe = (W e,4e, Se, V e)
such that for the root we of W e

0 , Σ(we) = Σ(w). To this end, we first define the set
D = N× N× 2Σ of possible defects. Since Σ is finite and not empty, we assume that D is
ordered such that for each k ∈ N, the kth element (x, y,H) of D is such that x ≤ k. Then, for
each k ∈ N, we construct inductively a tuple (Uk, ↑k, hk) where Uk ⊆ N×N, ↑k ⊆ Uk×Uk and
hk : Uk −→W . The modelMe is defined from all these tuples and the whole construction
proceeds as follows:

Base case. Let U0 = {0} × N, ↑0= ∅ and h0 be such that for all (0, y) ∈ U0, h0(0, y) =
Sy (w).

Inductive case. Let k > 0 and suppose that (Uk, ↑k, hk) has already been constructed. Let
(x, y,H) be the kth element of D. If
(D1) (x, y) ∈ Uk,
(D2) Σ(hk(x, y)) 6= H, and
(D3) there is v ∈W such that hk(x, y) 4 v and Σ(v) = H,
then we construct (Uk+1, ↑k+1, hk+1) such that:

Uk+1 = Uk ∪ {(c, d) ∈ N× N | c = k + 1 and d ≥ y}
↑k+1 = ↑k ∪ {((a, b), (c, d)) | a = x, c = k + 1, d ≥ y and b = d}
hk+1 = hk ∪

{
((c, d), w)

∣∣ c = k + 1, d ≥ y and w = Sd−y(v)
}

Otherwise (Uk+1, ↑k+1, hk+1) = (Uk, ↑k, hk).

Final step. We construct Me = (W e,4e, Se, V e) such that W e =
⋃
k∈N Uk, 4e = (↑e)∗,

where ↑e =
⋃
k∈N ↑k, Se = {((a, b), (c, d)) ∈W e ×W e | a = c and d = b+ 1} , and V e(x, y) =

V (hx(x, y)) .

I Lemma 5. For all (x, y), (x′, y′) ∈ W e, if (x, y) 4e (x′, y′), then x ≤ x′, y = y′ and
hx(x, y) 4 hx′(x′, y′).

CSL 2017
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(0, 0)a

(1, 0)b (2, 0)c

(0, 1)a

(1, 1)c (2, 1)a

(3, 1)b (4, 1)c

· · ·

· · · · · ·

· · ·

· · ·

Figure 2 The strata W e
0 , W e

1 obtained from the modelM defined in Figure 1. The subindexes
indicate the value of h =

⋃
k∈N hk.

Proof. Suppose that (x, y) 4e (x′, y′). There is a sequence (x0, y0) . . . (xn, yn) such that
(x0, y0) = (x, y), (xn, yn) = (x′, y′) and for all i < n, (xi, yi) ↑e (xi+1, yi+1). By construction,
for all i < n, (xi, yi) ↑xi+1 (xi+1, yi+1) and yi = yi+1. Let (x′′i+1, y

′′
i+1, H

′′
i+1) be the (xi+1−1)th

element of D and v′′i+1 the element of W choosen at the (xi+1 − 1)th step. By construction,
x′′i+1 = xi, y′′i+1 ≤ yi and by the ordering of D, xi ≤ xi+1− 1. Moreover, hxi(xi, y′′i+1) 4 v′′i+1.
Since hxi(xi, yi) = Syi−y′′i+1

(
hxi

(
xi, y

′′
i+1
))

and hxi+1(xi+1, yi+1) = Syi+1−y′′i+1
(
v′′i+1

)
, by the

confluence condition forM, hxi
(xi, yi) 4 hxi+1(xi+1, yi+1). J

I Lemma 6. Me is an expanding model.

Proof. First we check that Me is a model. By Lemma 5, 4e is antisymetric, hence a
partial order. For the monotonicity condition, suppose that (x, y) 4e (x′, y′). By Lemma 5,
hx(x, y) 4 hx′(x′, y′) and by the monotonicity condition forM, V (hx(x, y)) ⊆ V (hx′(x′, y′)).
For the confluence condition, it suffices to observe that by construction, if (x, y) ↑e (x′, y′)
then (x, y + 1) ↑e (x′, y′ + 1). Therefore, Me is a model. To prove that Me is stratified,
define W e

n = {(x, y) ∈W e | y = n} for all n ∈ N. Conditions 3 of Def. 4 trivially holds and
condition 1 comes directly from Lemma 5. To prove condition 2, it suffices to observe that by
construction, for all (x, y) ∈W e, either x = 0 or there is exactly one state (x′, y′) ∈W e such
that (x′, y′) ↑e (x, y). Therefore, by Lemma 5, for all (x, y) ∈ W e, there is a unique path
from (0, y) to (x, y). Finally, to prove thatMe is expanding, suppose that (c, b) ∈W e and
(a, b+ 1) ↑e (c, b+ 1). Then the (c− 1)th element of D is (a, y,H) for some y,H. Moreover,
since (c, b) ∈ W e, b ≥ y and since (a, y) ∈ W e, (a, b) ∈ W e and (a, b) ↑e (c, b). Therefore
it can easily be proved by induction on the length of the path from Se(w) to Se(v) that
Se(w) 4e Se(v) implies w 4e v. J

I Lemma 7. For any state (x, y) ∈ W e and any ψ ∈ Σ, Me, (x, y) � ψ if and only if
M, hx(x, y) � ψ.

