
Separating Functional Computation from
Relations
Ulysse Gérard1 and Dale Miller2

1 Inria Saclay & LIX/École Polytechnique, Palaiseau, France
2 Inria Saclay & LIX/École Polytechnique, Palaiseau, France

Abstract
The logical foundation of arithmetic generally starts with a quantificational logic over relations.
Of course, one often wishes to have a formal treatment of functions within this setting. Both
Hilbert and Church added choice operators (such as the epsilon operator) to logic in order to
coerce relations that happen to encode functions into actual functions. Others have extended
the term language with confluent term rewriting in order to encode functional computation as
rewriting to a normal form. We take a different approach that does not extend the underlying
logic with either choice principles or with an equality theory. Instead, we use the familiar two-
phase construction of focused proofs and capture functional computation entirely within one of
these phases. As a result, our logic remains purely relational even when it is computing functions.
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1 Introduction

The development of the logical foundations of arithmetic generally starts with the first-order
logic of relations to which constructors for zero and successor have been added. Various
axioms (such as Peano’s axioms) are then added to that framework in order to define the
natural numbers and various relations among them. Of course, it is often natural to think
of some computations, such as say, the addition and multiplication of natural numbers, as
being functions instead of relations.

A common way to introduce functions into the relational setting is to enhance the
equality theory. For example, Troelstra in [32, Section I.3] presents an intuitionistic theory
of arithmetic in which all primitive recursive functions are treated as black boxes and every
one of their instances, for example 23 + 756 = 779, is simply added as an equation. A
modern and more structured version of this approach is that of the λΠ-calculus modulo
framework proposed by Cousineau & Dowek [10]: in that framework, the dependently typed
λ-calculus (a presentation of intuitionistic predicate logic) is extended with a rich set of
terms and rewriting rules on them. When rewriting is confluent, it can be given a functional
programming implementation: the Dedukti proof checker [3] is based on this hybrid approach
to treating functions in a relational setting.

A predicate can, of course, encode a function. For example, assume that we have a
n+ 1-ary (n > 0) predicate R for which we can prove that the first n arguments uniquely
determine the value of its last argument. That is, assume that the following formula is
provable (here, x̄ denotes the list of variables x1, . . . , xn):

∀x̄([∃y.R(x̄, y)]∧ ∀y∀z[R(x̄, y) ⊃ R(x̄, z) ⊃ y = z]).
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In this situation, an n-ary function fR exists such that fR(x̄) = y if and only if R(x̄, y). In
order to formally describe the function fR, Hilbert [23] and Church [9] evoked choice operators
such as ε and ι which (along with appropriate axioms) are able to take a singleton set and
return the unique element in that set. For example, in Church’s Simple Theory of Types [9],
the expression λx1 . . . λxnι(λy.R(x1, . . . , xn, y)) provides a definition of fR.

In this paper, we take a different approach to separating functional computations from
more general reasoning with relations. We shall not extend the equational theory beyond
the minimal equality on terms and we shall not use choice principles.

Although our approach to separating functions from relations is novel, it does not need
any new theoretical results: we simply make direct use of several recent results in proof
theory. In particular, our paper follows the following outline.
1. We formulate a sequent calculus proof system for Heyting arithmetic where fixed points

and term equality are logical connectives: that is, they are defined via their left- and
right-introduction rules. This work builds on earlier work by McDowell & Miller [26] and
Momigliano & Tiu [30].

2. We replace Gentzen’s sequent proofs with focused proof systems as developed by Andreoli,
Baelde, and Liang & Miller [2, 24, 5]. Such inference systems structure proofs into two
phases: the negative phase organizes don’t-care nondeterminism while the positive phase
organizes don’t-know nondeterminism. In this way, the construction of a negative phase
(reading it as a mapping from its conclusion to its premises) determines a function and the
construction of the positive phase determines a more general nondeterministic relation.

3. Since ∀x[P(x) ⊃ Q(x)] ≡ ∃x[P(x)∧Q(x)] whenever predicate P denotes a singleton set,
the resulting ambiguity of polarity makes it possible to position such singleton predicates
always into the negative phase. As mentioned above, a suitable treatment of singleton
sets allows for a direct treatment of functions.

4. We exploit focused proof systems in a second and different fashion. If we view proofs of
propositional formulas as denoting typed terms, then the usual representation of terms as
function-applied-to-arguments occurs when primitive types are polarized negatively. If we
set the polarity of primitive types to positive, we can turn the structure of terms inside
out, yielding a representation of terms similar to administrative normal form [12]. Such a
term representation allows us to translate common arithmetic expressions using functions
into appropriate sequences of relational expressions that compute those functions. This
approach to term representation builds on the λκ-term calculus of Brock-Nannestad,
Guenot, & Gustafsson [7] which is closely related to the LJQ and LJQ ′ proof systems of
Herbelin [22] and Dyckhoff & Lengrand [11], respectively.

5. Finally, the resulting proof system provides a means to take the specification of a relation
and use it directly to compute a function (something that is not available directly when
applying choice operators).

These various steps lead to the systematic construction of a single, expressive proof system
in which functional computation is abstracted away from quantificational logic.

2 The basics of focusing in quantificational intuitionistic logic

In this section, we present a proof system for an intuitionistic theory of first-order quantifica-
tion in two parts: Section 2.1 presents a proof system for the propositional fragment and
Section 2.2 introduces quantification and equality of terms (at all types).
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Structural rules

Γ,N ⇓ N ` · ⇓ E
Γ,N ⇑ · ` · ⇑ E Dl

C, Γ ⇑Θ ` ∆1 ⇑ ∆2
Γ ⇑ C,Θ ` ∆1 ⇑ ∆2

Sl
Γ ⇑ P ` · ⇑ E
Γ ⇓ P ` · ⇓ E Rl

Γ ⇓ · ` P ⇓ ·
Γ ⇑ · ` · ⇑ P Dr

Γ ⇑ · ` · ⇑ E
Γ ⇑ · ` E ⇑ · Sr

Γ ⇑ · ` N ⇑ ·
Γ ⇓ · ` N ⇓ · Rr

Negative phase introduction rules

Γ ⇑Θ ` ∆1 ⇑ ∆2
Γ ⇑ t+, Θ ` ∆1 ⇑ ∆2

Γ ⇑ · ` B1 ⇑ · Γ ⇑ · ` B2 ⇑ ·
Γ ⇑ · ` B1 ∧− B2 ⇑ · Γ ⇑ · ` t− ⇑ · Γ ⇑ f+, Θ ` ∆1 ⇑ ∆2

Γ ⇑ B1, B2, Θ ` ∆1 ⇑ ∆2
Γ ⇑ B1 ∧+ B2, Θ ` ∆1 ⇑ ∆2

Γ ⇑ B1, Θ ` ∆1 ⇑ ∆2 Γ ⇑ B2, Θ ` ∆1 ⇑ ∆2
Γ ⇑ B1 ∨ B2, Θ ` ∆1 ⇑ ∆2

Γ ⇑ B1 ` B2 ⇑ ·
Γ ⇑ · ` B1 ⊃ B2 ⇑ ·

Positive phase introduction rules

Γ ⇓ · ` B1 ⇓ · Γ ⇓ B2 ` · ⇓ E
Γ ⇓ B1 ⊃ B2 ` · ⇓ E Γ ⇓ · ` t+ ⇓ ·

Γ ⇓ · ` B1 ⇓ · Γ ⇓ · ` B2 ⇓ ·
Γ ⇓ · ` B1 ∧+ B2 ⇓ ·

Γ ⇓ · ` Bi ⇓ ·
Γ ⇓ · ` B1 ∨ B2 ⇓ ·

i ∈ {1, 2}
Γ ⇓ Bi ` · ⇓ E

Γ ⇓ B1 ∧− B2 ` · ⇓ E
i ∈ {1, 2}

Figure 1 The propositional fragment of cut-free LJF.

