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Abstract
We establish new, and surprisingly tight, connections between propositional proof complexity
and finite model theory. Specifically, we show that the power of several propositional proof
systems, such as Horn resolution, bounded width resolution, and the polynomial calculus of
bounded degree, can be characterised in a precise sense by variants of fixed-point logics that are
of fundamental importance in descriptive complexity theory. Our main results are that Horn
resolution has the same expressive power as least fixed-point logic, that bounded width resolution
captures existential least fixed-point logic, and that the (monomial restriction of the) polynomial
calculus of bounded degree solves precisely the problems definable in fixed-point logic with counting.

1998 ACM Subject Classification F.4.1. Mathematical Logic

Keywords and phrases Propositional proof systems, fixed-point logics, resolution, polynomial
calculus, generalized quantifiers

Digital Object Identifier 10.4230/LIPIcs.CSL.2017.27

1 Introduction

The question whether there exists an efficient proof system by means of which the validity of
arbitrary propositional formulas can be verified via proofs of polynomial size is equivalent to
the closure of NP under complementation. Since Cook and Reckhow [14] made the notion
of an efficient propositional proof system precise, a huge body of research on the power
of various propositional proof system has been established. In particular, we now have
super-polynomial lower bounds on the proof complexity for quite strong proof systems, see
[7, 25] for surveys on propositional proof complexity.

In this paper we study polynomial-time variants of propositional proof systems, which
admit efficient proof search, resulting in proofs of polynomial size, such as restricted variants
of resolution and the polynomial calculus. Recall that the resolution proof system Res takes
as input a propositional formula ϕ in conjunctive normal form (CNF), and it refutes the
satisfiability of ϕ if there is a derivation of the empty clause from ϕ. It is well-known that
shortest resolution proofs can be of exponential size, so in general, we provably cannot search
for resolution proofs in polynomial time. However, there are interesting restrictions of Res,
such as Horn-Res (resolution restricted to Horn clauses) and bounded-width resolution
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27:2 The Model-Theoretic Expressiveness of Propositional Proof Systems

k-Res (resolution restricted to clauses of size ≤ k) that do admit efficient proof search. Of
course, unless P = NP, any proof system that admits efficient proof search is necessarily
incomplete for full propositional logic. Nevertheless we can still prove interesting statements
in such systems, and usually have completeness for relevant fragments of propositional logic,
such as Horn-logic or 2-CNF. We can now try to solve algorithmic problems by reducing
them to provability (or refutability) in some specific polynomial-time proof system, which,
if it works successfully for all inputs, would give us a polynomial-time algorithm for the
problem. Our goal is to understand how powerful this approach can be, depending on the
specific proof system that we use.

Let us illustrate this by two concrete problems. First we consider graph isomorphism,
a problem which is not known to be solvable in polynomial time although there is strong
evidence that it is not NP-complete. Given two graphs G = (V,E) and H = (W,F ) we
ask whether there is a bijection π : V →W such that π(E) = F . Of course, this can easily
be encoded as the satisfiability problem of a propositional CNF-formula. First, for each
pair of vertices v ∈ V and w ∈W we introduce a variable Xvw with the intended meaning
that Xvw = 1 if π(v) = w. We add clauses

∨
w∈W Xvw for every v ∈ V and

∨
v∈V Xvw for

every w ∈ W to ensure that every v ∈ V has an image and every w ∈ W has a preimage.
Additionally we add for all v1, v2 ∈ V and w1, w2 ∈ W a clause ¬(Xv1w1 ∧Xv2w2) in case
that {v1 7→ w1, v2 7→ w2} is not a partial isomorphism. The resulting CNF-formula, denoted
by Iso(G,H), is satisfiable if, and only if, the two graphs G and H are isomorphic. Following
our reasoning from above, we can now use an efficient variant of resolution, or of a stronger
proof system, and try to refute the satisfiability of the formula Iso(G,H). If this is possible,
then G are H are not isomorphic. Unfortunately, if we do not find a proof, then we are stuck,
because it might still be the case that G and H are not isomorphic, but our proof system
is not strong enough to show this. Hence, we get an efficient, sound, but not necessarily
complete graph isomorphism test. The question how successful this approach is when based
on resolution was studied by Toran in [26]. Unfortunately, he proved that shortest resolution
proofs for graph non-isomorphism can be of exponential size (even for graphs with colour
class size four). More recently, Grohe and Berkholz showed that also in the stronger system
polynomial calculus (PC) one cannot obtain small proofs for graph non-isomorphism [9, 10].

Our second example is directed graph reachability: Given a directed graph G = (V,E)
with two distinguished vertices s, t ∈ V , we want to know whether there is a path from s to
t in G. Again, it is easy to encode this as a satisfiability problem in propositional logic, by
taking the conjunction of all implication clauses Xv → Xw, for all edges (v, w) ∈ E, together
with the two clauses 1→ Xs and Xt → 0. Clearly the resulting formula NonReach(G, s, t)
is unsatisfiable if, and only if, t is reachable from s in G. However, in clear contrast to
the formulas Iso(G,H) from above, we can easily prove unsatisfiability for the formulas
NonReach(G, s, t) in efficient variants of resolution such as Horn-Res and k-Res for k ≥ 2.

Our two examples demonstrate the following: while certain problems, such as directed
graph reachability, allow for small and efficient resolution proofs, other problems, such as the
graph isomorphism problem, provably require proofs of super-polynomial size even in quite
strong proof systems. This leads to the main question that we want to address in this paper:
is there a classification for those problems which can be solved in fundamental polynomial-
time propositional proof systems such as Horn-Res, k-Res and degree-k (monomial)-PC,
denoted by mon-PCk. It came as a surprise to us that there is, indeed, a very clear and tight
classification of the power of all of these proof systems in terms of definability in important
fixed-point logics which are well-studied in the area of descriptive complexity theory.

Before we can state our results in detail, we have to explain what we mean by saying that
a problem, such as directed graph reachability, can be solved by a propositional proof system
Prop. As usual, each decision problem can be identified with a membership problem “A ∈ K?”
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for some class of structures K. For instance, the graph reachability problem from above is
identified with the class KReach = {(V,E, s, t) : there is a path from s to t in G = (V,E)}.
Then we naturally want to say that a problem K can be solved by the proof system Prop if
we can find a reduction function f which maps structures A to inputs f(A) for Prop such
that A ∈ K if, and only if, Prop can prove that f(A) is not satisfiable. It is clear that we
only want to allow simple reduction functions f , because otherwise the computation of the
encoding could already contain part of the work to solve the problem. Coming from the area
of finite model theory the obvious and natural formalisation for “f being simple” is to say
that f is definable in first-order logic (FO). We introduce the precise technical definition of
such reductions, which is the notion of a first-order interpretation, in Section 2. Note that
for the two examples we discussed above the encoding functions are FO-definable.