Proof. The proof is by induction on the size |ψ| of the formula. The cases for propositional
variables, falsum, conjunctions and disjunctions are straightforward. For the temporal
modalities, it suffices to observe that for all (x, y) ∈W e and all n ∈ N, (x, y + n) ∈W e and
hx(x, y+n) = Sn (hx(x, y)). Finally, for implication, suppose first thatMe, (x, y) 2 ψ1 → ψ2.
Then there is (x′, y′) such that (x, y) 4e (x′, y′), Me, (x′, y′) � ψ1 and Me, (x′, y′) 2 ψ2.
By Lemma 5, hx(x, y) 4 hx′(x′, y′) and by induction hypothesis, M, hx′(x′, y′) � ψ1 and
M, hx′(x′, y′) 2 ψ2. Therefore, M, hx(x, y) 2 ψ1 → ψ2. For the other direction suppose
that M, hx(x, y) 2 ψ1 → ψ2. There is v′ ∈ W such that hx(x, y) 4 v′, M, v′ � ψ1 and
M, v′ 2 ψ2. Let k be such that (x, y,Σ(v′)) is the kth element of D. Condition (D3) trivially
holds and since x ≤ k, condition (D1) holds too. Hence, there is (x′, y′) ∈ W e such that
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Σ(hx′(x′, y′)) = Σ(v′) and either (x′, y′) = (x, y) or (x, y) ↑e (x′, y′). By induction hypothesis,
Me, (x′, y′) � ψ1 andMe, (x′, y′) 2 ψ2, henceMe, (x, y) 2 ψ1 → ψ2. J

In conclusion, we obtain the following:

I Theorem 8. A formula ϕ is satisfiable (resp. falsifiable) on an intuitionistic dynamic
model if and only if it is satisfiable (resp. falsifiable) on an expanding model.

3.2 Persistent frames

Expanding models were introduced as a weakening of product models. They often lead to
logics with a less complex validity problem. Thus it is natural to also consider a variant of
ITLe interpreted over product models, or over the somewhat wider class of persistent models.

I Definition 9. Let (W,4) be a poset. If S : W → W is such that, whenever v < S(w),
there is u < w such that v = S(u), we say that S is backward confluent. If S is both forward
and backward confluent, we say that it is persistent. A tuple (W,4, S) where S is persistent
is a persistent intuitionistic temporal frame, and the set of valid formulas over the class of
persistent intuitionistic temporal frames is denoted ITLp, or persistent domain LTL.

The name ‘persistent’ comes from the fact that Theorem 8 can be modified to obtain
a stratified model M′ where S′ : W ′k → W ′k+1 is an isomorphism, i.e. whose domains are
persistent with respect to S′. As we will see, the finite model property fails over the class of
persistent models.

I Lemma 10. The formula ϕ = ¬¬♦�p→ ♦¬¬�p is not valid over the class of persistent
models.

Proof. Consider the model M = (W,4, S, V ), where W = Z ∪ {r} with r a fresh world
not in Z, w 4 v if and only if w = r or w = v, S(r) = r and S(n) = n + 1 for n ∈ Z, and
JpK = [0,∞). It is readily seen that M is a persistent model, that M, r � ¬¬♦�p (since
every maximal world above r satisfies ♦�p), yet M, r 2 ♦¬¬�p, since there is no n such
thatM, Sn(r) � ¬¬�p. It follows thatM, r 2 ϕ, and hence ϕ is not valid, as claimed. J

I Lemma 11. The formula ϕ (from Lemma 10) is valid over the class of finite, persistent
models.

Proof. LetM = (W,4, S, V ) be a finite, persistent model, and assume thatM, w � ¬¬♦�p.
Let v1, . . . , vn enumerate the maximal elements of {v ∈W | w 4 v}. For each i ≤ n, let ki be
large enough so thatM, Ski(vi) � �p, and let k = max ki. We claim thatM, Sk(w) � ¬¬�p,
which concludes the proof. Let u < Sk(w) be any leaf. Then, there is vi < w such that
u = Sk(vi) (since compositions of persistent functions are persistent). But, since k ≥ ki, we
obtainM, u � �p, as desired. J

The following is then immediate from Lemmas 10 and 11:

I Theorem 12. ITLp does not have the finite model property.

Thus our decidability proof for ITLe, which proceeds by first establishing a strong finite
model property, does not carry over to ITLp. Whether ITLp is decidable remains open.

CSL 2017
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4 Combinatorics of intuitionistic models

In this section we introduce some combinatorial tools we will need in order to prove that
ITLe has the strong finite model property, and hence is decidable. We begin by discussing
labeled structures, which allow for a graph-theoretic approach to intuitionistic models.

4.1 Labeled structures and quasimodels
I Definition 13. Given a set Λ whose elements we call ‘labels’ and a set W , a Λ-labeling
function on W is any function λ : W → Λ. A structure S = (W,R, λ) where W is a set,
R ⊆ W ×W and λ is a labeling function on W is a Λ-labeled structure, where ‘structure’
may be replaced with ‘poset’, ‘directed graph’, etc.

