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Abstract
The computational properties of modal and propositional dependence logics have been extensively
studied over the past few years, starting from a result by Sevenster showing NEXPTIME-
completeness of the satisfiability problem for modal dependence logic. Thus far, however, the
validity and entailment properties of these logics have remained uncharacterised to a great extent.
This paper establishes a complete classification of the complexity of validity and entailment
in modal and propositional dependence logics. In particular, we address the question of the
complexity of validity in modal dependence logic. By showing that it is NEXPTIME-complete
we refute an earlier conjecture proposing a higher complexity for the problem.
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1 Introduction

The notions of dependence and independence are pervasive in various fields of science. Usually
these concepts manifest themselves in the presence of multitudes (e.g. events or experiments).
Dependence logic is a recent logical formalism which, in contrast to others, has exactly
these multitudes as its underlying concept [26]. In this article we study dependence logic
in the propositional and modal logic context and present a complete classification of the
computational complexity of their associated entailment and validity problems.

In first-order logic, the standard formal language behind all mathematics and computer
science, dependencies between variables arise strictly from the order of their quantifica-
tion. Consequently, more subtle forms of dependencies cannot be captured, a phenomenon
exemplified by the fact that first-order logic lacks expressions for statements of the form

“for all x there is y, and for all u there is v, such that R(x, y, u, v)”

where y and v are to be chosen independently from one another. To overcome this barrier,
branching quantifiers of Henkin and independence-friendly logic of Hintikka and Sandu
suggested the use of quantifier manipulation [13, 14]. Dependence logic instead extends
first-order logic at the atomic level with the introduction of new dependence atoms

dep(x1, . . . , xn) (1)

which indicate that the value of xn depends only on the values of x1, . . . , xn−1. Dependence
atoms are evaluated over teams, i.e., sets of assignments which form the basis of team
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semantics. The concept of team semantics was originally proposed by Hodges in refutation of
the view of Hintikka that the logics of imperfect information, such as his independence-friendly
logic, escape natural compositional semantics [15]. By the development of dependence logic
it soon became evident that team semantics serves also as a connecting link between the
aforenementioned logics and the relational database theory. In particular, team semantics
enables the extensions of even weaker logics, such as modal and propositional logics, with
various sophisticated dependency notions known from the database literature [5, 7, 16, 17].
In this article we consider modal and propositional dependence logics that extend modal
and propositional logics with dependence atoms similar to (1), the only exception being
that dependence atoms here declare dependencies between propositions [27]. We establish
a complete classification of the computational complexity of the associated entailment and
validity problems, including a solution to an open problem regarding the complexity of
validity in modal dependence logic.

Modal dependence logic was introduced by Väänänen in 2008, and soon after it was shown
to enjoy a NEXPTIME-complete satisfiability problem [25]. Since then the expressivity,
complexity, and axiomatizability properties of modal dependence logic and its variants have
been exhaustively studied. Especially the complexity of satisfiability and model checking
for modal dependence logic and its variants has been already comprehensively classified
[3, 4, 9, 10, 12, 16, 17, 20, 22]. Furthermore, entailment and validity of modal and propositional
dependence logics have been axiomatically characterized by Yang and Väänänen in [30, 31, 32]
and also by Sano and Virtema in [24]. Against this background it is rather surprising that
the related complexity issues have remained almost totally unaddressed. The aim of this
article is to address this shortage in research by presenting a complete classification with
regards to these questions. A starting point for this endeavour is a recent result by Virtema
which showed that the validity problem for propositional dependence logic is NEXPTIME-
complete [28, 29]. In that paper the complexity of validity for modal dependence logic
remained unsettled, although it was conjectured to be harder than that for propositional
dependence logic. This conjecture is refuted in this paper as the same exact NEXPTIME
bound is shown to apply to modal dependence logic as well. Furthermore, we show that this
result applies to the extension of propositional dependence logic with quantifiers as well as to
the so-called extended modal logic which can express dependencies between arbitrary modal
formulae (instead of simple propositions). We also extend our investigations to the entailment
problem and show that for both (quantified) propositional and (extended) modal dependence
logics this problem is co-NEXPTIMENP-complete. Moreover, our investigations show that
for modal logic extended with so-called intuitionistic disjunction the associated entailment,
validity, and satisfiability problems are all PSPACE-complete, which is, in all the three
categories the complexity of the standard modal logic. The outcome of these investigations
is a complete picture of the validity and entailment properties of modal and propositional
dependence logics, summarized in Table 1 in the conclusion section.