Having established this definition it turns out that our classification problem is really
about understanding the expressive power of the Lindström extensions of first-order logic
by generalised quantifiers for propositional proof systems Prop. We denote these logics
by FO(Prop). The basic idea of the logic FO(Prop) is just to extend first-order logic
by new quantifiers QProp which are capable of simulating Prop. In other words, we just
incorporate into first-order logic the power to simulate Prop in an explicit way. Note that
the logics FO(Prop) are really nothing more than a formalisation of the concept of oracle
Turing-machines with access to Prop in the world of first-order logic (the oracle calls to the
proof system Prop correspond to applications of the new generalised quantifiers). Again,
the precise technical definitions of the Lindström extensions FO(Prop) can be found in
Section 2. Having defined these logics, we can now say that a problem K can be solved in a
proof system Prop if, and only if, it is definable in FO(Prop). For instance, we saw that
KReach ∈ FO(Horn-Res) ∩ FO(2-Res).

We are prepared to state our main results in a formal way. We first look at the restrictions
of resolution we mentioned before, Horn-Res and k-Res, for k ≥ 2. It turns out that
Horn-Res can solve precisely those problems which are definable in least-fixed point logic
(LFP), that is FO(Horn-Res) = LFP. This follows by the well-known result that the
problem of computing winning positions in reachability games (known as GAME or alternating
reachability) is complete for LFP with respect to FO-reductions. More interestingly, we
proceed to show that k-Res, for every k ≥ 2, is less powerful than Horn-Res. In fact,
FO(2-Res) = FO(TC), where FO(TC) is the extension of first-order logic by a transitive
closure operator. Moreover, we prove that, for every k ≥ 3, FO(k-Res) = EFP, where
EFP is the existential fragment of least fixed-point logic which is known to be a strict
fragment of full least fixed-point logic. One can also show that the Lindström extensions
for Horn resolution and width-k resolution have different structural properties. While for
FO(Horn-Res) a single application of a QHorn-Res quantifier suffices to obtain the full
expressive power, nesting of Qk-Res quantifiers is needed for the logics FO(k-Res). For lack
of space, details will be deferred to the full version of this paper.

We then turn our attention to the monomial variant of the polynomial calculus (mon-PC),
which is a proof system based on algebraic reasoning techniques. Its restriction to polynomials
of degree at most k, denoted by mon-PCk, gives us an interesting polynomial-time proof
system which is known to be much stronger than bounded-width resolution and Horn
resolution. Accordingly, we can prove that the logic FO+(mon-PCk) is more powerful than
all logics based on restrictions of resolution that we considered before. In fact, we show that
FO+(mon-PCk), for k ≥ 2, has the same expressive power as fixed-point logic with counting
(FPC) which is a very expressive logic well-studied in descriptive complexity theory [15, 23]
(here, FO+ denotes the extension of FO by a numeric sort to match the setting of FPC).
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Finally, we discuss applications of our model-theoretic characterisations of propositional
proof systems. For instance, we can make statements about computational problems with
regards to their solvability in one of these proof systems by using known (un-)definability
results for fixed-point logics. Furthermore, we show how one can apply our logical charac-
terisations of proof systems in order to transfer lower bounds from finite model theory to
propositional proof complexity. In particular, we can easily reprove many lower bounds on
the resolution sizes and widths for various families of propositional formulas.

Related work. Let us discuss some related work. The most relevant result to mention here
is the elegant characterisation by Atserias and Dalmau of resolution width in terms of the
number of pebbles required to win an existential pebble game played on a given CNF-formula
and a structural encoding of truth assignments [2, 4]. This somehow resembles our result
that bounded width resolution corresponds to existential least fixed-point logic. Using their
game-theoretic characterisation, Atserias and Dalmau can reprove many of the known lower
bounds on resolution width. Again, this is similar to the applications we give in Section 5.1.

However, what makes our setting different from the approach of Atserias and Dalmau
is that we always consider the power of proof systems only up to logical reductions. This
reflects, for example, in our result saying that FO(3-Res) = FO(4-Res), i.e. that 3-Res has
the same expressive power as 4-Res. But, certainly, this only holds if we allow first-order
reductions to transform inputs between 4-Res and 3-Res. Hence, we obtain a much less
precise characterisation of resolution width. However, we think that the main advantage of
our approach is its robustness. For instance, in the situation of lower bound proofs, we can
avoid playing pebble games directly on the inputs to proof systems, such as CNF-formulas, but
instead it suffices to play suitable games on pairs of structures in which these inputs interpret.
This can make the description of winning strategies much simpler. Furthermore, our setting
allows us to prove lower bound results much more independently from a concrete encoding
of a problem, because of the fact that our logics are closed under logical interpretations, cf.
discussion on the graph isomorphism problem in Section 5.1. Indeed, we can obtain lower
bounds not only for one concrete family of inputs, but for any other family to which this
family reduces to. For example, it is easy to see that our arguments in Corollary 20 about
the lower bound for the 3-colourability problem actually go through for any other family of
k-CNF-formulas to which one can reduce, in first-order logic say, the problem of solving a
linear equation system over the two-element field (in which each equation has at most three
variables) by using k-CNF-formulas with linearly many propositional variables.

Besides this, we want to mention the series of papers [5, 9, 22, 21] which establish
surprisingly tight connections between the equivalence of graphs in counting logic and their
indistinguishability by linear programming techniques (Sherali-Adams relaxiations of graph
isomorphism polytopes) and algebraic propositional proof system. Similar to our applications,
these results also allow the transfer of lower bounds from finite model theory to get lower
bounds on proof complexity. In particular, we use notions and ideas of [9] in Section 4.

2 Preliminaries

Logical interpretations and Lindström quantifiers. Let L be a logic and σ, τ be signatures
with τ = {S1, ..., S`}. Let si denote the arity of Si. An L[σ, τ ]-interpretation is a tuple

I(z) = (ϕδ(x, z), ϕ≈(x1, x2, z), ϕS1(x1, ..., xs1 , z), ..., ϕS`
(x1, ..., xs`

, z))

where ϕδ, ϕ≈, ϕS1 , ..., ϕS`
∈ L[σ] and x, x1, ..., xs`

are tuples of pairwise distinct variables of
the same length d and z is a tuple of variables pairwise distinct from the x-variables. We
call d the dimension and z the parameters of I(z).
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A d-dimensional L[σ, τ ]-interpretation I(z) defines a partial mapping I : Str(σ, z) →
Str(τ) in the following way: For (A, z 7→ a) ∈ Str(σ, z) we obtain a τ -structure B over the
universe {b ∈ Ad | A |= ϕδ(b, a)}, setting SB

i = {(b1, .., bsi
) ∈ Bsi | A |= ϕSi

(b1, ..., bsi
, a)}

for each Si ∈ τ . Moreover let E = {(b1, b2) ∈ Ad ×Ad | A |= ϕ≈(b1, b2, a)}. Now we define

I(A, z 7→ a) :=
{
B/E if E is a congruence relation on B

undefined otherwise.

We say that I interprets B/E in A.
Let L be a logic and K ⊆ Str(τ) a class of τ -structures with τ = {S1, ..., S`}. The

Lindström extension L(QK) of L by Lindström quantifiers for the class K is obtained by
extending the syntax of L by the following formula creation rule:

Let ϕδ, ϕ≈, ϕS1 , ..., ϕS`
be formulas in L(QK) that form an L[σ, τ ]-interpretation

I(z). Then ψ(z) = QKI(z) is a formula in L(QK) over the signature σ, with
(A, z 7→ a) |= QKI(z), if, and only if, B := I(A, z 7→ a) is defined and B ∈ K.