A useful measure of the complexity of a labeled poset or graph is given by its level:

I Definition 14. Given a labeled poset A = (W,4, λ) and an element w ∈W , an increasing
chain from w of length n is a sequence v1 . . . vn of elements of W such that v1 = w and
∀i < n, vi ≺ vi+1, where u ≺ u′ is shorthand for u 4 u′ and u′ 64 u. The chain v1 . . . vn is
proper if it moreover satisfies ∀i < n, λ (vi) 6= λ (vi+1) . The depth dpt(w) ∈ N ∪ {ω} of w is
defined such that dpt(w) = m if m is the maximal length of all the increasing chains from w

and dpt(w) = ω if there is no such maximum. Similarly, the level lvl(w) ∈ N ∪ {ω} of w is
defined such that lvl(w) = m if m is the maximal length of all the proper increasing chains
from w and lvl(w) = ω if there is no such maximum. The level lvl(A) of A is the maximal
level of all its elements.

The notions of depth and level are extended to any acyclic directed graph (W, ↑, λ) by
taking the respective values on (W, ↑∗, λ).

An important class of labeled posets comes from intuitionistic models.

I Definition 15. Given an intuitionistic Kripke model M = (W,4, V ) and a set Σ ⊆ L
closed under subformulas, it can easily be checked that for all w, v ∈ W , if w 4 v then
Σ(w) ⊆ Σ(v). We denote the labeled poset (W,4,Σ(·)) byMΣ. Conversely, given a labeled
poset A = (W,4, λ) over 2Σ such that if w 4 v then λ(w) ⊆ λ(v), the valuation Vλ is defined
such that Vλ(w) = {p ∈ P | p ∈ λ(w)} for all w ∈ W , and denote the resulting model by
Amod.

I Definition 16. Let Σ be a finite set of formulas closed under subformulas and A = (W,4, λ)
be a 2Σ-labeled poset. We say that A is a Σ-quasimodel if λ is monotone in the sense that
w 4 v implies that λ(w) ⊆ λ(v), and whenever ϕ → ψ ∈ Σ and w ∈ W , we have that
ϕ→ ψ ∈ λ(w) if and only if, for all v such that w 4 v, if ϕ ∈ λ(v) then ψ ∈ λ(v). If (W,4)
is a tree, we say that A is tree-like.

4.2 Simulations, immersions and condensations
As is well-known, truth in intuitionistic models is preserved by bisimulation, and thus this is
usually the appropriate notion of equivalence between different models. However, for our
purposes, it is more convenient to consider a weaker notion, which we call bimersion.

I Definition 17. Given two labeled posets A = (WA,4A, λA) and B = (WB,4B, λB) and a
relation R ⊆WA ×WB, we write dom(R) for {w ∈WA | ∃v ∈WB, (w, v) ∈ R} and rng(R)
for {v ∈WB | ∃w ∈WA, (w, v) ∈ R}. A relation σ ⊆WA×WB is a simulation from A to B
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∅

{ p} ∅

{ p} {p}

∅

{ p} {p}

Figure 3 A condensation from the labeled frame on the left to the labeled frame on the right.
Dashed arrows indicate ρ, dotted arrows ι.

if dom(σ) = WA and whenever w σ v, it follows that λA(w) = λB(v), and if w 4A w′ then
there is v′ so that v 4B v′ and w′ σ v′.

A simulation is called an immersion if it is a function. If an immersion σ : WA → WB
exists, we write A E B. If, moreover, there is an immersion τ : WB →WA, we say that they
are bimersive, write A , B, and call the pair (σ, τ) a bimersion. A condensation from A
to B is a bimersion (ρ, ι) so that ρ : WA →WB, ι : WB →WA, ρ is surjective, and ρι is the
identity on WB. If such a condensation exists we write B � A. Observe that B � A implies
that B , A.

IfM,N are models and Σ a set of formulas closed under subformulas, we writeM EΣ N
ifMΣ E NΣ, and define ,Σ,�Σ similarly. We may also write e.g. A �M if A is 2Σ-labeled
and A �MΣ.

In this text, simulations will always be between posets, and if instead A or B is an acyclic
directed graph, a simulation between A and B will be one between their respective transitive
closures. It will typically be convenient to work with immersions rather than simulations:
however, as the next lemma shows, not much generality is lost by this restriction.

I Lemma 18. Let A = (WA,4A, λA) and B = (WB,4B, λB) be labeled posets. If a simulation
σ ⊆ WA ×WB exists, WA is a finite tree, and w σ w′, then there is an immersion σ′ ⊆
WA ×WB such that w′ = σ′(w).

Proof. By a straightforward induction on the depth of w we show that there is a partial
immersion σw with w ∈ dom(σw), whose domain is the subtree generated by w, and such
that w σ w′. Let D be the set of childrenset of daughters of w, and for each v ∈ D, choose
v′ so that v σ v′ and w′ 4B v′. By the induction hypothesis, there is a partial immersion σ′v
with v ∈ dom(σ′v). Then, one readily checks that {(w,w′)} ∪

⋃
v∈D σ

′
v is also an immersion,

as needed. J

Condensations are useful for producing (small) quasimodels out of models.

I Proposition 19. Given an intuitionistic modelM = (WM,4M, VM), a set Σ of intuition-
istic formulas that is closed for subformulas, and a 2Σ-labeled poset A = (WA,4A, λA) over
Σ, if A �M, then A is a quasimodel.