2.1 Propositional intuitionistic logic

In this section, we present propositional intuitionistic logic and a focused proof system for it.
Propositional intuitionistic logic formulas are given by the logical connectives ∧, ∨, and ⊃,
the logical constants t and f, and atomic formulas. The focused system in Figure 1 contains
not formulas but polarized formulas. Such polarized formulas differ from unpolarized formulas
in two ways. First, the conjunction is replaced with two conjunctions ∧+ and ∧− and the
unit of conjunction t with t+ and t−. Second, every atomic formula A is assigned either a
positive or negative polarity in an arbitrary but fixed fashion. Thus, one can fix the polarity
of atomic formulas (propositional variables) such that they are all positive or all negative
or some mixture of positive and negative. A polarized formula is positive if it is a positive
atomic formula or its top-level logical connective is either t+, f, ∧+, or ∨. A polarized
formula is negative if it is a negative atomic formula or its top-level logical connective is
either t−, ∧−, or ⊃.

Figure 1 contains the structural and introduction rules for the propositional fragment
of the LJF focused proof system [24]. That proof system uses the following two kinds of
sequents: unfocused sequents have the form Γ ⇑Θ ` ∆1 ⇑∆2, while focused sequents have the
form Γ ⇓ Θ ` ∆1 ⇓ ∆2. In those inference rules, the syntactic variables ∆, Θ, and Γ (possibly
with subscripts) range over multisets of polarized formulas; P denotes a positive formula;
N denotes a negative formula; C denotes either a negative formula or a positive atom; E
denotes either a positive formula or a negative atom; and B denotes any polarized formula.
Since we are working with an intuitionistic sequent system, we require that all sequents in a
focused proof have exactly one formula on the right: that is, the multiset union of ∆1 and
∆2 is a singleton. Since we are considering only single-focused proof systems (as opposed to
multifocused proof systems [8]), we also require that sequents of the form Γ ⇓ Θ ` ∆1 ⇓ ∆2
have the property that the multiset union of Θ and ∆1 be always a singleton. An invariant
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in the construction of LJF proofs is that Γ will be a multiset that can contain only negative
formulas and positive atoms. Every sequent in LJF denotes a standard sequent in LJ: simply
replace ⇑ and ⇓ with commas. An unfocused sequent of the form Γ ⇑ · ` · ⇑ E is also called a
border sequent.

A derivation is a tree structure of occurrences of inference rules: a derivation has one
conclusion (the endsequent) and possibly several premises. A derivation with no premises
is a (focused) proof. A derivation that contains only negative sequents is a negative phase:
such a phase contains introduction rules for negative connectives, and the storage rules
(Sl and Sr). A derivation that contains only positive sequents is a positive phase: such a
phase contains introduction rules for positive connectives. A bipole is a derivation whose
conclusion and premises are all border sequents: also, when reading the inference rules from
the bottom up, the first inference rule is a decide rule (either Dl or Dr); the next rules are
positive introduction rules; then there is a release rule (either Rl or Rr); followed by negative
introduction rules and storage rules (either Sl or Sr). In other words, a bipole is the joining
of a single positive phase to possibly several negative phases.

Figure 1 contains neither the initial rule nor the cut rule. Although the cut rule and
the cut-elimination theorem play important roles in justifying the design of focused proof
systems, they play a minor role in this paper (for example, cut-elimination is not part of our
notion of computation). The initial rule will be important but not globally: we introduce it
later when we need (variants of) it.

2.2 Quantification and term equality
In order to treat first-order quantification, sequents are extended to permit the proof-level
binding mechanism of eigenvariables [16]. To that end, we prefix all ⇑ and ⇓ sequents with
Σ :, where Σ is a list of variables that are considered bound over the sequent. When we
write a prefix as y : τ, Σ, we imply that y does not appear as one of the variables in Σ.
The inference rules for term equality and quantification are displayed in Figure 2 and are
taken from early papers by Schroeder-Heister [28] and Girard [18]: see also [26]. Formulas
with a top-level ∀ have negative polarity while formulas with a top-level ∃ or equality have
positive polarity. The expression [t/x]B denotes the βη-long normal form of (λx.B)t and the
judgment Σ ` t : τ denotes the fact that t is a term in βη-long form and with type τ. The
typing judgment will be made more precise and generalized later in Section 6.

While provability in the propositional fragment is known to be decidable [16], it has
been shown in [33] that adding these rules for term equality and quantification results in
an undecidable logic even if we restrict to just first-order terms and quantifiers and even
without any predicate symbols (and, hence, without atomic formulas).

3 Inference rules for the fixed point connective

We shall now add to our collection of logical connectives a fixed point operator. There have
been many treatments of fixed points and induction within proof systems such as those
involving Peano’s axioms and induction schemes or those using a specially designed proof
system such as Scott induction [19]. Here, we restrict our attention to the rather minimalistic
setting where the fixed point operator µ is treated as a logical connective in the sense that it
has left- and right-introduction rules: these rules simply unfold µ-expressions. While the
resulting fixed point operator is self-dual and rather weak, it can still play a useful role in
proving some weak theorems of arithmetic [18, 28, 26] and it can provide an interesting proof
theory for aspects of model checking [4, 20, 31]. It is possible to describe a more powerful
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Typed first-order quantification rules

Σ ` t : τ Σ : Γ ⇓ [t/x]B ` · ⇓ E
Σ : Γ ⇓ ∀xτ.B ` · ⇓ E

y : τ, Σ : Γ ⇑ · ` [y/x]B ⇑ ·
Σ : Γ ⇑ · ` ∀xτ.B ⇑ ·

y : τ, Σ : Γ ⇑ [y/x]B,Θ ` ∆1 ⇑ ∆2
Σ : Γ ⇑ ∃xτ.B,Θ ` ∆1 ⇑ ∆2

Σ ⇑ · ` t : τ ⇑ · Σ : Γ ⇓ · ` [t/x]B ⇓ ·
Σ : Γ ⇓ · ` ∃xτ.B ⇓ ·

Equality rules

Σθ : Γθ ⇑Θθ ` ∆1θ ⇑ ∆2θ
Σ : Γ ⇑ s = t, Θ ` ∆1 ⇑ ∆2

†
Σ : Γ ⇑ s = t, Θ ` ∆1 ⇑ ∆2

‡
Σ : Γ ⇓ · ` t = t ⇓ ·

There are two provisos: (†) θ is the mgu of s and t. (‡) t and s are not unifiable.

Figure 2 Focused proof rules for quantification and term equality.

proof system for fixed points that uses induction and co-induction rules to describe the
introduction rules for the least and greatest fixed points [26, 30].