Fixed-point logic with counting. We assume that the reader is familiar with least fixed-
point logic, denoted LFP. In finite model theory, a very important extension of LFPis
fixed-point logic with counting, FPC. FPC is evaluated on two-sorted structures. For
any finite, one-sorted σ-structure A with universe A, we define the two-sorted extension
A+ := A ] ({0, ..., |A|};<), where < is the canonical ordering on {0, ..., |A|}. We call the
thus extended vocabulary σ+. The elements of A form the point sort and {0, ..., |A|} is called
the numeric sort. Fixed-point logic with counting (FPC) is the extension of least-fixed
point logic over such two-sorted structure by counting quantifiers, so that we have formulas
∃≥λxϕ, where λ is a numeric variable, saying that there exist at least λ many points a ∈ A
making ϕ(a) true. The importance of FPC comes from the fact that it can express many
fundamental algorithmic techniques and comes very close to being a logic for polynomial
time. For more details on FPC, we refer to [15, 24].

Representing propositional formulas as relational structures. Propositional formulas (in
CNF) can be represented as structures of some fixed vocabulary in several ways. We shall
briefly discuss two possibilities. Since these, and others, are mutually interpretable into each
other by simple formulas, it does not really matter which representation we choose; the
corresponding Lindström extensions of FO will all have the same expressive power. Perhaps
the most obvious representation of a CNF-formula ψ as a structure A(ψ) is based on the
vocabulary {C, V, P,N}; the universe of A(ψ) consists of the variables and the clauses of ψ,
the monadic relations V and C identify the variables and clauses, respectively, and the binary
relations P and N specify which variables appear positively and negatively in which clauses;
so Pvc is true in A(ψ) if the variable v appears positively in the clause c, and analogously
for N . A different representation, that sometimes leads to more elegant logical descriptions
works with the set L of literals and with a self-inverse bijection ¬ : L→ L, so that ψ would
be represented by A(ψ) = (A,C,L,¬,∈) where A is the set of clauses and literals, ¬(x) is
the complementary literal to x, and x ∈ c means that the literal x occurs in the clause c.

CSL 2017
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3 Resolution and Fixed-Point Logics

3.1 Horn Resolution captures Least Fixed-Point Logic
Let posLFP be the fragment of LFP-formulas that are in negation normal form (i.e. negation
is applied only to input atoms), in which each fixed-point variable is bound only once, and
that do not make use of greatest fixed points. Further, let EFP0 be the basic existential
fragment of LFP; it consists of those formulas in posLFP whose quantifiers are all existential.

It is known that, on finite structures (but not in general), every LFP-formula can be
effectively translated into an equivalent one in posLFP. On the other side EFP0 is strictly
weaker; it has the same expressive power as Datalog with negation of input atoms.

I Theorem 1. For every ϕ ∈ posLFP[τ ] there is a first-order interpretation Iϕ that maps
finite τ -structures to propositional Horn formulas ψA,ϕ such that A |= ϕ if, and only if, ψA,ϕ

is unsatisfiable. Further, if ϕ is in EFP0 then all clauses in ψA,ϕ have width at most three.

Proof. Fix a formula ϕ ∈ posLFP[τ ]. For every finite τ -structure A, with universe A, we
construct the propositional Horn formula ψA,ϕ as follows. An instantiated subformula of
ϕ is an expression β(a) which is obtained by taking some subformula β(x) of ϕ and by
instantiating every free variable x by some element a ∈ A. We now take for every instantiated
subformula β of ϕ a propositional variable Xβ , and inductively define a set C(A, ϕ) of clauses
as follows.
1. If β is a τ -literal then we add 1→ Xβ in case that A |= β and Xβ → 0 in case A 6|= β.
2. If β = η ∨ ϑ we add the clauses Xη → Xβ and Xϑ → Xβ .
3. If β = η ∧ ϑ we add the clause Xη ∧Xϑ → Xβ .
4. If β = ∃xη(x) then we add all clauses Xη(a) → Xβ for a ∈ A.
5. If β = ∀xη(x) then we add the clause (

∧
a∈AXη(a))→ Xβ .

6. If β = [lfpRx . η](a) or β = Ra, then we add the clause Xη(a) → Xβ .

By induction, it readily follows that the minimal model of all these clauses sets the
variable Xβ to true if, and only if A |= β (with fixed-point variables interpreted by their
least fixed-point on A). Let now ψA,ϕ be defined as the conjunction of all clauses in C(A, ϕ)
together with Xϕ → 0. Then ψA,ϕ is unsatisfiable if, and only if, A |= ϕ.

We observe that the only clauses of size larger than three are those coming from universal
quantifiers. Hence, if there are no universal quantifiers, the formula only has clauses of size
at most three. Finally it is clear that, for every fixed ϕ ∈ posLFP[τ ], we can interpret (a
representation of) the formula ψ(A, ϕ) inside A, by using an FO-interpretation Iϕ. J

This shows that LFP ≤ FO(Horn-Res). Actually we established a stronger result.

I Theorem 2. For every formula ϕ ∈ LFP there exists a first-order interpretation Jϕ such
that QHorn-Res(Jϕ) is equivalent to ϕ on finite structures. In particular, each LFP-formula
can be translated into an equivalent FO(Horn-Res)-formula with a single application of the
generalised quantifier QHorn-Res.

We are ready to prove that FO(Horn-Res) has the same expressive power as LFP.

I Theorem 3. On finite structures, LFP = FO(Horn-Res).

It remains to show that FO(Horn-Res) ≤ LFP, that is we have to express Horn
resolution in LFP. Recall that a propositional Horn formula ψ admits a derivation of the
empty clause if, and only if, ψ contains a clause in which all variables appear negatively,
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written X1 . . . Xk → 0, such that all unit clauses {Xi} for i = 1, . . . , k can be derived from ψ

by Horn resolution.
Let ψ be presented as a structure A(ψ) with universe C ∪ V and vocabulary {C, V, P,N}.

Let D be the set of variables v ∈ V such that the clause {v} can be derived from ψ by Horn
resolution. Then ψ is unsatisfiable if, and only if, A(ψ) |= ∃c(Cc∧¬∃xPxc∧∀x(Nxc→ Dx)).
The set D is definable by the LFP-formula [lfpDx . ∃c(Pxc ∧ ∀y(Nyc→ Dy)](x).

3.2 Bounded Width Resolution and Existential Least Fixed-Point Logic
Intuitively, existential least fixed-point logic (EFP) extends EFP0 by stratified negation.
This means that it permits fixed-point formulas over existential formulas which may depend
on closed fixed-point relations, defined in a lower stratum, and these can be used also in
negated form. Thus, negation (and hence, implicitly, also universal quantifiers) are present in
a limited form, but least fixed-point recursions may never go through negation or universal
quantification. In fact, EFP is equivalent to Stratified Datalog.

I Definition 4. Existential fixed-point logics EFP :=
⋃
`≥0 EFP` generalises EFP0 as

follows. The stratum EFP`+1 is the closure under disjunction, conjunction and existential
quantification of formulas of form [lfp Rx.∃yϕ(R, x, y)](x) where ϕ(R, x, y) is obtained from
a quantifier-free formula, that may contain positive and negative occurrences of additional
relations S1, . . . , Sm, by substituting these relations by formulas from EFP`.