The obtained results have interesting consequences. First, combining results from this
paper and [25, 29] we observe that similarly to the standard modal logic case the complexity
of validity and satisfiability coincide for (extended) modal dependence logic. It is worth
pointing out here that satisfiability and validity cannot be seen as each other’s duals in the
dependence logic context. Dependence logic cannot express negation nor logical implication
which renders its associated validity, satisfiability, and entailment problems genuinely different.
Secondly, it was previously known that propositional and modal dependence logics deviate
on the complexity of their satisfiability problem (NP-complete vs. NEXPTIME-complete
[20, 25], resp.) and that the standard propositional and modal logics differ from one another
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on both satisfiability and validity (NP-complete/co-NP-complete vs. PSPACE-complete,
resp. [2, 18, 19]). Based on this it is somewhat surprising to find out that modal and
propositional dependence logics correspond to one another in terms of the complexity of
both their validity and entailment problems.

Organization. This article is organized as follows. In Section 2 we present some notation
and background assumptions. In Section 3 we give a short introduction to modal dependence
logics, followed by Section 4 which proves co-NEXPTIMENP-membership for modal
dependence logic entailment. In Section 5 we define (quanfitied) propositional dependence
logics, and in the subsequent section we show co-NEXPTIMENP-hardness for entailment
in this logic. In Section 7 we draw our findings together, followed by Section 8 that is reserved
for conclusions. For some of the proofs we refer the reader to Appendix.

2 Preliminaries

We assume that the reader is familiar with the basic concepts of propositional and modal
logic, as well as those of computational complexity. Let us note at this point that all the
hardness results in the paper are stated under polynomial-time reductions.

Notation. Following the common convention we assume that all our formulae in the team
semantics context appear in negation normal form (NNF). We use p, q, r, . . . to denote
propositional variables. For two sequences a and b, we write ab to denote their concatenation.
For a function f and a sequence (a1, . . . , an) of elements from the domain of f , we denote by
f(a1, . . . , an) the sequence (f(a1), . . . , f(an)). Let φ be any formula. Then Var(φ) refers to
the set of variables appearing in φ, and Fr(φ) to the set of free variables appearing in φ, both
defined in the standard way. We sometimes write φ(p1, . . . , pn) instead of φ to emphasize
that Fr(φ) = {p1, . . . , pn}. For a subformula φ0 of φ and a formula θ, we write φ(θ/φ0) to
denote the formula obtained from φ by substituting θ for φ0. We use φ⊥ to denote the NNF
formula obtained from ¬φ by pushing the negation to the atomic level, and sometimes φ> to
denote φ.

3 Modal Dependence Logics

The syntax of modal logic (ML) is generated by the following grammar:

φ ::= p | ¬p | (φ ∧ φ) | (φ ∨ φ) | �φ | ♦φ. (2)

Extensions of modal logic with different dependency notions are made possible via a gen-
eralization of the standard Kripke semantics by teams, here defined as sets of worlds. A
Kripke model over a set of variables V is a tupleM = (W,R, π) where W is a non-empty set
of worlds, R is a binary relation over W , and π : V → P(W ) is a function that associates
each variable with a set of worlds. A team T of a Kripke modelM = (W,R, π) is a subset of
W . For the team semantics of modal operators we define the set of successors of a team T

as R[T ] := {w ∈W | ∃w′ ∈ T : (w′, w) ∈ R} and the set of legal successor teams of a team
T as R〈T 〉 := {T ′ ⊆ R[T ] | ∀w ∈ T ∃w′ ∈ T ′ : (w,w′) ∈ R}. The team semantics of modal
logic is now defined as follows.

I Definition 1 (Team Semantics of ML). Let φ be an ML formula, let M = (W,R, π) be
a Kripke model over V ⊇ Var(φ), and let T ⊆ W . The satisfaction relation M, T |= φ is
defined as follows:

CSL 2017
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M, T |= p :⇔ T ⊆ π(p),
M, T |= ¬p :⇔ T ∩ π(p) = ∅,

M, T |= φ1 ∧ φ2 :⇔ M, T |= φ1 andM, T |= φ2,

M, T |= φ1 ∨ φ2 :⇔ ∃T1, T2 : T1 ∪ T2 = T,M, T1 |= φ1,

andM, T2 |= φ2,

M, T |= ♦φ :⇔ ∃T ′ ∈ R〈T 〉 :M, T ′ |= φ,

M, T |= �φ :⇔ M, R[T ] |= φ.