Proof. See Appendix. J

4.3 Normalized labeled trees
In order to count the number of different labeled trees up to bimersion, we construct, for
any set Λ of labels and any k ≥ 1, the labeled directed acyclic graph GΛ

k =
(
WΛ
k , ↑

Λ
k , λ

Λ
k

)
by

induction on k as follows.
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Base case. For k = 1, let GΛ
1 =

(
WΛ

1 , ↑
Λ
1 , λ

Λ
1

)
with WΛ

1 = ΛWΛ
1 = L, ↑Λ1 = ∅, and

λΛ
1 (w) = w for all w ∈WΛ

1 .

Inductive case. Suppose that GΛ
k =

(
WΛ
k , ↑

Λ
k , λ

Λ
k

)
has already been defined. The graph

GΛ
k+1 =

(
WΛ
k+1, ↑

Λ
k+1, λ

Λ
k+1

)
is constructed such that:

WΛ
k+1 = WΛ

k ∪ P

↑Λk+1 =↑Λk ∪
{

(x, y) ∈WΛ
k+1 ×WΛ

k+1
∣∣ ∃(`, C) ∈ P, x = (`, C) and y ∈ C

}
λΛ
k+1(w) =

{
λΛ
k (w) if w ∈WΛ

k

` if w = (`, C) ∈ P

where P =
{

(`, C) ∈ Λ× P
(
WΛ
k

) ∣∣ ∀y ∈ C, λΛ
k (y) 6= `

}
.

Note that GΛ
k =

(
WΛ
k , ↑

Λ
k , λ

Λ
k

)
is typically not a tree, but we may unravel it to obtain

one.

I Definition 20. Given a labeled directed acyclic graph G = (W, ↑, λ) and a node w ∈ W ,
the unraveling of G from w is the labeled tree Tw = (Ww, ↑w, λw) such that Ww is the set
of all the paths from w in G, ξ ↑w ζ if and only if there is v ∈ W such that ζ = ξv, and
λw(v0 . . . vn) = λ(vn).

I Proposition 21. For any rooted labeled tree T = (W, ↑, λ) over a set Λ of labels, if
the level of T is finite then there is a condensation from T to an unraveling of GΛ

lvl(T ) =(
WΛ

lvl(T ), ↑
Λ
lvl(T ), λ

Λ
lvl(T )

)
.

Proof. Let T = (W, ↑, λ) be a labeled treedirected acyclic graph with root r. We write ≺
for the transitive closure of ↑ and 4 for the reflexive closure of ≺. The proof is by induction
on the level n = lvl(T ) of T . For n = 1, observe that this means that λ(w) = λ(r) for all
w ∈ W . Let ρ = W × {λ(r)} and ι = {(λ(r), r)}. It can easily be checked that (ρ, ι) is a
condensation.2 For n > 1, suppose the property holds for all rooted labeled trees T ′ such
that lvl(T )′ < n. Define the following sets:

N = {w ∈W | λ(w) 6= λ(r) and for all v ≺ w, λ(v) = λ(r)}
M = {w ∈W | for all v 4 w, λ(v) = λ(r)}

Clearly, for all w ∈ N , lvl(w) < n. Therefore, by induction, there is a condensation (ρw, ιw)
from the subgraph of T generated by w to the unraveling of GΛ

n−1 from some yw ∈ WΛ
n−1.

Let us define r′ = (λ(r), {yw | w ∈ N}) and consider the unraveling G of GΛ
n from r′. It can

easily be checked that ρ = (M × {r′})∪
⋃
w∈N ρwρ = (S × {r′})∪

⋃
w∈W ρw is an immersion

from T to G, ι′ = {(r′, r)} ∪
⋃
w∈N ιwι

′ = {(r′, r)} ∪
⋃
w∈W ιw is a simulation from G to T

and ι′ ⊆ ρ−1. Using Lemma 18, we can then choose an immersion ι ⊆ ι′, so that (ρ, ι) is a
condensation from T to G. J

Finally, let us define recursively Enk and Qnk for all n, k ∈ N by:

Enk =
{

0 if k = 0
Enk−1 + n2E

n
k−1 otherwise

Qnk =
{

0 if k = 0
1 + Enk−1Q

n
k−1 otherwise

2 Recall that as per our convention, this means that (ρ, ι) is a condensation between the respective
transitive closures.
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The following lemma can be proven by a straightforward induction, left to the reader.

I Lemma 22. For any finite set Λ with cardinality n and all k ∈ N,
1. the cardinality of GΛ

k is bounded by Enk , and
2. the cardinality of any unraveling of GΛ

k is bounded by Qnk .

From these and Proposition 21, we obtain the following:

I Theorem 23.
1. Given a set of labels Λ and a Λ-labeled tree T of level k < ω, there is a Λ-labeled tree T ′

bounded by Q|Λ|k such that T ′ , T . We call T ′ the normalized Λ-labeled tree for T .
2. Given a sequence of Λ-labeled trees T1, . . . , Tn of level k < ω with n > E

|Λ|
k , there are

indexes i < j ≤ n such that Ti , Tj.

The second item may be viewed as a finitary variant of Kruskal’s theorem for labeled
trees [19]. When applied to quasimodels, we obtain the following:

I Proposition 24. Let Σ be a set of formulas closed under subformulas with |Σ| = s <

ω.
1. Given a tree-like Σ-quasimodel T and s = |Σ|, there is a tree-like Σ-quasimodel T ′ ,Σ T

bounded by Q2s

s+1. We call T ′ the normalized Σ-quasimodel for T .
2. Given a sequence of tree-like Σ-quasimodels T1, . . . , Tn with n > E2s

s+1, there are indexes
i < j ≤ n such that Ti , Tj.