Notice that first-order logic FO is contained in EFP, but not in any bounded level EFP`,
because every quantifier alternation in FO must be simulated by an additional level of
stratified negation. For the same reason EFP, but none of its levels EFP`, is closed under
first-order operations. As a consequence of Theorem 1 we can infer

I Theorem 5. On finite structures, EFP ≤ FO(3-Res).

Proof. Theorem 1 directly establishes this for EFP0. So assume that the claim is established
for EFP`. Every formula in EFP`+1 can be written as an EFP0-formula over predicates
that are EFP`-definable. Hence, by applying Theorem 1 once more, it can be rewritten as
an FO(3-Res)-formula over predicates that are themselves definable in FO(3-Res). Since
Lindström extensions of FO are closed under nesting of generalised quantifiers, it follows
that also EFP`+1 ≤ FO(3-Res). J

We require clauses of width 3 for translating EFP-formulas into Horn formulas. In fact, if
we restrict to clauses of width 2, then we obtain the power of first-order logic with a transitive
closure operator FO(TC). This immediately follows from the fact that satisfiability of
2-CNF formulas reduces to graph reachability, and from the reduction of graph reachability
to the non-satisfiability problem for a 2-CNF formula that we described in the introduction.

I Theorem 6. It holds that FO(2-Res) = FO(TC).

Simulating bounded width resolution in EFP. To describe resolution of width k, for any
fixed k ≥ 1, in EFP, we shall use the representation of CNF-formula ψ by structures
A(ψ) = (A,C,L,¬,∈) where C is the set of clauses and L is the set of literals, and the
universe is A = C ∪ L ∪ {0}. Further we shall describe the set of all derivable clauses of size
at most k as a k-ary relation D ⊆ (L ∪ {0})k, that contains those k-tuples (x1, . . . , xk) for
which {xi : i ≤ k, xi 6= 0} is a clause that is derivable from ψ. This relation D is defined by
a fixed-point formula [lfpDx .ϕ(D,x)](x) where ϕ(D,x) expresses the following. Either

CSL 2017
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1. there exists a clause c ∈ C such that c = {x1, . . . , xk} \ {0}, or
2. there exist tuples y, z ∈ D such that, for some i, j, the literal zj is the negated literal to

yi, and ({y1, . . . , yk} ∪ {z1, . . . , zk}) \ {yi, zj , 0} = {x1, . . . , xk} \ {0}.

When spelling out these equations in first-order logic, we can express ϕ(x,D) by an
existential FO-formula ∃y α(x, y,D,Q) where Q is FO-definable by a formula (with quantifier
prefix ∃∗∀) that does not depend on D. This yields a formula in EFP1. Since EFP is closed
under FO-operations, this proves

I Theorem 7. On finite structures, FO(k-Res) ≤ EFP for all k ∈ N.

4 The Monomial-PC and Fixed-Point Logic with Counting

We turn our attention to the monomial-PC (mon-PC). The monomial-PC is a propositional
proof system that is based on algebraic reasoning techniques and which lies between the
Nullstellensatz proof system and the polynomial calculus (PC). It was introduced by Berkholz
and Grohe in [9] in order to characterise the power of an important graph isomorphism test,
the Weisfeiler-Lehman method, in terms of propositional proof complexity. We show in this
section that the monomial-PC has precisely the same expressive power as fixed-point logic
with counting (FPC), which is a natural and powerful logic of great importance in the area
of descriptive complexity theory.

4.1 The Monomial-PC
We start with background on the polynomial calculus and its variant, the monomial-PC. Both
systems refute the solvability of a given set of (multivariate) polynomial equations over some
field F using proof rules that manipulate such equations. In this paper, F will always be the
field of rationals Q. We denote by Q[ ~X] the ring of polynomials in variables Xj , j ∈ J , for
some (unordered) index set J and with coefficients in Q. For a multi-index α : J → N we let
themonomial Xα be defined asXα = Πj∈JX

α(j)
j . Then polynomials f ∈ Q[ ~X] can be written

as f =
∑
α fα ·Xα where the fα ∈ Q are coefficients from the field Q and such that fα 6= 0 for

finitely many α only. The degree deg(Xα) of a monomial Xα is defined as |α| =
∑
j∈J α(j),

and the degree of a polynomial is defined as the maximal degree of its monomials. A
polynomial equation is an equation of the form f = 0 for a polynomial f ∈ Q[ ~X]. For better
readability, we usually omit the equality “= 0” when we specify polynomial equations, that is
we identify polynomials f ∈ Q[ ~X] with the corresponding normalised polynomial equations
f = 0. A system of polynomial equations is a set P = {fi : i ∈ I} consisting of polynomials
fi ∈ Q[ ~X] for all i ∈ I where I is an (unordered) index set. A solution of P is a common zero
a ∈ QJ of all polynomials in P. In what follows, we only consider systems P = {fi : i ∈ I}
which contain for every variable X = Xj , j ∈ J , the polynomial equation (X2−X) = 0. The
axioms (X2 −X) = 0 enforce that each variable X = Xj , j ∈ J , can only take values 0 or 1.

The polynomial calculus is based on the following result from algebra which is known
as Hilbert’s Nullstellensatz. It says that the non-solvability of the system P = {fi : i ∈ I}
is equivalent to the existence of polynomials gi ∈ Q[ ~X], i ∈ I, such that

∑
i∈I gi · fi = 1.

The polynomials gi are called a Nullstellensatz refutation for the system P. The idea of the
polynomial calculus is to search for such polynomials gi in a sequential way.

I Definition 8. The axioms and inference rules of polynomial calculus (PC) are as follows.

p ∈ P
p

(Axioms) f

Xf
(Multiplication) g f

ag + bf
(Linear combinations)
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The monomial-PC (mon-PC) is the restriction that permits the use of the multiplication
rule only in the cases where f is either a monomial or the product of a monomial and an
axiom. A polynomial equation system system P has a refutation of degree k ≥ 1 in PC (or
mon-PC) if the polynomial 1 ∈ Q[ ~X] can be derived from P using the above rules using
polynomials of degree at most k.

The polynomial calculus, and also the monomial-PC, are sound and, by Hilbert’s Null-
stellensatz, complete proof systems. However, this only holds if we do not restrict the
degree of the polynomials which are allowed to occur in a refutation. In fact, the “degree of
polynomials” for the PC (mon-PC) is a complexity measure which has similar properties
as the “width of clauses” measure that we studied for the resolution proof system. If we
restrict the PC (mon-PC) to polynomials of degree at most k, for some fixed k ≥ 1, then
the systems become incomplete, but admit proof search in polynomial time. In what follows,
whenever we speak of the monomial-PC, we implicitly refer to the variant where we restricted
the degree of polynomials to some constant k ≥ 1. If we want to make this constant precise,
then we denote the corresponding proof system by mon-PCk. Another fact which we use
throughout this section is that the axioms (X2 − X) guarantee that in (monomial-)PC
proofs we can restrict ourselves to multilinear polynomials. To see this, say that we were
able to derive the polynomial p = X2Y + Z within some (monomial)-PC proof. Of course,
p is not multilinear. However, we can use the axiom (X2 −X) together with the “linear
combination”-rule to reduce this polynomial to the corresponding multilinear polynomial
p′ = XY + Z. Indeed, p′ = p− Y (X2 −X). Hence, restricting to multlinear polynomials,
and modifying the multiplication rule accordingly with implicit linearisation, does not change
the power of the corresponding proof systems. For a polynomial p ∈ Q[ ~X] we denote its
multilinearisation by MultLin(p).