The logical constant µ is actually parameterized by a list of typed constants as follows:

µnτ1,...,τn : ((τ1 → · · · → τn → o)→ τ1 → · · · → τn → o)→ τ1 → · · · → τn → o

where n > 0 and τ1, . . . , τn are simple types. (Following Church [9], we use o to denote the
type of formulas.) Expressions of the form µnτ1,...,τnBt1 . . . tn will be abbreviated as simply
µBt̄ (where t̄ denotes the list of terms t1 . . . tn). We shall also restrict fixed point expressions
to use only monotonic higher-order abstraction: that is, in the expression µnτ1,...,τnBt1 . . . tn
the expression B is equivalent (via βη-conversion) to λPτ1→···→τn→o λx1τ1 . . . λx

n
τn
B ′ and

where all occurrences of the variable P in B ′ occur to the left of an implication an even
number of times. The unfolding of the fixed point expression µB t̄ yields B(µB) t̄ and the
introduction rules for µ establish the logical equivalence of these two expressions.

I Example 1. Assume that we have a primitive type i and that there are two typed constants
z : i and s : i → i. We shall abbreviate the terms z, (s z), (s (s z)), (s (s (s z))), etc by 0,
1, 2, 3, etc. The following two named fixed point expressions define the natural number
predicate and the ternary relation of addition.

nat =µλNλn(n = 0 ∨ ∃n ′(n = s n ′ ∧+ N n ′))

plus =µλPλnλmλp((n = 0 ∧+m = p)∨ ∃n ′∃p ′(n = s n ′ ∧+ p = s p ′ ∧+ P n ′ m p ′))

The following theorem, proved using induction, states that the plus relation describes a
(total) functional dependency between its first two arguments and its third.

∀m,n(nat m ⊃ ∃k(plus m n k))∧ ∀m,n, p, q(plus m n p ⊃ plus m n q ⊃ p = q)

3.1 Focusing and unfolding
The natural rules for unfolding µ-expressions are given as the first two inference rules of
Figure 3. Here, we have assigned to such expressions the positive polarity. Since the
left-introduction and right-introduction rules for µ-expressions are the same (i.e., they are
unfolded), they could have been polarized negatively as well. If we were to add an induction
rule in order to have µ-expressions capture least fixed points, the use of the positive polarity
would be the most natural choice [27].

CSL 2017



23:6 Separating Functional Computation from Relations

Focused sequent calculus proof systems were originally developed for quantificational
logic – as opposed to arithmetic – and in that setting the bottom-up construction of the
negative phase causes sequents to get strictly smaller (counting, for example, the number
of occurrences of logical connectives). As a result, it was possible to design focused proof
systems in which decide rules were not applied until all invertible rules were applied. We
shall say that such proofs systems are strongly focused proof systems: examples of such
systems can be found in [2, 24].

As is obvious from the first two inference rules in Figure 3, the size of the formulas in the
negative phase can increase when µ-expressions are unfolded. Thus, a more flexible approach
to building negative phases should be considered. Some focused proof systems have been
designed in which a decide rule can be applied without consideration of whether all or some
of the invertible rules have been applied. Following [29], such proof systems are called weakly
focused proof systems: an early example of such a proof system is Girard’s LC [17]. Since
we wish to use the negative phase to do functional style, determinate computation, a weakly
focused system – with its possibility to stop in many different configurations – cannot provide
the foundations that we need.

Instead of strongly and weakly focused proof systems, we modify the notion of strongly
focusing by allowing certain explicitly described µ-expressions appearing in the negative
phase to be suspended. In that case, one can switch from a negative phase to a positive phase
(using a decide rule) when the only remaining formulas in the negative phase are suspendable.
In that case, those formulas are “put aside” during the processing of the positive phase
and are reinstated when the positive phase switches to the negative phase (using a release
rule). In more detail, let S denote a suspension predicate: this predicate is defined only on
µ-expressions and if S holds for (µBt̄) then we say that this expression is suspended. The
unfoldL rule in Figure 3 has the proviso that S does not hold of the µ-expression that is the
subject of that inference rule. In order to accommodate suspended formulas, ⇓-sequents need
to contain a new multiset zone, denoted by the syntactic variable Ω: in particular, they now
have the structure Γ ⇓ Θ;Ω ` ∆1 ⇓ ∆2. All positive introduction rules ignore this new zone:
for example, the left-introduction of ∧− will now be written as

Γ ⇓ Bi;Ω ` · ⇓ E
Γ ⇓ B1 ∧− B2;Ω ` · ⇓ E

i ∈ {1, 2}.

The suspension property S is defined at the mathematics level and, as a result, can make
use of syntactic details about µ-expressions. For example, this property could be defined to
hold for a µ-expression that contains more than, say, 100 symbols or when the first term
in the list t̄ is an eigenvariable. However, in order to guarantee that the negative phase is
determinate, we need to require the following property:

(∗) For all µ-expressions (µBt̄) and for all substitutions θ defined on the eigenvariables
free in that µ-expression, if S holds for (µBt̄)θ then S holds for (µBt̄).

That is, if an instance of a µ-expression satisfies S after a substitution is applied, it must
satisfy S before it was applied. This condition rules out the possible suspension condition
“holds if it contains 100 symbols” but it allows the condition “holds if the first term in t̄ is
an eigenvariable”. Furthermore, suspension properties should not, in general, be invariant
under substitution since otherwise a suspended formula will remain suspended during the
construction of a proof: it can only be used within the initial rule.

I Example 2. Consider the suspension predicate that is true of µ-expressions µB t1 . . . tn if
and only if n > 2 and t1 and t2 are the same variable. Clearly, property (∗) does not hold
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Fixed point rules

Σ : Γ ⇑ B(µB)t̄, Θ ` ∆ ⇑ E
Σ : Γ ⇑ µB t̄, Θ ` ∆ ⇑ E

unfoldL†
Σ : Γ ⇓ · ` B(µB)t̄ ⇓ ·
Σ : Γ ⇓ · ` µB t̄ ⇓ · unfoldR

Modified versions of the decide and release rules

Σ : Γ,N ⇓ N;Ω ` · ⇓ E
Σ : Γ,N ⇑Ω ` · ⇑ E Dl‡

Σ : Γ ⇓ ·;Ω ` P ⇓ ·
Σ : Γ ⇑Ω ` · ⇑ P Dr‡

Σ : Γ ⇑ P,Ω ` · ⇑E
Σ : Γ ⇓ P;Ω ` · ⇓E Rl

Σ : Γ ⇑Ω ` N ⇑ ·
Σ : Γ ⇓ ·;Ω ` N ⇓ · Rr

Initial rule

P ∈ Ω
Σ : Γ ⇓ ·;Ω ` P ⇓ · Ir

The proviso † requires that µB t̄ does not satisfy S. The proviso
‡ requires Ω to be a multiset of µ-expressions that satisfy S.

Figure 3 Rules governing fixed point unfolding, suspensions, and initial sequents.

and the construction of the negative phase can be non-confluent. For example, let A be
µλpλxλy.x = a (where a is a constant) and consider the sequent Γ ⇑ u = v,Auv ` · ⇑ (E u).
Since Auv is a µ-expression for which S does not hold, unfolding is applicable and yields the
sequent Γ ⇑ u = v, u = a ` · ⇑ (E u) which then leads to the border sequent Γ ⇑ · ` · ⇑ (E a).
However, the first step in the negative phase of the original sequent could have been the
equality introduction, which yields Γ ⇑Auu ` · ⇑ (E u) and this must mark the end of the
negative phase since A u u is a suspended formula.