Proof. Immediate from Proposition 19 and Theorem 23Lemma 22 using the fact that any
Σ-quasimodel has level at most s+ 1. J

Finally, we obtain an analogous result for pointed structures.

I Definition 25. A pointed labeled poset is a structure (W,4, λ, w) consisting of a labeled
tree with a designated world w ∈W . Given a labeled poset A = (WA,4A, λA) and w ∈WA,
we denote by Aw the pointed labeled poset given by Aw = (WA,4A, λA, w). A pointed
simulation between pointed labeled posets A = (WA,4A, λA, wA) and B = (WB,4B, λB, wB)
is a simulation σ ⊆WA ×WBσ ⊂WA ×WB such that if w σ v, then w = wA if and only if
v = wB. The notions of pointed immersion, pointed condensation, etc. are defined analogously
to Definition 17.

I Lemma 26. If Λ has n elements, any pointed Λ-labeled poset of level at most k condenses
to a labeled pointed tree bounded by Q2n

k+2, and there are at most E2n
k+2 bimersion classes.

Proof. We may view a pointed labeled poset A = (W,4, λ, w) as a (non-pointed) labeled
poset as follows. Let Λ′ = Λ× {0, 1}. Then, set λ′(v) = (λ(v), 0) if v 6= w, λ′(w) = (λ(w), 1).
Note that A may now have level k+2, since we may have that u 4 w 4 v, λ(u) = λ(w) = λ(v),
yet λ′(u) 6= λ′(w) and λ′(w) 6= λ′(v). By Proposition 21, A condenses to a generated tree T
of GΛ′

k+2 by some condensation (ρ, ι). Let w′ = ρ(w), and consider T as a pointed structure
with distinguished point w′. Given that ρ is a surjective, label-preserving function, w,w′ are
the only points whose label has second component 1, and therefore (ρ, ι) must be a pointed
condensation, as claimed. J

I Proposition 27. Let Σ be a set of formulas closed under subformulas with |Σ| = s <

ω.
1. Given a tree-like pointed Σ-quasimodel T and a formula ϕ, there is a tree-like pointed

Σ-quasimodel T ′ , T bounded by Q2s+1

s+3 . We call T ′ the normalized pointed Σ-quasimodel
for T .
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2. Given a sequence of tree-like pointed Σ-quasimodels T1, . . . , Tn with n > E2s+1

s+3 , there are
indexes i < j ≤ n such that Ti , Tj.

With these tools at hand, we are ready to prove that ITLe has the strong finite model
property, and hence is decidable.

5 Decidability

The following transformations are defined for any stratified modelM = (W,4, S, V ) and any
finite, non-empty set of formulas Σ closed under subformulas. In each case, given a stratified
model M = (W,4, S, V ), we will produce another stratified model M′ = (W ′,4′, S′, V ′)
and a map π : W ′ →W such that ΣM(π(w)) = ΣM′(w) for all w ∈W ′ΣM(w) = ΣM′(π(w))
for all w ∈W ′.

Replace Mk with a copy of the normalized Σ-quasimodel of Mk. Let T = (WT , ↑T , λT )
be a copy of the normalized labeled tree of MΣ

k such that WT ∩W = ∅, and (ρ, ι) the
condensation fromMΣ

k to T . The result of the transformation is the tuple (W ′,4′, S′, V ′)
such that W ′ = W ∪WT \Wk, 4′= 4�W\Wk

∪ (↑T )∗,

S′(w) =


ρ (S (w)) if w ∈Wk−1

S (ι (w)) if w ∈WT
S(w) otherwise

V ′(w) =
{
{p | p ∈ λT (w)} if w ∈WT
V (w) otherwise

The map π is the identity on W ′i = Wi for i 6= k, and π(w) = ι(w) for w ∈WT .

Replace Mk with a copy of the normalized, pointed Σ-quasimodel of Mk preserving
w, where w ∈ Wk. The transformation is similar to the previous one except thatMk is
regarded as a pointed structure with distinguished point w.

Replace M` with Mk, where k < ` and there is an immersion σ : Wk → W` (seen as
2Σ-labeled trees). The result of the transformation is the tuple (W ′,4′, S′, V ′) such that
W ′ = W \

⋃
k<m≤`Wm, 4′= 4�W ′ ,

S′(w) =
{
S (σ (w)) if S(w) ∈Wk

S(w) otherwise

and V ′ = V �W ′ .
The map π is the identity on W ′i = Wi for i < k, on W ′i = Wi+`−k for i > k, and

π(w) = σ(w) for all w ∈W ′k.

Replace M` with Mk connecting wk to w`, where k < `, wk ∈ Wk, w` ∈ W` and
there is an immersion σ : Wk → W` such that σ(wk) = w`. The transformation is
defined as the previous one.

I Lemma 28. The result of any previous transformation is a stratified model such that
ΣM(π(w)) = ΣM′(w)ΣM(w) = ΣM′(π(w)) for any w ∈W ′.