4.2 Monomial-PC in Fixed-Point Logic with Counting
We show that FPC can simulate mon-PCk. For this, we have to agree on an encoding of a set
P of rational, multilinear polynomials as relational structures. Similar to our representation
of CNF-formulas described in Section 2, a natural encoding can be based on a many-sorted
structure AP whose universe is partitioned into sets of polynomials, (multilinear) monomials,
variables, and rational coefficients that occur in P. As usual, we represent rationals as
fractions of integers using binary encoding. Hence, AP should also provide a linear order of
sufficient length to encode these binary strings. Again, the exact technical details are not
important, as long as the encoding has some natural properties, such as FO-definability of
the class of valid encodings. By a slight abuse of notation, we also denote by mon-PCk the
class of structures AP which encode a system P which can be refuted in mon-PCk.

I Theorem 9. For every k ≥ 1, mon-PCk ∈ FPC.

Given a set of multilinear polynomials P of degree at most k, we consider the set VP of
multilinear polynomials which can be derived from P within mon-PCk. The first observation
is that VP is a Q-linear space. Since VP only contains multilinear polynomials of degree at
most k, we can naturally associate polynomials p ∈ VP with vectors p ∈ QMk where the
index set Mk denotes the set of all multilinear monomials of degree at most k. For fixed
k ≥ 1, this set Mk is of polynomial size.

To prove Theorem 9 we express in FPC an inductive algorithm (based on a similar
algorithm for the full polynomial calculus in [13]) for computing a generating set of the space
VP . Then, in order to see whether mon-PCk can refute the system P, we simply have to
check whether the constant polynomial 1 is contained in VP , see Figure 1.
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Input: Set of multilinear polynomials P ⊆ QMk

Output: B ⊆ QMk such that 〈B〉 = VP .
Initialisation (lift all axioms in P)
B := {MultLin(m · p) | p ∈ P,m a monomial s.th.

deg(MultLin(m · p)) ≤ k}repeat
for all monomials m ∈ 〈B〉, deg(m) < k do
B := B ∪ {MultLin(X ·m) : for some variable X}

end for
until B remains unchanged
return B

Figure 1 FPC-procedure to define generating set for VP .

During the run of the algorithm we have that 〈B〉 ≤ VP . Moreover, after termination
it holds that 〈B〉 = VP . We further observe that after the initialisation step we only add
monomials to the set B. Since there are only polynomially many different monomials of
degree at most k, for a fixed k, this means that the algorithm is guaranteed to terminate
after a polynomial number of iterations.

It is not obvious how to express this algorithm in FPC. Most steps, such as the
representation of the set B and the multilinearisation of polynomials, are easy to formalise,
but there is a severe obstacle hidden in the condition for the main loop. Here, we want to
iterate, in parallel, through all monomials m ∈ 〈B〉. This condition “m ∈ 〈B〉” translates
to solving a linear equation system over Q. Although it is provably impossible to express
the method of Gaussian elimination in FPC, since it requires arbitrary choices during its
computation, and although FPC cannot define the solvability of linear equation systems over
finite fields [3], it is known [17] that FPC can indeed express solvability of linear equation
systems over the rationals.

I Theorem 10 ([17]). The solvability of linear equation systems over Q is definable in FPC.

Using this result we can express the algorithm in FPC. In order to complete our proof
of Theorem 9 we recall that mon-PCk can refute P if, and only if, 1 ∈ 〈B〉 = VP . This last
assertion, again, reduces to a linear equation system over Q and can thus be defined in FPC.

4.3 Monomial-PC captures Fixed-Point Logic with Counting
Next we show that the monomial-PC can simulate fixed-point logic with counting. We
first observe, however, that the logic FO(mon-PCk) does not suffice for this purpose.
This is due to the fact that FPC has access to the second numeric sort, on which it can
perform arbitrary polynomial time computations, whereas FO(mon-PCk) is evaluated over
standard single sorted input structures. To overcome this mismatch we have to extend the
logic FO(mon-PCk) to the second-sorted framework as well. We denote this extension of
FO(mon-PCk) by FO+(mon-PCk). As in the case of FPC, this means that formulas are
evaluated over extensions A+ of relational structures A by a second numeric sort, as defined
in Section 2. In particular, interpretations for the Lindström quantifiers can make use of the
second numeric sort, and we require this capability in the proof of our following result.

I Theorem 11. For every k ≥ 2, FPC ≤ FO+(mon-PCk).

An elegant way to prove Theorem 11 is to use a game-theoretic characterisation of FPC
which was recently established in [20]. It is based on the notion of so called threshold games.
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A threshold game is a two-player game played on a directed graph G = (V,E) that is
equipped with a threshold function ϑ : V → N. This function satisfies that ϑ(v) ≤ δ(v) + 1
for all v ∈ V , where δ(v) denotes the out-degree of v in G. Moreover, there is a designated
vertex s ∈ V at which each play starts. A play is a sequence of G-nodes that arises
according to the following rules. At the current position v ∈ V , Player 0 first selects a set
X ⊆ vE = {w : (v, w) ∈ E} with |X| ≥ ϑ(v). Then Player 1 chooses a node w ∈ X and the
play moves on to w. A player who cannot move loses. Hence Player 0 wins at all nodes in
T0 := {v ∈ V | ϑ(v) = 0} and Player 1 at all nodes in T1 := {v ∈ V | δ(v) < ϑ(v)}.

In [20] it is shown that threshold games provide appropriate model-checking games T (A, ϕ)
for any finite structure A and any formula ϕ ∈ FPC. Since fixed-point evaluations on finite
structures can be uniformly unraveled to first-order evaluations, we can in fact assume that
the game graphs of these threshold games are acyclic. For any fixed FPC-formula ϕ, these
model checking games are polynomially bounded in the size of the input structure and can,
in fact, be interpreted in (two-sorted) input structures using a first-order interpretation. This
is related to the transformation of FPC-formulas into uniform families of polynomial-size
threshold circuits, as used for instance in [23] and [1].

I Theorem 12 ([20]). For every FPC-formula ϕ there is a first-order interpretation Iϕ
which, for every finite structure A, interprets in A+ an acyclic threshold game G(A, ϕ) such
that A |= ϕ if, and only if, Player 0 has a winning strategy for G(A, ϕ).

It remains to show that the monomial-PC can define winning regions in acyclic threshold
games. Given an acyclic threshold game G = (G = (V,E), ϑ), we construct an axiom system
P(G) which consists of polynomial equations of degree at most two. For every node v ∈ V in
the threshold game G, the system P(G) contains a variable Xv. Let us denote by WGσ the
winning region of Player σ in G. Then P(G) satisfies the following:

if v ∈WG0 , then Xv = 1 is derivable from P(G) in mon-PC2;

if v ∈WG1 , then Xv = 0 is derivable from P(G) in mon-PC2;

P(G) is consistent; in particular, either Xv = 1 or Xv = 0 is derivable for every v ∈ V ;
If we can construct such a system P(G) via an FO-interpretation in G, then this completes
our proof of Theorem 11. In fact, it then follows that FO+(mon-PC2) can define winning
regions in acyclic threshold games: a node v ∈ V is in the winning region of Player 0 if, and
only if, the system P(G) ∪ {Xv = 0} can be refuted in mon-PC2.