We write φ ≡ ψ to denote that φ and ψ are equivalent, i.e., for all Kripke modelsM and
teams T ,M, T |= φ iffM, T |= φ′. Let Σ ∪ {φ} be a set of formulae. We writeM, T |= Σ
iffM, T |= φ for all φ ∈ Σ, and say that Σ entails φ if for allM and T ,M, T |= Σ implies
M, T |= φ. Let L be a logic in the team semantics setting. The entailment problem for L
is to decide whether Σ entails φ (written Σ |= φ) for a given finite set of formulae Σ ∪ {φ}
from L. The validity problem for L is to decide whether a given formula φ ∈ L is satisfied by
all Kripke models and teams. The satisfiability problem for L is to decide whether a given
formula φ ∈ L is satisfied by some Kripke model and a non-empty team1.

The following flatness property holds for all modal logic formulae. Notice that by |=ML
we refer to the usual satisfaction relation of modal logic.

I Proposition 2 (Flatness [25]). Let φ be a formula in ML, letM = (W,R, π) be a Kripke
model over V ⊇ Var(φ), and let T ⊆W be a team. Then:

M, T |= φ ⇔ ∀w ∈ T :M, w |=ML φ.

Team semantics gives rise to different extensions of modal logic capable of expressing
various dependency notions. In this article we consider dependence atoms that express
functional dependence between propositions. To facilitate their associated semantic definitions,
we first define for each world w of a Kripke modelM a truth function wM from ML formulae
into {0, 1} as follows:

wM(φ) =
{

1 ifM, {w} |= φ,

0 otherwise.

Dependence atom. Modal dependence logic (MDL) is obtained by extending ML with
dependence atoms

dep(p, q) (3)

where p is a sequence of propositional atoms and q is a single propositional atom. Furthermore,
we consider extended dependence atoms of the form

dep
(
φ, ψ

)
(4)

where φ is a sequence of ML formulae and ψ is a single ML formula. The extension of ML
with atoms of the form (4) is called extended modal dependence logic (EMDL). Atoms of

1 The empty team satisfies all formulae trivially.
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the form (3) and (4) indicate that the (truth) value of the formula on the right-hand side is
functionally determined by the (truth) values of the formulae listed on the left-hand side.
The satisfaction relation for both (3) and (4) is defined accordingly as follows:

M, T |= dep
(
φ, ψ

)
:⇔∀w,w′ ∈ T : wM(φ) = w′M(φ) implies wM(ψ) = w′M(ψ).

For the sake of our proof arguments, we also extend modal logic with predicates. The
syntax of relational modal logic (RML) is given by the grammar:

φ ::= p | ∼φ | (φ ∧ φ) | �φ | S(φ1, . . . , φn). (5)

The formulae of RML are evaluated over relational Kripke modelsM = (W,R, π, SM1 , . . . , SMn )
where each SMi is a set of binary sequences of length #Si, that is, the arity of the relation
symbol Si. We denote byM, w |=RML φ the satisfaction relation obtained by extending the
standard Kripke semantics of modal logic as follows:

M, w |=RML S(φ1, . . . , φn) :⇔ (wM(φ1), . . . , wM(φn)) ∈ SM.

Notice also that by ∼ we refer to the contradictory negation, e.g., hereM, w |=RML ∼φ :⇔
M, w 6|=RML φ. The team semantics for ∼ is also defined analogously. Recall that the negation
symbol ¬ is used only in front of propositions, and ¬p is satisfied by a Kripke model M
and a team T iff in the standard Kripke semantics it is satisfied by all pointed modelsM, w

where w ∈ T .
In addition to the aforenementioned dependency notions we examine so-called intuituion-

istic disjunction 6 defined as follows:

M, T |= φ1 6φ2 :⇔ M, T |= φ1 orM, T |= φ2. (6)

We denote the extension of ML with intuitionistic disjunction 6 by ML(6 ). Notice that
the logics MDL and EMDL are expressively equivalent to ML(6 ) but exponentially more
succinct as the translation of (3) to ML(6 ) involves a necessary exponential blow-up [11].
All these logics satisfy the following downward closure property which will be used in the
upper bound result.

I Proposition 3 (Downward Closure [3, 27, 31]). Let φ be a formula in MDL, EMDL, or
ML(6 ), letM = (W,R, π) be a Kripke model over V ⊇ Var(φ), and let T ⊆W be a team.
Then:

T ′ ⊆ T andM, T |= φ ⇒ M, T ′ |= φ.