Fortunately, this non-confluent behavior is ruled out by the (∗) property above. To see
this, let C be an ⇑-sequent that and let Ξ be a negative phase that has C as its endsequent
and with premises that are border sequents. If we collect the premises of Ξ into a set, say,
P, then we call P an invertible decomposition of C. It is easy to show, via permutations of
inference rules, that if C has P1 and P2 as invertible decompositions, then P1 = P2. The (∗)
condition enables the permutation of the equality left-introduction rule and the unfoldL
rule.

I Definition 3 (Purely positive formula). A polarized formula in which all occurrences of
logical connectives are polarized positively is called a purely positive formula. A µ-expression
that is also purely positive will also be called a purely positive fixed point expression.

Horn clauses (Prolog) can provide immediate examples of purely positive fixed points
as illustrated in Example 1. Let B be a purely positive formula. If Σ : Γ ⇓ · ` B ⇓ · is
provable then all proofs of that sequent are built of only positive right-introduction rules
for t+, ∧+, ∨, ∃, µ (unfolding) and equality. Similarly, if Σ : Γ ⇑ B ` · ⇑ · is provable then all
proofs of that sequent are built of only negative left-introduction rules for t+, ∧+, ∨, ∃, µ
(unfolding), and equality. Thus, focused proofs of B and B ⊃ f+ are achieved by using only
one phase. In particular, such proofs do not contain structural rules nor the initial rule. As
a result, synthetic inference rules are not decidable since they can encode arbitrary Horn
clause specifications.

CSL 2017
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3.2 Phases as abstractions
Focused proof systems make it possible to define new inference rules by abstracting away
details used in the construction of phases. The positive phase allows a simple abstraction
since there is exactly one formula under focus in a positive sequent. A positive phase can
be seen as the (derived) inference rule with a conclusion that is a border sequent and with
premises that are marked by release rules.

There are, however, at least two challenges to making abstractions of negative phases.
First, the premises of a negative phase may repeat the same sequents many times since
there can be many paths to compute the result of a function. We shall choose to denote as
the collections of premises of the negative phase the set of border sequents (instead of as
a multiset). Second, there are many ways to process the don’t-care nondeterminism that
is possible when applying invertible rules. We will abstract away from those differences by
simply ignoring how a phase is constructed since all constructions yield the same border
sequents.

This second abstraction flows from the same motivation used in confluent rewriting
systems: once a path to a normal form is found, no other paths need to be considered since
all other paths must yield the same normal form.

4 The polarity ambiguity of singleton sets

As we mentioned in the introduction, singleton sets can be used to help convert relations to
functions: if the n+ 1-ary relation R describes a function from its first n arguments to its
last argument then the expression (λy.R(x1, . . . , xn, y)) denotes a singleton set (given fixed
values for x1, . . . , xn). The choice operators ε or ι can then be applied to this singleton set
to extract that element, resulting in a proper function λx1 . . . λxnι(λy.R(x1, . . . , xn, y)).

Singleton sets play a role here as well. In fact, let P be a predicate of one argument so
that it is provable that P is a singleton, namely,

(∃x.P(x))∧ (∀x, y.P(x) ⊃ P(y) ⊃ x = y)

As a consequence, the formulas ∃x.P(x) ∧Q(x) and ∀x.P(x) ⊃ Q(x) are equivalent. If we
used the ι-operator, these formulas would also be equivalent to Q(ιP).

Note that the sequent calculus treatments of ∃x.P(x) ∧ Q(x) and ∀x.P(x) ⊃ Q(x) are
strikingly different. In particular, a proof of Σ : Γ ⇓ · ` ∃x.P(x)∧Q(x) ⇓ · proceeds by guessing
a term t and then attempting to prove Σ : Γ ⇓ · ` P(t) ⇓ · and Σ : Γ ⇓ · ` Q(t) ⇓ ·. Of course,
since P denotes a singleton, there is at most one correct guess t and that guess is confirmed
after it is inserted into the proof. On the other hand, a proof of Σ : Γ ⇑ · ` ∀x.P(x) ⊃ Q(x) ⇑ ·
can be seen as computing the value that satisfies P. Proof construction for that sequent leads
to proving y, Σ : Γ ⇑ P(y) ` Q(y) ⇑ ·. As mentioned in Section 3.1, this phase will move to
completion by repeatedly unfolding fixed points and if the phase completes, the eigenvariable
y will be instantiated to be the unique term t. Thus, the premises of this completed phase
will have the shape Σ : Γ⇑ ` ·⇑Q(t) (assuming for the sake of argument that Q(t) is a positive
formula).

I Example 4. Using the definitions in Example 1, consider the construction of a negative
phase of the form x, Σ : Γ ⇑ plus 2 3 x ` · ⇑ (Q x) Since plus is a µ-expression, this sequent
is proved by an unfoldL inference rule (assuming that S is false for all µ-expressions, i.e.,
nothing should be suspended). Unfolding yields an expression with a top-level disjunction,
namely, x, Σ : Γ ⇑ ((2 = 0∧+ 3 = x)∨∃n ′∃x ′(2 = s n ′∧+ x = s x ′∧+ plus n ′ 3 x ′)) ` ·⇑ (Q x).
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Following the left-introduction for that disjunction, we are left with proving two sequents:
the left premises, x, Σ : Γ ⇑ ((2 = 0 ∧+ 3 = x) ` · ⇑ (Q x) is proved immediately since 2 = 0 is
not unifiable (Figure 2). A proof of the second premise must proceed as follows

x ′, Σ : Γ ⇑ plus 1 3 x ′ ` · ⇑ (Q (s x ′))

x, n ′, x ′, Σ : Γ ⇑ (2 = s n ′ ∧+ x = s x ′ ∧+ plus n ′ 3 x ′) ` · ⇑ (Q x)

x, Σ : Γ ⇑ (∃n ′∃x ′(2 = s n ′ ∧+ x = s x ′ ∧+ plus n ′ 3 x ′)) ` · ⇑ (Q x)

(Here, the double line between sequents denotes the application of possibly several inference
rules.) After several more inference steps, the negative phase terminates with the border
premise Σ : Γ ⇑ · ` · ⇑ (Q 5). By ignoring the internal structure of phases, we have just the
synthetic inference rule

Σ : Γ ⇑ · ` · ⇑ (Q 5)
x, Σ : Γ ⇑ plus 2 3 x ` · ⇑ (Q x)

.

Furthermore, there were no choices involved in computing this phase. Note that the actual
specification of the relation plus is used to compute the addition as a function. Later in
Section 6 we shall show how we can use that synthetic inference rule to capture the more
familiar looking rule

Σ : Γ ⇑ · ` · ⇑ (Q 5)
Σ : Γ ⇑ · ` · ⇑ (Q (2 + 3))

.