Proof. The proof thatM′ = (W ′,4′, S′, V ′) is a stratified modela model is straightforward
and left to the reader. We prove by structural induction on ϕ that for all transformations,
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all w ∈ W ′ and all ϕ ∈ Σ, M′, w � ϕ iff M, π(w) � ϕ. We only detail the case for the
next modality whenMk is replaced with a copy of the normalized Σ-quasimodel T ofMk

and w ∈ Wk−1w ∈ W ′k−1. The cases for the other temporal modalities are similar (see
also the proof of Lemma 29). The cases for the implication are similar as in the proof of
Proposition 19. The remaining cases are straighforward. Suppose that w ∈Wk−1w ∈W ′k−1
andM, π(w) � ψ. Then ψ ∈ Σ(S(w)). Since S′(w) = ρ(S(w)), π(S′(w)) = ι(S′(w)) and
(ρ, ι) is a condensation, Σ(S(w)) = λT (S′(w)) = Σ(π(S′(w))) . Since M, π(S′(w)) � ψ,
by induction hypothesis, M′, S′(w) � ψ. Hence M′, w � ψ.and M, π(S′(w)) � ψ. By
induction hypothesis,M′, S′(w) � ψ, henceM′, w � ψ. The other direction is similar. J

Now, let us consider a stratified modelM = (W,4, S, V ) with w0 the root of W0. The
finite model Mfin =

(
W fin,4fin, Sfin, V fin) with a state wfin

0 such that Σ(wfin
0 ) = Σ(w0) is

constructed by the following procedure. This procedure is in three phases plus a final step. At
each step, the modelM is modified in place. Moreover, three index variables are maintained
by the procedure:

The variable i, initialized to 0, indicates the current labeled tree Wi which is considered.
The variable j, initially undefined, indicates the index of the first labeled tree occuring
infinitely often up to bimersion.
The variable `, initially undefined, holds the index of the last labeled tree that must not
be modified.

As an invariant, M is stratified until the final step and for all k < i, Mk is a copy of a
normalized labeled tree.

First phase

If there is k < i such thatMk EMi, replaceMi withMk, set i to k + 1 and redo the
same phase.
If not, and for all x > i there is y > x such thatMy EMi, then replaceMi with a copy
of its normalized Σ-quasimodel, increase i by one, set j and ` to i and start the next
phase.
Otherwise, replaceMi with its normalized Σ-quasimodel, increase i by one and redo the
same phase.

Second phase. In this phase, we need to care about eventualities. To this end, a current
eventuality (w,ψ), initially undefined, is maintained across the executions of the phase. Let
wx denote the element of the fulfillment of (w,ψ) belonging to Wx (if it exists), andM+

x be
the pointed structureMwx

x . The phase proceeds through the following steps:
If (w,ψ) is defined and the last element of the fulfillment of (w,ψ) belongs to some Wk

with k ≤ i then undefine (w,ψ), set ` to i and repeat the same phase.
If (w,ψ) is undefined then choose an eventuality (w,ψ) such that w ∈Wj and the last
element of its fulfillment belongs to some Wk with k > i and we and repeat the same
phaseMissing text. If there is no such eventuality then start the next phase.
If (w,ψ) is defined and there is k such that ` < k < i andM+

k EM
+
i , then replaceMi

withMk connecting wk to wi, set i to k + 1 and redo the same phase.
Otherwise, replaceMi with a copy of the normalized labeled tree ofMk preserving wi,
increase i and redo the same phase.

CSL 2017



14:14 A Decidable Intuitionistic Temporal Logic

j . . . k i · · ·

(w,ϕ)
(w′, ϕ′)

••
••
ϕ

•

Figure 4 The stratumMj and two of its eventualities. The fulfillment of (w,ϕ) is displayed, as
well as the initial portion of the fulfillment of (w′, ϕ′).

Third phase

IfMi EMj , then start the final step.
If there is k such that ` < k < i andMk EMi, then replaceMi withMk, set i to k+ 1
and redo the same phase.
Otherwise, replaceMi with a copy of its normalized Σ-quasimodel, increase i by one and
redo the same phase.

Final step. There is an immersion σ : Wi → Wj . Construct the final tuple
(W fin,4fin, Sfin, V fin) such that W fin =

⋃
0≤m<iWm, 4fin= 4�Wfin ,

Sfin(w) =
{
σ (S (w)) if w ∈Wi−1

S(w) otherwise

V fin = V �Wfin , and wfin
0 is the root of W0 (note that wfin

0 ∈W fin).

I Lemma 29. The final tuple is a model and Σ(wfin
0 ) = Σ(w0).

Proof. The proof thatMfin =
(
W fin,4fin, Sfin, V fin) is a model is straightforward and left

to the reader. We prove by structural induction on ϕ that for all w ∈ W fin and all ϕ ∈ Σ,
Mfin, w � ϕ iffM, w � ϕ. The cases for propositional variables and the boolean connectives
are straightforward. The case for the next temporal modality is similar as in the proof
of Lemma 28. For the eventually and henceforth temporal modalities, suppose first that
(w,ϕ) is an eventuality inM and w ∈W fin. Let w0 . . . wn be the fulfillment of (w,ϕ) inM.
If wn ∈ W fin then by induction hypothesis, (w,ϕ) is an eventuality in Mfin. Otherwise,
there is k ≤ n such that wk ∈ Wi. Therefore, (wk, ϕ) is an eventuality in M and so is
(σ(wk), ϕ). Since by construction, after the second phase, the length of the fulfillment of
any eventuality (v, ϕ) such that v ∈Wj is bounded by 1 + i− j, (w,ϕ) is an eventuality in
Mfin. Conversely, suppose now that (w,ϕ) is an eventuality inMfin and let w0 . . . wn be its
fulfillment. For each k ≤ n let mk be such that wk ∈Wmk