We can now proceed to the upper bound result which states that the entailment problem
for EMDL is decidable in co-NEXPTIMENP.

4 Upper Bound for EMDL Entailment

In this section we show that EMDL entailment is in co-NEXPTIMENP. The idea is to
represent dependence atoms using witnessing functions guessed universally on the left-hand
side and existentially on the right-hand side of an entailment problem {φ1, . . . , φn−1} |= φn.
This reduces the problem to validity of an RML formula of the form φ∗1 ∧ . . . ∧ φ∗n−1 → φ∗n
where φ∗i is obtained by replacing in φi all dependence atoms with relational atoms whose
interpretations are bound by the guess. We then extend an Algorithm by Ladner that
shows a PSPACE upper bound for the validity problem of modal logic [18]. As a novel
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algorithmic feature we introduce recursive steps for relational atoms that query to the guessed
functions. The co-NEXPTIMENP upper bound then follows by a straightforward running
time analysis.

We start by showing how to represent dependence atoms using intuitionistic disjunctions
defined over witnessing functions. Let α = (α1, . . . , αn) be a sequence of ML formulae and
let β be a single ML formula. Then we say that a function f : {>,⊥}n → {>,⊥} is a witness
of d := dep(α, β), giving rise to a witnessing ML formula

D(f, d) :=
∨

a1,...,an∈{>,⊥}

αa1
1 ∧ . . . αann ∧ βf(a1,...,an). (7)

The equivalence

d ≡ 6
f : {>,⊥}n→{>,⊥}

D(f, d) (8)

has been noticed in the contexts of MDL and EMDL respectively in [27, 3]. Note that a
representation of the sort (8) necessitates that the represented formula, in this case the
dependence atom d, has the downward closure property.

To avoid the exponential blow-up involved in both (7) and (8), we instead relate to RML
by utilizing the following equivalence:

(W,R, π) |=ML D(f, d)⇔ (W,R, π, SM) |=RML S(αβ), (9)

where SM := {(a1, . . . , an, b) ∈ {0, 1}n+1 | f(a1, . . . , an) = b}. Before proceeding to the
proof, we need the following simple proposition, based on [29, 31] where the statement has
been proven for empty Σ.

I Proposition 4. Let Σ be a set of ML formulae, and let φ0, φ1 ∈ ML(6 ). Then Σ |= φ0 6φ1
iff Σ |= φ0 or Σ |= φ1.

Proof. It suffices to show the only-if direction. Assume first that L = ML, and letM0, T0
andM1, T1 be counterexamples to Σ |= φ0 and Σ |= φ1, respectively. W.l.o.g. we may assume
thatM0 andM1 are disjoint. Since the truth value of a ML(6 ) formula is preserved under
taking disjoint unions of Kripke models (see Theorem 6.1.9. in [31], also Proposition 2.13. in
[29]) we obtain thatM, T0 |= Σ ∪ {∼φ0} andM, T1 |= Σ ∪ {∼φ1} whereM =M0 ∪M1.
By the downward closure property of ML(6 ) (Proposition 3), and by the flatness property
of ML (Proposition 2), we then obtain thatM, T |= Σ ∪ {∼φ0,∼φ1} where T = T0 ∪ T1. J

The proof now proceeds via Lemmata 5 and 6 of which the former constitutes the basis
for our alternating exponential-time algorithm. Note that if φ is an EMDL formula with k
dependence atom subformulae, listed (possibly with repetitions) in d1, . . . dk, then we call
f = (f1, . . . , fk) a witness sequence of φ if each fi is a witness of di. Furthermore, we denote
by φ(f/d) the ML formula obtained from φ by replacing each di with D(fi, di).

I Lemma 5. Let φ1, . . . , φn be formulae in EMDL. Then {φ1, . . . , φn−1} |= φn iff for all
witness sequences f1, . . . , fn−1 of φ1, . . . , φn−1 there is a witness sequence f of φn such that

{φ1(f1/d1), . . . , φn−1(fn−1/dn−1)} |= φn(fn/dn).