I Example 5. Employing the suspension mechanism makes it possible for functional compu-
tation to be mixed with symbolic computation. For example, let multiplication be defined as
the following fixed point expression.

times = µλPλnλmλp((n = 0∧+ p = 0)∨∃n ′∃p ′(n = s n ′∧+ P n ′ m p ′∧+ plus p ′ m p))

The theorem that states that (0× (x+ 1)) +y = y can be encoded and proved in this setting
by taking two steps. First we translate this expression into the following sequent (using a
technique described in Section 6):

y, Σ : Γ ⇑ · ` ∀u. times 0 (s x) u ⊃ ∀v. plus u y v ⊃ v = y ⇑ ·.

Here, we assume the (rather typical) suspension mechanism that classifies µ-expressions as
suspendable if they are built from plus and times and their first argument is an eigenvariable.
Thus, when this sequent is reduced to

u, v, y, Σ : Γ ⇑ times 0 (s x) u, plus u y v ` v = y ⇑ · ,

only the times-expression can be unfolded. After that unfolding, the eigenvariable u will be
instantiated and the plus-expression can then also be unfolded. Finally, the negative phase
ends with the border sequent y, Σ : Γ ⇑ · ` · ⇑ y = y which is proved by a Dr rule followed by
the right-introduction rule for equality.

5 Equivalence classes

Equivalence relations play important roles in computation and reasoning. Occasionally, we
have a relation that is not functional but all the possible outcomes are equivalent, for some
specific equivalence relation. For example, if two lists are considered equivalent when they are
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permutations of each other, then the equivalence class of lists modulo that relation encodes
multisets. Similarly, if two pairs of integers (x, y) and (w, z) (where y and z are not zero)
are considered equivalent when xz = wy then equivalence classes encode rational numbers.

The ambiguity of singletons can be lifted to computation with equivalence classes in
the following sense. Let ρ be an equivalence relation. The familiar notion [x]ρ for the
ρ-equivalence class containing x is just syntactic sugar for λy.xρy. (Define logical equivalence
in the usual way: A ≡ B is an abbreviation for (A ⊃ B)∧ (B ⊃ A).)

Assume that ρ is an equivalence relation and that the following holds for Q : i→ o.

∀x∀y. x ρ y ⊃ [Q(x) ≡ Q(y)]

(Note that this theorem is immediate for all Q : i → o when ρ is equality.) The following
equivalence holds.

[∀x ∈ [y]ρ ⊃ Q(x)] ≡ [∃x ∈ [y]ρ ∧Q(x)]

In a more informal mathematical notation, one might replace either the above existential
or universal expression with Q([y]ρ). While we shall not use this expression (it involves a
typing error), it conveys the usual mathematical sense of this ambiguity: if we show that
one member of an equivalence class satisfies such a property Q then all members of that
equivalence class satisfy Q.

Obviously, we can generalize the notion of functional dependency to the following

∀x̄([∃y.R(x̄, y)]∧ ∀y∀z[R(x̄, y) ⊃ R(x̄, z) ⊃ yρz]),

which states that the n-ary relation is a total function up to ρ. Thus, during the construction
of a proof where one is asked to pick a term t that makes R(x1, . . . , xn, t) true, one can instead
compute just any term t ′ such that R(x1, . . . , xn, t ′) (as long as the property established – Q
above – is ρ-invariant). In that setting, we can also extend the phase-abstraction mechanism
to exclude border premises that differ up to ρ.

6 Term representation: turning formulas inside-out

6.1 Term annotations for propositional LJF
In Section 2.2 we extended the proof system in Figure 1 with quantifiers and term structures
and in Section 3 with recursive definitions. Here we extend that original proof system in two
different directions. First, instead of having all predicates (such as nat, plus, and times) be
defined, we consider the usual approach to propositional logic where formulas can contain
undefined atoms. When such atoms appear in polarized formulas, atomic formulas must be
provided with an arbitrary but fixed polarity. Following the design of LJF [24], we extend the
proof system in Figure 1 by adding the two variants of the initial rule displayed on the right.

Γ ⇓ Na ` · ⇓ Na
Il

Γ, Pa ⇓ · ` Pa ⇓ ·
Ir

Here, Na ranges over negatively polarized atoms and Pa ranges
over positively polarized atoms. Given that we are working with
a propositional logic, it is possible to use a strongly focused version
of LJF (as was given in [24]) and to insist that all formulas in the
negative phase are processed in a left-to-right discipline. As a result,
it is possible to fuse the store-left rule (Sl) with other rules.

The completeness theorem for LJF can be stated as follows. Given an (unpolarized)
formula B, a polarization of B is a formula that results from replacing every occurrence in
B of ∧ with either ∧+ or ∧− and every occurrence of t with either t+ or t−. (Also, the
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Terms : t, u ::= λx.t | x k | ↑p
Values : p, q ::= x | ↓ t

Continuations : k ::= ε | p :: k | κx.t

Γ ⇑ · ` t : N ⇑ ·
Rr

Γ ⇓ · ` ↓ t : N ⇓ ·
Γ ⇑ · ` · ⇑ t : E

Sr
Γ ⇑ · ` t : E ⇑ ·

Γ ⇓ · ` p : P ⇓ ·
Dr

Γ ⇑ · ` · ⇑ ↑p : P
Ir

Γ, x : a+ ⇓ · ` x : a+ ⇓ ·

Γ, x : P ⇑ · ` · ⇑ t : E
Rl/Sl

Γ ⇓ P ` · ⇓ κx.t : E
Γ, x : N ⇓ N ` · ⇓ k : E

Dl
Γ, x : N ⇑ · ` · ⇑ x k : E

Il
Γ ⇓ a− ` · ⇓ ε : a−

Γ, x : A ⇑ · ` t : B ⇑ ·
⊃r /Sl

Γ ⇑ · ` λx.t : A ⊃ B ⇑ ·
Γ ⇓ · ` p : A ⇓ · Γ ⇓ B ` · ⇓ k : E ⊃l

Γ ⇓ A ⊃ B ` · ⇓ p :: k : E

Figure 4 Cut-free LJF with term annotations.

polarization of propositional variables can be fixed arbitrarily.) If B is an intuitionistic
theorem and B̂ is any polarization of B, then there is an LJF proof of · ⇑ · ` B̂ ⇑ · [24]. Thus,
polarization does not affect provability but, as we shall illustrate, it can affect the shape of
proofs.

Our second extension of the proof system in Figure 1 is meant to harness the resulting
variability in proofs in order to provide a rich representation for terms and formulas. Figure 4
contains the propositional LJF inference rules annotated with the λκ-term found in [7]. This
term calculus contains three syntactic categories: Terms, Values, and Continuations.
Note that it is the store-left (Sl) rule that results in bindings in term structures and that
such binding can result in either a λ-abstraction or a κ-abstraction.

6.2 Two normal forms for simply typed terms

If all primitive types (atomic formulas) are given a negative polarity, then the terms annotating
proofs in the sequents of Figure 4 provide the usual notion of βη-long normal form λ-terms.
Recall that terms in βη-long normal form are of the form λx1 . . . λxn.h t1 . . . tm where h
is a variable or constant, where t1, . . . , tm is a list of terms in βη-long normal form, and
where the term (h t1 . . . tm) has primitive type. In particular, if we use [[·]] to translate such
λ-terms into terms of the first syntactic category in Figure 4, then

[[λx1 . . . λxn.h t1 . . . tm]] = λx1 . . . λxn.h (↓[[t1]] :: · · · :: ↓[[tm]] :: ε).