. The proof is by a subinduction
on the number r of k ∈ {1 . . n}k ∈ 1 . . n such that mk = j. If r = 0 then by induction
hypothesis, (w,ϕ) is an eventuality inM. If r > 0, let k > 0 be the least index such that
mk = j. If k = n then suppose that ϕ = ♦ψ, the other case being symmetric. We have
the other case beeing symmetric When haveMfin, wk � ψ and by induction M, wk � ψ.
Since k > 0, wk = Sfin(wk−1) = σ(S(wk−1)) and since σ is an immersion,M, S(wk−1) � ψ.
Therefore (w,ϕ) is an eventuality in M. Finally, if r > 0 and k < n then (wk, ϕ) is an
eventuality in Mfin and by the subinduction hypothesis (wk, ϕ) is an eventuality in M.
Since k > 0, wk = Sfin(wk−1) = σ(S(wk−1)). MoreoverMorevoer, since σ is an immersion,
(S(wk−1), ϕ) is an eventuality inM. Hence (w,ϕ) is an eventuality inM. J
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0 j l i− 1Phase 1
E2s

s+1

Phase 2
sQ2s

s+1E
2s+1
s+3

Phase 3
E2s

s+1

Figure 5 An illustration of the three phases ofMfin. Below each phase we indicate the number
of strata, used for the computations in the proof of Lemma 30.

I Lemma 30. The cardinality of W fin is bounded by

B(s) def= Q2s+1

s+3

(
2E2s

s+1 + sQ2s

s+1E
2s+1

s+3

)
where s = |Σ|.

Proof. See Appendix. J

We have proved the following strong finite model property.

I Theorem 31. There exists a computable function B such that for any formula ϕ ∈ L,
if ϕ is satisfiable (resp. unsatisfiable) then ϕ is satisfiable (resp. falsifiable) in a model
M = (W,4, S, V ) such that |W | ≤ B(|ϕ|).

Proof. In view of Theorem 8, a formula ϕ is satisfiable (resp. falsifiable) in a modelM if
and only if it is satisfied (resp. falsified) at the root of a stratified model Me. Then, by
Lemma 29, ϕ is satisfied (resp. falsified) inMe if and only if it is satisfied (res. falsified) on
(Me)fin, which is effectively bounded by B(|ϕ|) by Lemma 30. J

As a corollary, we get the decidability of ITLe.

I Corollary 32. The satisfiability and validity problems for ITLe are decidable.

6 Conclusion

We have introduced ITLe, an intuitionistic analogue of LTL based on expanding domain models
from modal logic. In the literature, intuitionistic modal logic is typically interpreted over
persistent models, but as we have shown this interpretation has the technical disadvantage
of not enjoying the finite model property. Of course, this fact alone does not imply that ITLp

is undecidable, and whether the latter is true remains an open problem. Meanwhile, our
semantics are natural in the sense that we impose the minimal conditions on S so that all
truth values are upwards closed under 4, and a wider class of models is convenient as they
can more easily be tailored for specific applications.

This is an exploratory work, being the first to consider the logic ITLe. As can be gathered
from the tools we have developed, understanding this logic poses many technical challenges,
and many interesting questions remain open. Perhaps the most pressing is the complexity of
validity and satisfiability: the decision procedure we have given is non-elementary, but there
seems to be little reason to assume that this is optimal. It may be possible to further ‘trim’
the modelMfin to obtain one that is elementarily bounded. However, we should not expect

CSL 2017
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polynomially bounded models, as ITLe is conservative over intuitionistic propositional logic,
which is already PSpace-complete. Finally, we leave open the problem of finding a sound
and complete axiomatization for ITLe.

Acknowledgements. We would like to thank the anonymous referees for their useful sug-
gestions which helped improve the presentation.

References
1 J.-M. Alliot, M. Diéguez, and L. Fariñas del Cerro. Metabolic pathways as temporal logic

programs. In Logics in Artificial Intelligence – 15th European Conference, JELIA 2016,
Larnaca, Cyprus, November 9–11, 2016, Proceedings, pages 3–17, 2016.

2 P. Balbiani and M. Diéguez. Temporal here and there. In M. Loizos and A. Kakas, editors,
Logics in Artificial Intelligence, pages 81–96. Springer, 2016.

3 G. Boenn, M. Brain, M. De vos, and J. Ffitch. Automatic music composition using answer
set programming. Theory Pract. Log. Program., 11(2-3):397–427, 2011.

4 P. Cabalar and M. Diéguez. Strong Equivalence of Non-Monotonic Temporal Theories. In
Principles of Knowledge Representation and Reasoning: Proceedings of the 14th Interna-
tional Conference, KR’14, Vienna, Austria, July 20–24, 2014.

5 P. Cabalar and G. Pérez. Temporal Equilibrium Logic: A First Approach. In
EUROCAST’07, page 241–248, Las Palmas de Gran Canaria, Spain, 2007.

6 D. Van Dalen. Intuitionistic logic. In Handbook of Philosophical Logic, volume 166, pages
225–339. Springer Netherlands, 1986.