Proof. Assume first that φ is an arbitrary formula in EMDL, and let d = dep(α, β) be a
subformula of φ. It is straightforward to show that φ is equivalent to

6
f : {>,⊥}|α|→{>,⊥}

φ(D(f, d)/d).
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Iterating these substitutions we obtain that {φ1, . . . , φn−1} |= φn iff

{6
f1

φi(f1/d1), . . . ,6
fn−1

φi(fn−1/dn−1)} |= 6
fn

φi(fn/dn), (10)

where f i ranges over the witness sequences of φi. Then (10) holds iff for all f1, . . . , fn−1,

{φ1(f1/d1), . . . , φn−1(fn−1/dn−1)} |= 6
fn

φ(fn/dn). (11)

Notice that each formula φi(f i/di) belongs to ML. Hence, by Proposition 4 we conclude that
(11) holds iff for all f1, . . . , fn−1 there is fn such that

{φ1(f1/d1), . . . , φn−1(fn−1/dn−1)} |= φ(fn/dn). (12)

J

The next proof step is to reduce an entailment problem of the form (12) to a validity problem
of an RML formula over relational Kripke models whose interpretations agree with the
guessed functions. For the latter problem we then apply Algorithm 1 whose lines 1-14 and
19-26 constitute an algorithm of Ladner that shows the PSPACE upper bound for modal
logic satisfiability [18]. Lines 15-18 consider those cases where the subformula is relational.
Lemma 6 now shows that, given an oracle A, this extended algorithm yields a PSPACEA

decision procedure for satisfiability of RML formulae over relational Kripke models whose
predicates agree with A. For an oracle set A of words from {0, 1,#}∗ and k-ary relation
symbol Ri, we define RAi := {(b1, . . . , bk) ∈ {0, 1}k | bin(i)_#b1 . . . bk ∈ A}. Note that by
a_b we denote the concatenation of two strings a and b.

I Lemma 6. Given an RML-formula φ over a vocabulary {S1, . . . , Sn} and an oracle set of
words A from {0, 1,#}∗, Algorithm 1 decides in PSPACEA whether there is a relational
Kripke structureM = (W,R, π, SA1 , . . . , SAn ) and a world w ∈W such thatM, w |=RML φ.

Proof. We leave it to the reader to show (by a straightforward structural induction) that,
given an input (A,B, C,D) where A,B, C,D ⊆ RML, Algorithm 1 returns Sat(A,B, C,D)
true iff there is a relational Kripke modelM = (W,R, π, SA1 , . . . , SAn ) such that
M, w |=RML φ if φ ∈ A;
M, w 6|=RML φ if φ ∈ B;
M, w |=RML �φ if φ ∈ C; and
M, w 6|=RML �φ if φ ∈ D.

Hence, Sat({ψ}, ∅, ∅, ∅) returns true iff ψ is satisfiable byM, w with relations SMi obtained
from the oracle. We note that the selection of subformulae φ from A ∪ B can be made
deterministically by defining an ordering for the subformulae. Furthermore, we note that this
algorithm algorithm runs in PSPACEA as it employs O (n) recursive steps that each take
space O (n). A detailed space analysis (following that in [18]) can be found in Appendix. J

Using Lemmata 5 and 6 we can now show the co-NEXPTIMENP upper bound. In
the proof we utilize the following connection between alternating Turing machines and the
exponential time hierarchy at the level co-NEXPTIMENP = ΠEXP

2 .

I Theorem 7 ([1, 21]). ΣEXP
k (or ΠEXP

k ) is the class of problems recognizable in exponential
time by an alternating Turing machine which starts in an existential (universal) state and
alternates at most k − 1 many times.

CSL 2017
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Algorithm 1: PSPACEA algorithm for deciding validity in RML. Notice that
queries to SAi range over (b1, . . . , bk) ∈ {0, 1}k.

Input : (A,B, C,D) where A,B, C,D ⊆ RML
Output : Sat(A,B, C,D)

1 if A ∪ B 6⊆ Prop then
2 choose φ ∈ (A ∪ B) \ Prop);
3 if φ = ∼ψ and φ ∈ A then
4 return Sat(A \ {φ},B ∪ {ψ}, C,D);
5 else if φ = ∼ψ and φ ∈ B then
6 return Sat(A ∪ {ψ},B \ {φ}, C,D);
7 else if φ = ψ ∧ θ and φ ∈ A then
8 return Sat((A ∪ {ψ, θ}) \ {φ},B, C,D);
9 else if φ = ψ ∧ θ and φ ∈ B then