Note that this translation transforms the application of the function h from one argument
at a time to the application of h to a list of all its arguments. Such a formal connection
between βη-long normal forms and this style of term representation was made by Herbelin
using his LJT sequent calculus [21]. When all primitive types are given a negative bias, then
no formulas are given a positive bias and, as a result, the inference rule named Rl/Sl does
not appear in such proofs and terms do not contain the κ binding operator.

I Example 6. Let i be a primitive type that will be considered negatively biased in the
LJF proof system. The only terms t for which Γ ⇑ · ` t : (i ⊃ i) ⊃ i ⊃ i ⇑ · is provable are
encodings of the Church numerals. In particular, the terms corresponding to the first three
numerals are λfλx.x ε, λfλx.f (↓(x ε) :: ε), and λfλx.f (↓(f (↓(x ε) :: ε)) :: ε).

CSL 2017



23:12 Separating Functional Computation from Relations

If all primitive types are given a positive bias, then the terms annotating proofs in the
sequents in Figure 4 provide a formal definition of a normal form similar to the one described
in [12] and which is commonly called administrative normal form (ANF).

I Definition 7. A simply typed λ-term is in administrative normal form (ANF) when written
as λx1 . . . λxn. ↑h, where n > 0 and h is a variable of primitive type
or as λx1 . . . λxn.h (p1 :: · · · :: pm :: κy.t), where n,m > 0, the type of y is primitive, t is
a simply typed term in ANF and values p1, · · · , pm are either variables of primitive type
or are of the form ↓ t where t is in ANF.

Note the following: (1) If pi is not a variable, then it must denote a term of arrow type
and, hence, it will be a λ-abstraction: that is, immediately following the ↓ · there must be
a λ-abstraction. (2) A closed term in ANF with a type of order 2 or less is of the form
λx1 . . . λxn.t where the types of x1, . . . , xn are either primitive or first-order and where t
does not contain any λ. It can be the case, however, that t contains κ bindings. (3) If we
ignore the requirements on certain variables being of primitive type, then this definition can
be extended to untyped λ-terms.

In order to facilitate the presentation of λ-terms in ANF format, we introduce the following
convention. Instead of λx1 . . . λxn. ↑h we will simply drop the ↑ and write λx1 . . . λxn.h
(remembering that h is a variable of primitive type). Also, instead of

λx1 . . . λxn.h (p1 :: · · · ::pm ::κy.t) we write λx1 . . . λxn. name y = h (p1, . . . , pm) in t

(remember that y is a variable of primitive type) and where p1, . . . , pm is a list of either
variables (of primitive types) or λ-abstractions that are also in ANF.

We use the keyword “name” here instead of “let” since let-expressions are often considered
to be abbreviations for β-redexes: that is, (let x = s in t) is often considered equal to ((λx.t) s).
Here, however, the name-expressions denote normal terms since they are annotations of
cut-free sequent calculus proofs.

x x x x x

f f f

ff

y1

y2The figure to the right illustrates two ways of rep-
resenting a labeled binary tree of height 2. Clearly, the
representation on the left takes exponential space as the
height increases while the representation on the right in-
creases linearly with the height. Here we assume that x
and f are two bound variables of type i and i → i → i, respectively. Choosing between
these two representation schemes involves assigning either negative or positive polarity to the
atomic formula (primitive type) i. For example, if i is polarized negatively, then there is an
LJF proof that is annotated with the term f (↓(f (↓(xε) ::↓(xε) ::ε)) ::↓(f (↓(xε) ::↓(xε) ::ε)) ::ε)
which can be displayed, in a more friendly syntax, as f (f (x, x), f (x, x)). On the other
hand, when i is polarized positively, the above term is no longer a proper annotation of an
LJF proof while the term

name y1 = (f x x) in name y2 = (f y1 y1) in y2

does annotate an LJF proof. Since the ANF term format allows subterms to be shared, that
format can allow for much smaller term structures. While sharing is a feature of ANF, we
shall not require it to be particularly well behaved. For example, it is possible for a term in
ANF to have vacuous naming – i.e., a named term that is never used in the name’s scope –
or redundant naming – i.e., the same term can be named more than once. For example, the
term

name y1 = (f x x) in name y2 = (f y1 y1) in name y3 = (f y1 y1) in y2
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is in ANF even though it has vacuous and redundant naming. One might imagine that
multifocusing can be used to allow parallel naming, such as in the expression

name y1 = (f x x) in name y2 = (f y1 y1) and y3 = (f y1 y1) in y2.

One might also expect that the concept of maximal multifocusing [8] could relate to insisting
on “maximal sharing”. In this paper, we shall not use multifocused proofs nor insist on the
absence of vacuous or redundant naming.

6.3 Mixed term representations
The syntax of formulas of arithmetic statements depends on two primitive types: the type of
formulas o and of numerals i. We present several examples of term representations below
where o is polarized negatively and i is polarized positively. We also allow the binary infix
term constructors + and ∗ of type i → i → i as well as the formula constructor < (the
less-than relation) of type i→ i→ o.

I Example 8. When the type i for numerals is polarized positively, the λκ-calculus does
not allow for expressions of the form (s · · · (sz) · · · ). Instead, encoding an expression of the
form P(2+ 3) can be done as follows:

name 1 = (s 0) in name 2 = (s 1) in name 3 = (s 2) in name x = 2+ 3 in P(x).

Thus, numerals are really treated as pointers into a sequence of successor terms.

I Example 9. The formula ∀x[(x2+6) = 5x ⊃ (x = 2∨x = 3)] can be written as the λκ-term
∀x[name y = x ∗ x in name u = 5 ∗ x in name v = y+ 6 in (v = u ⊃ (x = 2∨ x = 3))].

The inversion of syntax that appears in ANF is familiar to those computing with relations
instead of functions, as the following example illustrates.

I Example 10. To prove that (2 ∗ (5 + 2)) < 8 + 7 in a setting with only relations (such
as, say, in Prolog) one can rewrite that inequality as the following (equivalent) formulas of
arithmetic.

∃x(plus 5 2 x∧ ∃y(times 2 x y∧ ∃z(plus 8 7 z∧ y < z)))
∀x(plus 5 2 x ⊃ ∀y(times 2 x y ⊃ ∀z(plus 8 7 z ⊃ y < z)))

Here, the binary operators + and ∗ are interpreted by corresponding ternary predicates.

6.4 Interpreting term constructors
As Examples 8 and 9 illustrate, arithmetic formulas can contain a mix of uninterpreted
term constructors (for example, the constructor for numerals z and s) and interpreted term
constructors (for example, + and ∗).

The formal introduction of a new interpreted term constructor such as f : i→ . . .→ i→ i

of n arguments must be tied to an interpreting µ-expression Rf of n+ 1-arity and a formal
proof that Rf encodes a function, i.e.,

∀x̄.([∃y.Rf(x̄, y)]∧ ∀y∀z.[Rf(x̄, y) ⊃ Rf(x̄, z) ⊃ y = z]).