Recall that vE = {w ∈ V : (v, w) ∈ E}, for v ∈ V , denotes the set of successors of v.
Further, we let s(v) denote the number of successors of v, and we let ws(v) denote the number
of successors of v which are in the winning region of Player 0, that is s(v) = |vE| and ws(v) =
|vE ∩WG0 |. We denote the set of non-terminal positions by NonTerm = {v ∈ V : s(v) > 0}.
The system P(G) uses the following set of variables:

a variable Xv, for every v ∈ V ,

a variable Y mv for every v ∈ NonTerm, and 0 ≤ m ≤ s(v),

a variable Zmv [u 7→ j] for every v ∈ NonTerm, 1 ≤ m ≤ s(v), 1 ≤ j ≤ m, u ∈ vE.
The intuition is that the variables Xv encode the winning regions of both players, as described
above. Moreover, the variables Y mv should indicate whether ws(v) = m, in the following way:
if ws(v) 6= m, then Y mv = 0 is derivable, and if ws(v) = m, then Y mv = 1 is derivable. The
variables Zmv [u 7→ j] are auxiliary variables used to encode this last condition, cf. [9]. The
system P(G) consists of the following axioms:
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(T) For v ∈ T0 : Xv = 1 and for v ∈ T1 : Xv = 0

(C) For v ∈ NonTerm, 1 ≤ m ≤ s(v), u ∈ vE :
m∑
j=1

Zmv [u 7→ j]− Y mv = 0

For v ∈ NonTerm, 1 ≤ m ≤ s(v), 1 ≤ j ≤ m :
∑
u∈vE

XuZ
m
v [u 7→ j]− Y mv = 0

For v ∈ NonTerm :
∑
u∈vE

Xu · Y 0
v = 0

(E) For v ∈ V : (1−Xv)−
ϑ(v)−1∑
m=0

Y mv = 0 and Xv −
s(v)∑

m=ϑ(v)

Y mv = 0

We also add for each variable X = Xv a dual variable X with the axiom (N) 1−X = X.

I Lemma 13. The system P(G) is consistent.

Proof. We define an intended model of P(G). ForX-variables, we setXv := 1, if v ∈WG0 , and
Xv := 0, if v ∈WG1 . For Y -variables, we set Y mv := 1, if ws(v) = m, and Y mv := 0 ifm 6= ws(v).
For Z-variables, we set Zmv [u 7→ j] := 0 for all non-terminal positions v ∈ V , u ∈ vE, and
j ∈ {1, . . . ,m}, if m 6= ws(v). For m = ws(v) > 0, we let vE ∩WG0 = {u1, . . . , um}. We then
set Zmv [ui 7→ j] = 1 if j = i, and Zmv [ui 7→ j] = 0 for j 6= i. Moreover, for u ∈ vE \WG0 , we
set Zmv [u 7→ 1] = 1, and Zmv [u 7→ j] = 0 for j ∈ {2, . . . ,m}. J

I Lemma 14. If v ∈ WG0 , then we can derive Xv = 1 from P(G) in mon-PC2; and if
v ∈WG1 , then Xv = 0 is derivable from P(G) in mon-PC2.

Proof. We start with a small remark. Assume that we can derive (1 −X) for a variable
X = Xv, v ∈ V . We show how to derive V (1 − X) for every variable V . This is clearly
possible in the full polynomial calculus. In the monomial-PC, however, we cannot multiply
(1 − X) by V , since (1 − X) is neither a monomial nor an axiom. Instead, we use our
negation axioms: We obtain X = 0 by subtracting X = 1 from (N). Since (N) is an axiom,
we can multiply it by V ; also, X is a monomial and it can be multiplied by V . Thus,
V (1−X −X) + V X = V (1−X) can be derived. We make use of this in what follows.

The proof is by induction on the height of the subgame rooted at v ∈ V (recall that G is
acyclic). For terminal positions v ∈ V , the claim is obvious. Assume v ∈ V is a non-terminal
position. Let W0(v) = vE ∩WG0 and W1(v) = vE ∩WG1 . By the induction hypothesis we
know that we can derive in mon-PC2 for every u ∈ W0(v) the equation Xu = 1 and for
every u ∈W1(v) the equation Xu = 0.

Let m > 0. Consider an equation of the form
∑
u∈vE XuZ

m
v [u 7→ j] − Y mv = 0 for

j ∈ {1, . . . ,m} of type (C). We have vE = W0(v) ]W1(v). For every Z-variable and for
every u ∈ W0(v) we can derive ZXu = Z in mon-PC2, and for every u ∈ W1(v) we can
derive ZXu = 0 in mon-PC2. Hence, we can simplify these equations of type (C) as∑
u∈W0(v) Z

m
v [u 7→ j]− Y mv = 0 for j ∈ {1, . . . ,m} in mon-PC2.

Next, we consider for every u ∈W0(v) the equations
∑m
j=1 Z

m
v [u 7→ j]− Y mv = 0, again

of type (C). We combine these two sets of equations as follows:

∑
j∈{1,...,m}

 ∑
u∈W0(v)

Zmv [u 7→ j]− Y mv

− ∑
u∈W0(v)

 m∑
j=1

Zmv [u 7→ j]− Y mv

 = (m−ws(v))Y mv .



E. Grädel, B. Pago, and W. Pakusa 27:13

Hence, for every m > 0, m 6= ws(v), we can derive Y mv = 0 in mon-PC2. Indeed, also
in the case where m = 0 < ws(v) we can derive Y mv = 0. In this case we just use the
equation

∑
u∈vE XuY

0
v = 0. Using the same arguments as above, this equation simplifies to

ws(v) · Y 0
v = 0. Hence, if ws(v) > 0, we can also derive Y 0

v = 0. Note that the two equations
of type (E) can be combined to the equation

∑s(v)
m=0 Y

m
v = 1. Hence, altogether we showed

the following. For all 0 ≤ m ≤ s(v) it holds that:
if m = ws(v), then we can derive Y mv = 1 in mon-PC2; and
if m 6= ws(v), then we can derive Y mv = 0 in mon-PC2.

Having this, the claim follows immediately by using the equations of type (E). Finally, the
system P(G) can easily be obtained from the game G by means of an FO-interpretation. J

In summary, we have seen that defining the winning regions in acyclic threshold games is
an FPC-complete problem, with respect to FO+-reductions, and that the winning regions
in such games can be defined in FO+(mon-PC2). This completes the proof of Theorem 11
and, together with Theorem 9, establishes the main theorem of this section.

I Theorem 15. For every k ≥ 2, FPC = FO+(mon-PCk).

5 Applications

5.1 Lower Bounds on Resolution Width and Size
Our characterisation of bounded width resolution in terms of EFP-definability reproves
many lower bounds on the resolution size and width for families of propositional formulas.

We denote the finite-variable fragment of infinitary logic by Lω∞ω, that is Lω∞ω is the finite-
variable fragment of the extension of first-order logic by infinite conjunctions and disjunctions.
Further, we denote by L`∞ω the `-variable fragment of Lω∞ω; we have Lω∞ω =

⋃
`≥1 L

`
∞ω.