7 R. Davies. A temporal-logic approach to binding-time analysis. In Proceedings, 11th Annual
IEEE Symposium on Logic in Computer Science, New Brunswick, New Jersey, USA, July
27–30, 1996, pages 184–195, 1996.

8 J.M. Davoren. On intuitionistic modal and tense logics and their classical companion logics:
Topological semantics and bisimulations. Annals of Pure and Applied Logic, 161(3):349–367,
2009.

9 W.B. Ewald. Intuitionistic tense and modal logic. The Journal of Symbolic Logic, 51(1):166–
179, 1986.

10 L. Fariñas del Cerro, A. Herzig, and E. Iraz Su. Epistemic equilibrium logic. In IJCAI’15,
pages 2964–2970, Buenos Aires, Argentina, 2015. AAAI Press.

11 D. Fernández-Duque. The intuitionistic temporal logic of dynamical systems. arXiv,
1611.06929 [math.LO], 2016.

12 D.M. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. Many-Dimensional Modal
Logics: Theory and Applications, Volume 148 (Studies in Logic and the Foundations of
Mathematics). North Holland, 1 edition, 2003.

13 D. Gabelaia, A. Kurucz, F. Wolter, and M. Zakharyaschev. Non-primitive recursive decid-
ability of products of modal logics with expanding domains. Annals of Pure and Applied
Logic, 142(1-3):245–268, 2006.

14 M. Gebser, C. Guziolowski, M. Ivanchev, T. Schaub, A. Siegel, S. Thiele, and P. Veber.
Repair and prediction (under inconsistency) in large biological networks with answer set
programming. In KR’10, 2010.

15 A. Heyting. Die formalen Regeln der intuitionistischen Logik. Sitzungsberichte der
Preussischen Akademie der Wissenschaften. Physikalisch-mathematische Klasse. Deütsche
Akademie der Wissenschaften zu Berlin, Mathematisch-Naturwissenschaftliche Klasse,
1930.

16 D. Inclezan. An application of ASP to the field of second language acquisition. In
LPNMR’13, pages 395–400, 2013.



J. Boudou, M. Diéguez, and D. Fernández-Duque 14:17

17 N. Kamide and H. Wansing. Combining linear-time temporal logic with constructiveness
and paraconsistency. J. Applied Logic, 8(1):33–61, 2010.

18 K. Kojima and A. Igarashi. Constructive linear-time temporal logic: Proof systems and
Kripke semantics. Information and Computation, 209(12):1491 – 1503, 2011.

19 J. B. Kruskal. Well-quasi-ordering, the tree theorem, and vazsonyi’s conjecture. Transac-
tions of the American Mathematical Society, 95(2):210–225, 1960.

20 V. Lifschitz, D. Pearce, and A. Valverde. Strongly Equivalent Logic Programs. ACM
Transactions on Computational Logic, 2(4):526–541, 2001.

21 V. Marek and M. Truszczyński. Stable models and an alternative logic programming
paradigm, pages 169–181. Springer-Verlag, 1999.

22 G. Mints. A Short Introduction to Intuitionistic Logic. 2000.
23 I. Niemelä. Logic Programs with Stable Model Semantics as a Constraint Programming

Paradigm. Annals of Mathematics and Artificial Intelligence, 25(3-4):241–273, 1999.
24 H. Nishimura. Semantical analysis of constructive PDL. Publications of the Research

Institute for Mathematical Sciences, Kyoto University, 18:427–438, 1982.
25 M. Nogueira, M. Balduccini, M. Gelfond, R. Watson, and M. Barry. An A-Prolog decision

support system for the space shuttle. In AAAI Spring Symposium, 2001.
26 D. Pearce. A New Logical Characterisation of Stable Models and Answer Sets. In Proc. of

Non-Monotonic Extensions of Logic Programming (NMELP’96), pages 57–70, Bad Honnef,
Germany, 1996.

27 G. Plotkin and C. Stirling. A framework for intuitionistic modal logics: Extended ab-
stract. In Proceedings of the 1986 Conference on Theoretical Aspects of Reasoning About
Knowledge, TARK’86, pages 399–406, San Francisco, CA, USA, 1986. Morgan Kaufmann
Publishers Inc.

28 A. K. Simpson. The proof theory and semantics of intuitionistic modal logic. PhD thesis,
University of Edinburgh, UK, 1994.

A Proof of Lemma 30

Proof. Let us consider the stratified modelM = (W,4, S, V ) obtained after the third phase.
For all k < i (where i has the value assigned at the end of this phase), Wk is a copy either of
a normalized Σ-quasimodel or of a pointed normalized Σ-quasimodel. By Propositions 24
and 27, for all k < i, |Wk| ≤ Q2s+1

s+3 . We prove now that

i ≤ 2E2s

s+1 + sQ2s

s+1E
2s+1

s+3 .

After the first phase, by Proposition 24, we have j ≤ E2s

s+1 and |Wj | ≤ Q2s

s+1. Therefore,
during the second phase, the current eventuality is defined at most sQ2s

s+1 times. Moreover,
each time the current eventuality is undefined, by Proposition 27 we have that i−` ≤ E2s+1

s+3 we
have that i− ` ≤ E2n+1

n+3 . Therefore, when the second phase terminates,

`− j ≤ sQ2s

s+1E
2s+1

s+3 .

Finally, after the third phase, by Proposition 24, i− ` ≤ E2s

s+1. J
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