That is, achieving a proof of this theorem permits the introduction of a new constructor f
where y = f x1 . . . xn is interpreted by Rf x1 . . . xn y. In principle, this means that the
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y, Σ : Γ ⇑ Rf x̄ y, B,Θ ` ∆1 ⇑ ∆2
Σ : Γ ⇑ name y = f x̄ in B,Θ ` ∆1 ⇑ ∆2

y, Σ : Γ ⇑ Rf x̄ y, Θ ` B ⇑ ·
Σ : Γ ⇑Θ ` name y = f x̄ in B ⇑ ·

Σ : Γ ⇑ · ` name x = f x̄ in B ⇑ ·
Σ : Γ ⇓ · ` name x = f x̄ in B ⇓ ·

Σ : Γ ⇑ name x = t in B ` · ⇑ ∆
Σ : Γ ⇓ name x = t in B ` · ⇓ ∆

Figure 5 Introduction rules for the constructor f and the relation Rf which interprets it.

Name binding rules: the variable x is not bound in Σ nor in Ψ.

Σ : x := t, Ψ; Γ ⇑ B,Θ ` ∆1 ⇑ ∆2
Σ : Ψ; Γ ⇑ name x = t in B,Θ ` ∆1 ⇑ ∆2

Σ : x := t, Ψ; Γ ⇑ · ` B ⇑ ·
Σ : Ψ; Γ ⇑ · ` name x = t in B ⇑ ·

Σ : x := t, Ψ; Γ ⇓ · ` B ⇓ ·
Σ : Ψ; Γ ⇓ · ` name x = t in B ⇓ ·

Σ : x := t, Ψ; Γ ⇓ B ` · ⇓ E
Σ : Ψ; Γ ⇓ name x = t in B ` · ⇓ E

Positive phase quantifier rules

Σ, Σ(Ψ) ⇑·` t : τ ⇑ · Σ : Ψ; Γ ⇓ [t/x]B ` · ⇓ E
Σ : Ψ; Γ ⇓ ∀xτ.B ` · ⇓ E

Σ, Σ(Ψ) ⇑·` t : τ ⇑ · Σ : Ψ; Γ ⇓ · ` [t/x]B ⇓ ·
Σ : Ψ; Γ ⇓ · ` ∃xτ.B ⇓ ·

Figure 6 The incorporation of the naming context Ψ.

formula (name y = f x1 . . . xn in B) is interpreted as either ∀y.(Rf x1 . . . xn y ⊃ B) or
∃y.(Rf x1 . . . xn y∧+B). Clearly, the naming construction is a self-dual operator on formulas
in the sense that ¬(name y = f x1 . . . xn in B) is equivalent to (name y = f x1 . . . xn in ¬B).
As a result, such formulas are said to have an ambiguous polarity since they can be coerced
to be negative or positive. The introduction rules for interpreted term constructors are given
in Figure 5.

6.5 A final extension

In order to treat the naming (sharing) of structures built using uninterpreted symbols within
proofs and computations, we need to add to our sequents (both ⇑ and ⇓) an additional zone
(using the Ψ syntactic variable) that explicitly retains the naming relation. We do this by
adding the Ψ context to all the previous arithmetic-related sequents and inference rules. We
also add the inference rules that appear in Figure 6. In the first four of these inference rules,
the formula-level binder name y = t in B is translated to a proof-level binder by adding the
pair y := t to the Ψ context.

The quantifier rules that instantiate their quantifier with a term are modified in Figure 6
so that the naming structure of sequents is respected. In particular, those rules employ the
premise Σ, Σ(Ψ) ⇑ · ` t : τ ⇑ ·. (Here, Σ(Ψ) is the set of (typed) variables that are bound in
Ψ.) Thus, the term t is, in general, a λκ-term. The inference rules for equality must also be
changed in order to account for the treatment of λκ-terms: with only first-order constructors
present (such as in our treatment of natural numbers), the treatment of unification in this
setting can be based on the Martelli-Montanari algorithm [25].
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7 Conclusion

We have presented a treatment of functional computation based on relations. Principles in
proof theory provided both a method for moving expressions denoting embedded computation
into naming-combinators of the logic (ANF normal form) and a means of organizing Gentzen-
style introduction rules so that functional computations can be identified as one specific
phase of computation (the negative phase). Since this view of computation is based on
the construction of cut-free proofs, it is rather different from, say, the Curry-Howard
correspondence.

While we have illustrated most of this mechanism using first-order term structures (such
as Peano’s numerals), the proof theory behind LJF works at all finite types. As a result,
this approach to functional computation is a possible avenue to explore how functional
programming might be extended to treat terms containing λ-bindings.

The proof theory presented here is compatible with the proof theory for least and greatest
fixed points that has been developed in a series of papers [26, 14, 15, 30] and in the Abella
theorem prover [6, 1, 13]. A possible practical consequence of the design in this paper is an
avenue for adding to Abella functional computations via the addition of interpreted term
constructors.

Acknowledgments. We thank Beniamino Accattoli, Roberto Blanco, and the anonymous
reviewers for their comments on an earlier draft of this paper.

References
1 The Abella prover, 2012. Available at http://abella-prover.org/.
2 Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. J. of Logic

and Computation, 2(3):297–347, 1992. doi:10.1093/logcom/2.3.297.
3 Ali Assaf, Guillaume Burel, Raphaël Cauderlier, David Delahaye, Gilles Dowek, Catherine

Dubois, Frédéric Gilbert, Pierre Halmagrand, Olivier Hermant, and Ronan Saillard. De-
dukti: a logical framework based on the λΠ-calculus modulo theory. Unpublished, 2016.
URL: http://www.lsv.ens-cachan.fr/~dowek/Publi/expressing.pdf.

4 David Baelde. A linear approach to the proof-theory of least and greatest fixed points. PhD
thesis, Ecole Polytechnique, December 2008. URL: http://www.lix.polytechnique.fr/
~dbaelde/thesis/.

5 David Baelde. Least and greatest fixed points in linear logic. ACM Trans. on Computational
Logic, 13(1), April 2012. doi:10.1145/2071368.2071370.

6 David Baelde, Kaustuv Chaudhuri, Andrew Gacek, Dale Miller, Gopalan Nadathur, Alwen
Tiu, and Yuting Wang. Abella: A system for reasoning about relational specifications.
Journal of Formalized Reasoning, 7(2), 2014. doi:10.6092/issn.1972-5787/4650.

7 Taus Brock-Nannestad, Nicolas Guenot, and Daniel Gustafsson. Computation in focused
intuitionistic logic. In Moreno Falaschi and Elvira Albert, editors, Proceedings of the 17th
International Symposium on Principles and Practice of Declarative Programming, Siena,
Italy, July 14–16, 2015, pages 43–54, 2015. doi:10.1145/2790449.2790528.

8 Kaustuv Chaudhuri, Dale Miller, and Alexis Saurin. Canonical sequent proofs via multi-
focusing. In G. Ausiello, J. Karhumäki, G. Mauri, and L. Ong, editors, Fifth International
Conference on Theoretical Computer Science, volume 273 of IFIP, pages 383–396. Springer,
September 2008.