We write A ≡` B if two structures A and B cannot be distinguished by any sentence of
the `-variable fragment L`∞ω of Lω∞ω. It is well-known that EFP, and even LFP, can be
embedded into the logic Lω∞ω. More precisely, if ϕ ∈ LFP is a sentence with ` (first-order)
variables, then we can find an equivalent sentence ϕ∗ in L`∞ω. We formulate the following
definition and result with respect to L`∞ω-interpretations, instead of FO-interpretations.

I Definition 16. Let k ≥ 1 and let (Φn) = (Φn)n≥1 be a family of k-CNF formulas. Moreover,
let I be an L`∞ω-interpretation which transforms τ -structures A into k-CNF formulas I(A),
and let (An) = (An)n≥1 be a family of τ -structures. We say that I interprets (Φn) in (An)
if for every n ≥ 1, Φn = I(An).

I Theorem 17. Let k ≥ 1, let (Φn) and (Ψn) be two families of k-CNF formulas, let I be
an L`∞ω-interpretation that maps τ -structures to k-CNF formulas, and let (An) and (Bn) be
two families of τ -structures such that:

(Φn) consists of satisfiable formulas, and I interprets (Φn) in (An);
(Ψn) consists of unsatisfiable formulas, and I interprets (Ψn) in (Bn);
An ≡Ω(n) Bn.

(a) Let res-width(n) denote the resolution width required to refute the formula Ψn. Then
res-width(n) ∈ Ω(n).

(b) Let t-res-size(n) denote the size of a tree-like resolution refutation for Ψn. Then
t-res-size(n) is bounded below by a function in 2Ω(n).

(c) Let res-size(n) denote the size of resolution refutation for Ψn. If the formulas Ψn only
contain O(n) many variables, then res-size(n) is bounded below by a function in 2Ω(n).
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Proof. First, assume that res-width(n) 6∈ Ω(n). For r ≥ 1, we choose an EFP-formula ϑr,
according to Theorem 7, which expresses that a k-CNF formula has a resolution refutation
of width r. We can choose ϑr in such a way that it only contains O(r) many variables.
By the embedding of EFP into Lω∞ω we can actually assume that ϑr is an Lω∞ω-formula
with at most O(r) many variables. We now translate the formulas ϑr back, via I, to
τ -structures, that is we obtain Lω∞ω-formulas ϑIr such that for every τ -structure A it holds
that A |= ϑIr if, and only if, I(A) has a resolution refutation of width r. Since I is fixed and
only contains formulas with ` ≥ 1 many variables, the number of variables in the formulas
ϑIr is still bounded by O(r). For concreteness, assume that ϑIr contains at most c · r many
variables for some constant c ≥ 1 and all large enough r ≥ 1. Further, we choose d > 0,
such that An ≡d·n Bn for all large enough n ≥ 1. By our initial assumption we can now
choose, for e := (1/c) · d, a still larger n ≥ 1, such that res-width(n) < e · n. This, however,
means that An 6|= ϑIe·n and Bn |= ϑIe·n, which implies that An 6≡e·n·c Bn. This, however, is a
contradiction, as e · n · c = d · n.

Hence, we know that res-width(n) ∈ Ω(n). The remaining statements follow from
well-known size-width relations for the resolution proof system. In fact, recall from [8], that
the size of a smallest tree-like resolution refutation for a k-CNF formula Ψ is bounded below
by 2w−k where w denotes the minimal width required to refute Ψ. Since k is a constant, we
get a lower bound on t-res-size(n) as 2Ω(n). Moreover, it is also shown in [8] that the size
of a smallest resolution refutation for a k-CNF formula Ψ with m variables is bounded below
by 2Ω((w−k)2/m). Hence, if we additionally have that the number of variables in Ψn is at
most O(n), then this gives us a lower bound of 2Ω(n) for res-size(n). J

We remark that the assumptions of the theorem can be generalised in several ways. For
instance, one could formulate a similar theorem for the degree of Monomial-PC proofs by
replacing logical equivalence in Lω∞ω by equivalence in counting logic. This would allow us
to generalise some of our lower bounds below on resolution width and size to lower bounds
on Monomial-PC degree and size. We defer details to a full version of the paper.

Pigeonhole Principle. For n,m ≥ 1 the pigeonhole principle formulas PHPm
n express that

there is an injective function from a set of size n to a set of sizem. The usual definition leads to
CNF-formulas of unbounded width. However, one can also formulate the pigeonhole principle
using 3-CNF formulas and auxiliary variables, so called extension variables. More precisely,
the 3-CNF formula EPHPm

n contains variables Xij , for i ∈ {1, . . . , n}, j ∈ {1, . . . ,m},
saying that pigeon i sits in hole j, and auxiliary variables Yij for every i ∈ {1, . . . , n} and
j ∈ {0, . . . ,m}. The formula EPHPm

n is built-up using the following formulas:

¬Yi0 ∧
m∧
j=1

(Yij−1 ∨Xij ∨ ¬Yij) ∧ Yim for all i ∈ {1, . . . , n}

(¬Xij ∨ ¬Xi′j) for all i, i′ ∈ {1, . . . , n}, j ∈ {1, . . . ,m}, i 6= i′

We consider relational structures Cmn = ([n] ] [m], P = [n], Q = [m], <) where < is a
linear order on Q = [m]. It is straightforward to construct a first-order interpretation I
which interprets the formula EPHPm

n in the structure Cmn for all n,m ≥ 1. However, note
that we really need the linear order on the set Q = [m] for this. Let Φn = EPHPn

n and
Ψn = EPHPn

n+1, An = Cnn and Bn = Cnn+1. Then An ≡n Bn. Hence, all preconditions of
Theorem 17 are satisfied (however, the formulas Ψn contain more than n2 many variables).

I Corollary 18. The resolution width required to refute the formulas EPHPn
n+1 is linear

in n. This implies that the size of treelike resolution refutations is exponential in n.
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Three colourability. Given a graph G = (V,E) we can write down a propositional formula
Θ[G] saying that the graph G is 3-colourable. For each vertex v ∈ V of G, and each colour
i ∈ {0, 1, 2} we consider a variable Xi

v indicating that the vertex v is coloured with colour i.
Then Θ[G] consists of the following clauses:

(X0
v ∨X1

v ∨X2
v ) for every v ∈ V

(¬Xi
v ∨ ¬Xi

w) for each edge (v, w) ∈ E and colour i ∈ {0, 1, 2}.

Note that Θ[G] is a 3-CNF formula and the number of variables is linear in |V |. Again,
it is easy to construct a first-order interpretation I such that for every graph G it holds that
I(G) = Θ[G]. We make use of the following fact from finite model theory, see Appendix B.

I Theorem 19 ([3, 11, 17, 27]). For all n ≥ 1, there are graphs Gn, Hn with O(n) many
vertices, such that Gn ≡Ω(n) Hn, and such that Gn is three-colourable and Hn is not three-
colourable.

Using this, we can apply Theorem 17: we set An = Gn, Bn = Hn, Φn = Θ[Gn],
Ψn = Θ[Hn]. Also, note that the number of variables in Ψn is bounded by O(n). We get:

I Corollary 20. Refuting the formulas Θ[Hn] for three-colourability requires resolution proofs
of exponential size and linear width.