9 Alonzo Church. A formulation of the Simple Theory of Types. J. of Symbolic Logic, 5:56–68,
1940.

CSL 2017

http://abella-prover.org/
http://dx.doi.org/10.1093/logcom/2.3.297
http://www.lsv.ens-cachan.fr/~dowek/Publi/expressing.pdf
http://www.lix.polytechnique.fr/~dbaelde/thesis/
http://www.lix.polytechnique.fr/~dbaelde/thesis/
http://dx.doi.org/10.1145/2071368.2071370
http://dx.doi.org/10.6092/issn.1972-5787/4650
http://dx.doi.org/10.1145/2790449.2790528


23:16 Separating Functional Computation from Relations

10 Denis Cousineau and Gilles Dowek. Embedding pure type systems in the lambda-Pi-
calculus modulo. In Simona Ronchi Della Rocca, editor, Typed Lambda Calculi and Ap-
plications, 8th International Conference, TLCA 2007, Paris, France, June 26-28, 2007,
Proceedings, volume 4583 of LNCS, pages 102–117. Springer, 2007.

11 Roy Dyckhoff and Stephane Lengrand. Call-by-value λ-calculus and LJQ. J. of Logic and
Computation, 17(6):1109–1134, 2007.

12 Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The essence
of compiling with continuations. ACM SIGPLAN Notices, 28(6):237–247, 1993. URL:
citeseer.nj.nec.com/174731.html.

13 Andrew Gacek. The Abella interactive theorem prover (system description). In A. Ar-
mando, P. Baumgartner, and G. Dowek, editors, Fourth International Joint Conference
on Automated Reasoning, volume 5195 of LNCS, pages 154–161. Springer, 2008. URL:
http://arxiv.org/abs/0803.2305.

14 Andrew Gacek, Dale Miller, and Gopalan Nadathur. Combining generic judgments with
recursive definitions. In F. Pfenning, editor, 23th Symp. on Logic in Computer Science,
pages 33–44. IEEE Computer Society Press, 2008. URL: http://www.lix.polytechnique.
fr/Labo/Dale.Miller/papers/lics08a.pdf.

15 Andrew Gacek, Dale Miller, and Gopalan Nadathur. Nominal abstraction. Information
and Computation, 209(1):48–73, 2011. doi:10.1016/j.ic.2010.09.004.

16 Gerhard Gentzen. Investigations into logical deduction. In M. E. Szabo, editor, The
Collected Papers of Gerhard Gentzen, pages 68–131. North-Holland, Amsterdam, 1935.
doi:10.1007/BF01201353.

17 Jean-Yves Girard. A new constructive logic: classical logic. Math. Structures in Comp.
Science, 1:255–296, 1991. doi:10.1017/S0960129500001328.

18 Jean-Yves Girard. A fixpoint theorem in linear logic. An email posting to the mailing list
linear@cs.stanford.edu, February 1992.

19 Michael J. Gordon, Arthur J. Milner, and Christopher P. Wadsworth. Edinburgh LCF: A
Mechanised Logic of Computation, volume 78 of LNCS. Springer, 1979.

20 Quentin Heath and Dale Miller. A proof theory for model checking: An extended ab-
stract. In Iliano Cervesato and Maribel Fernández, editors, Proceedings Fourth Interna-
tional Workshop on Linearity (LINEARITY 2016), volume 238 of EPTCS, January 2017.
doi:10.4204/EPTCS.238.1.

21 Hugo Herbelin. A lambda-calculus structure isomorphic to Gentzen-style sequent calculus
structure. In Computer Science Logic, 8th International Workshop, CSL’94, volume 933 of
Lecture Notes in Computer Science, pages 61–75. Springer, 1995.

22 Hugo Herbelin. Séquents qu’on calcule: de l’interprétation du calcul des séquents comme
calcul de lambda-termes et comme calcul de stratégies gagnantes. PhD thesis, Université
Paris 7, 1995.

23 D. Hilbert and P. Bernays. Grundlagen der Mathematik II. Springer Verlag, 1939.
24 Chuck Liang and Dale Miller. Focusing and polarization in linear, intuitionistic, and clas-

sical logics. Theoretical Computer Science, 410(46):4747–4768, 2009. doi:10.1016/j.tcs.
2009.07.041.

25 Alberto Martelli and Ugo Montanari. An efficient unification algorithm. ACM Transactions
on Programming Languages and Systems, 4(2):258–282, April 1982.

26 Raymond McDowell and Dale Miller. Cut-elimination for a logic with definitions and in-
duction. Theoretical Computer Science, 232:91–119, 2000. doi:10.1016/S0304-3975(99)
00171-1.

27 Dale Miller and Alexis Saurin. A game semantics for proof search: Preliminary results.
In Proceedings of the Mathematical Foundations of Programming Semantics (MFPS05),
number 155 in ENTCS, pages 543–563, 2006.

citeseer.nj.nec.com/174731.html
http://arxiv.org/abs/0803.2305
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/lics08a.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/lics08a.pdf
http://dx.doi.org/10.1016/j.ic.2010.09.004
http://dx.doi.org/10.1007/BF01201353
http://dx.doi.org/10.1017/S0960129500001328
http://dx.doi.org/10.4204/EPTCS.238.1
http://dx.doi.org/10.1016/j.tcs.2009.07.041
http://dx.doi.org/10.1016/j.tcs.2009.07.041
http://dx.doi.org/10.1016/S0304-3975(99)00171-1
http://dx.doi.org/10.1016/S0304-3975(99)00171-1


U. Gérard and D. Miller 23:17

28 Peter Schroeder-Heister. Rules of definitional reflection. In M. Vardi, editor, 8th Symp.
on Logic in Computer Science, pages 222–232. IEEE Computer Society Press, IEEE, June
1993. doi:10.1109/LICS.1993.287585.

29 Robert J. Simmons and Frank Pfenning. Weak focusing for ordered linear logic. Technical
Report CMU-CS-10-147, Carnegie Mellon University, April 2011.

30 Alwen Tiu and Alberto Momigliano. Cut elimination for a logic with induction and co-
induction. Journal of Applied Logic, 10(4):330–367, 2012. doi:10.1016/j.jal.2012.07.
007.

31 Alwen Tiu, Gopalan Nadathur, and Dale Miller. Mixing finite success and finite failure
in an automated prover. In Empirically Successful Automated Reasoning in Higher-Order
Logics (ESHOL’05), pages 79–98, December 2005.

32 Anne Sjerp Troelstra, editor. Metamathematical Investigation of Intuitionistic Arithmetic
and Analysis, volume 344 of Lecture Notes in Mathematics. Springer, 1973.

33 Alexandre Viel and Dale Miller. Proof search when equality is a logical connective. Presen-
ted to the International Workshop on Proof-Search in Type Theories, July 2010. URL:
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/unif-equality.pdf.

CSL 2017

http://dx.doi.org/10.1109/LICS.1993.287585
http://dx.doi.org/10.1016/j.jal.2012.07.007
http://dx.doi.org/10.1016/j.jal.2012.07.007
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/unif-equality.pdf

	Introduction
	The basics of focusing in quantificational intuitionistic logic
	Propositional intuitionistic logic
	Quantification and term equality

	Inference rules for the fixed point connective
	Focusing and unfolding
	Phases as abstractions

	The polarity ambiguity of singleton sets
	Equivalence classes
	Term representation: turning formulas inside-out
	Term annotations for propositional LJF
	Two normal forms for simply typed terms
	Mixed term representations
	Interpreting term constructors
	A final extension

	Conclusion