Graph isomorphism problem. In the introduction we mentioned the graph isomorphism
problem. This problem is not known to be decidable in polynomial time, but there is strong
evidence that it is not NP-complete. In [26] Toran showed that, with respect to a natural
encoding of the graph isomorphism problem as a propositional formula, one cannot obtain
an efficient graph isomorphism test based on resolution, not even for graphs with colour
class size four. However, one could argue that Toran considered one specific encoding of the
graph isomorphism problem as a propositional formula only. Maybe one could use a different
encoding of the graph isomorphism problem, which may involve simple precomputations,
that actually allows efficient resolution refutations? Our results indicate that this is not the
case. In fact, Toran’s result holds with respect to every LFP-definable encoding that uses a
linear number of propositional variables only (which is a natural assumption in the context
of graphs with constant colour class size), see Appendix A.

5.2 Solving Parity Games via Resolution
To some degree, the complexity-theoretic status of the problem of computing winning regions
in parity games resembles the situation for graph isomorphism. Most importantly, we do not
know whether winning regions in parity games can be computed in polynomial time, but
we do not expect that this problem is NP-complete. In fact, for both problems there have
been recent breakthroughs providing new algorithms that solve them in quasi-polynomial
time [6, 12]. However, there also are notable differences. For example, computing winning
regions in parity games is known to be P-hard, but we do not have such strong lower
bounds for the graph isomorphism problem. Another remarkable difference between the
graph isomorphism problem and the problem of computing winning regions in parity games
follows from Theorem 2 and a result due to Dawar and the first author [16], showing that
a polynomial-time algorithm for parity games would imply that their winning regions are
LFP-definable (despite the fact that LFP is, in general, weaker than polynomial time).

I Theorem 21. Parity games can be solved in polynomial time if, and only if, they can be
solved using Horn resolution with respect to a first-order definable encoding.
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A Details omitted from Section 5.1

A graph with colour class size k ≥ 1 is a structure G = (V,E,�) where (V,E) is a graph and
where � is a linear preorder on V such that every class of �-incomparable vertices, that
is every colour class, is of size at most k. In other words, one can think of the vertices of
the graph G to be coloured, but we only allow that at most k many vertices get the same
colour. We write V = V0 � · · · � Vn−1 to denote that V is linearly ordered by � into n
colour classes Vi in the indicated way. We have that |Vi| ≤ k for every i < n.

We consider pairs of graphs G = (V,E,�V ) and H = (W,F,�W ) of colour class size
k ≥ 1 with the same number of colour classes, that is

V = V0 �V V1 �V · · · �V Vn−1

W = W0 �W W1 �W · · · �W Wn−1.

We consider the following propositional formula Θ(G,H) which encodes the graph isomorph-
ism problem for G and H. The formula uses propositional variables X[v 7→ w] for v ∈ Vi,
w ∈Wi, i < n, indicating that the vertex v ∈ Vi is mapped to the vertex w ∈Wi (we only
consider colour-preserving mappings). The formula Θ(G,H) consists of the following set of
clauses:∨

w∈Wi

X[v 7→ w] for each i < n, v ∈ Vi (1)

∨
v∈Vi

X[v 7→ w] for each i < n,w ∈Wi (2)

¬(X[v1 7→ w1] ∧X[v2 7→ w2]) if {(v1, w1), (v2, w2)} is not a local isomorphism. (3)

This is basically the encoding that Toran used in [26]. It is important to observe that Θ(G,H)
is a k-CNF formula where the number of propositional variables is linear in the number of
vertices of the graph (we think of the colour class size k to be fixed). For this encoding,
Toran proved, using the well-known construction of Cai, Fürer, and Immerman, that there
is a family of pairs of non-isomorphic graphs (Gn, Hn), n ≥ 1, of degree three and colour
class size four for which the resolution refutations of Θ(Gn, Hn) are of exponential size (in
the number of vertices of the graphs Gn, Hn). This is a special case of the following more
general result.

I Theorem 22. Let k ≥ 1, and let I be an LFP-interpretation that maps pairs of n-vertex
graphs (G,H) of degree three and colour class size four to a k-CNF formula I(G,H) such
that

the number of propositional variables in I(G,H) is O(n);
I(G,H) is satisfiable if, and only if, G and H are isomorphic.

Then the maximal size of a resolution refutation of the formula I(G,H) for pairs of non-
isomorphic n-vertex graphs (G,H), as above, is bounded below by a function in 2Ω(n).

Proof. Another application of Theorem 17. We first fix for all n ≥ 1 pairs of non-isomorphic
graphs Gn, Hn with O(n) many vertices, of colour class size four, of degree three, and such
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that Gn ≡n Hn; the existence follows from [11]. It follows that (Gn, Gn) ≡n (Gn, Hn).
By the embedding of LFP into Lω∞ω we can view the LFP-interpretation I as an L`∞ω-
interpretation for some fixed ` ≥ 1. Now we set An = (Gn, Gn), Bn = (Gn, Hn), Φn = I(An),
and Ψn = I(Bn). All preconditions of Theorem 17 are satisfied. In particular, the number
of variables of the formulas Ψn is linear in n by our assumption. This shows that the size of
a resolution refutation of Ψn is bounded below by a function in 2Ω(n) as claimed. J

B Proof of Theorem 19

I Theorem 19 (restated). For all n ≥ 1, there are graphs Gn, Hn with O(n) many vertices,
such that Gn ≡Ω(n) Hn, and such that Gn is three-colourable and Hn is not three-colourable.

We remark that this result, and our proof sketch below, remain valid if we consider the
stronger equivalence with respect to counting logic. Indeed, for this setting the result already
appeared in [27] and for the more general setting of constraint satisfaction problems with
unbounded width in [18]. For completeness, let us sketch a proof here which shows how to
derive this result from [3, 11, 17].

Proof. Again, we start with the Cai-Fürer-Immerman construction [11]. For all n ≥ 1 we
obtain a pair of three-regular, non-isomorphic graphs (Gn, Hn) of colour class size four and
with O(n) many vertices such that Gn ≡n Hn. We have (Gn, Gn) ≡n (Gn, Hn).

Moreover, for pairs of CFI-graphs (G∗, H∗) ∈ {(Gn, Hn), (Gn, Gn) : n ≥ 1} it is known
that the isomorphism problem reduces, via a first-order interpretation I, to a linear equation
system over the field with two elements, see e.g. [17], which can equivalently be formulated
as the satisfiability problem of a propositional formula. It can be checked that the resulting
propositional formula I(G∗, H∗) is indeed a 3-CNF formula, since we work with three-regular
graphs. Also the number of propositional variables and clauses in I(G∗, H∗) is linear in
the number of vertices of G∗ (and H∗), which, in turn, is linear in n. We can now take a
standard reduction from 3-SAT to 3-colourability from [19], which is first-order definable.
The number of vertices of the resulting graphs is again linear in the number of clauses and
variables from the 3-CNF formula. To sum up, there is a first-order interpretation J which
maps pairs of CFI-graphs (G∗, H∗) ∈ {(Gn, Hn), (Gn, Gn)} to graphs J (G∗, H∗) such that

the number of vertices of the graphs J (G∗, H∗) is O(n);
J (Gn, Gn) is three-colourable;
J (Gn, Hn) is not three-colourable;
J (Gn, Gn) ≡Ω(n) J (Gn, Hn).

This proves our claim. J
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