10 return Sat(A, (B ∪ {ψ}) \ {φ}, C,D)∨ Sat(A, (B ∪ {θ}) \ {φ}, C,D);
11 else if φ = �ψ and φ ∈ A then
12 return Sat(A \ {φ},B, C ∪ {ψ},D);
13 else if φ = �ψ and φ ∈ B then
14 return Sat(A,B \ {φ}, C,D ∪ {ψ});
15 else if φ = Si(ψ1, . . . , ψk) and φ ∈ A then
16 return

∨
(b1,...,bk)∈SA

i
Sat((A ∪ {ψj : bj = 1}) \ {φ},B ∪ {ψj : bj = 0}, C,D);

17 else if φ = Si(ψ1, . . . , ψk) and φ ∈ B then
18 return

∨
(b1,...,bk)6∈SA

i
Sat(A ∪ {ψj : bj = 1}, (B ∪ {ψj : bj = 0}) \ {φ}, C,D);

19 end
20 else if (A ∪ B) ⊆ Prop then
21 if A ∩ B 6= ∅ then
22 return false;
23 else if A ∩ B = ∅ and C ∩ D 6= ∅ then
24 return

∧
D∈DSat(C, {D}, ∅, ∅);

25 else if A ∩ B = ∅ and C ∩ D = ∅ then
26 return true;
27 end
28 end

I Theorem 8. The entailment problem for EMDL is in co-NEXPTIMENP.

Proof. Assuming an input φ1, . . . , φn of EMDL-formulae, we show how to decide in ΠEXP
2

whether {φ1, . . . , φn−1} |= φn. By Theorem 7 it suffices to construct an alternating
exponential-time algorithm that switches once from an universal to an existential state.
By Lemma 5, {φ1, . . . , φn−1} |= φn iff for all f1, . . . , fn−1 there is fn such that

{φ1(f1/d1), . . . , φn−1(fn−1/dn−1)} |= φ(fn/dn). (13)

Recall from the proof of Lemma 5 that all the formulae in (13) belong to ML. Hence by the
flatness property (Proposition 2) |= is interchangeable with |=ML in (13). It follows that (13)
holds iff

φ := φ1(f1/d1) ∧ . . . ∧ φn−1(fn−1/dn−1) ∧ ∼φ(fn/dn) (14)
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is not satisfiable with respect to the standard Kripke semantics of modal logic. By the
equivalence in (9) we notice that (14) is not satisfiable with respect to |=ML iff φ∗ is not
satisfiable over the selected functions with respect to |=RML, where φ∗ is obtained from φ by
replacing each D(f, α, β) of the form (7) with the predicate f(α) = β, and each appearance
of ¬, ♦, or ψ0 ∨ ψ1 respectively with ∼, ∼�∼, or ∼(∼ψ0 ∧ ∼ψ1). The crucial point here is
that φ∗ is only of length O (n logn) in the input.

The algorithm now proceeds as follows. The first step is to universally guess functions
listed in f1 . . . fn−1, followed by an existential guess over functions listed in fn. The next
step is to transform the input to the described RML formula φ∗. The last step is to run
Algorithm 1 on Sat(φ∗, ∅, ∅, ∅) replacing queries to the oracle with investigations on the
guessed functions, and return true iff the algorithm returns false. By Lemma 6, Algorithm 1
returns false iff (13) holds over the selected functions. Hence, by Lemma 5 we conclude that
the overall algorithm returns true iff {φ1, . . . , φn−1} |= φn.

Note that this procedure involves polynomially many guesses, each of at most exponential
length. Also, Algorithm 1 runs in exponential time and thus each of its implementations has
at most exponentially many oracle queries. Hence, we conclude that the given procedure
decides EMDL-entailment in co-NEXPTIMENP. J

Notice that the decision procedure for |= φ does not involve any universal guessing. Therefore,
we obtain immediately a NEXPTIME upper bound for the validity problem of EMDL.

I Corollary 9. The validity problem for EMDL is in NEXPTIME.

5 Propositional Dependence Logics

We will show that co-NEXPTIMENP is also the lower bound for the entailment problem
of the propositional fragment of MDL. Before proceeding to the proof we need to formally
define this fragment.

The syntax of propositional logic (PL) is generated by the following grammar:

φ ::= p | ¬p | (φ ∧ φ) | (φ ∨ φ) (15)

The syntax of propositional dependence logic (PDL) is obtained by extending the syntax of
PL with dependence atoms of the form (3). Furthermore, the syntax of PL(6 ) extends (15)
with the grammar rule φ ::= φ6φ.

The formulae of these logics are evaluated against propositional teams. Let V be a set
of variables. We say that a function s : V → {0, 1} is a (propositional) assignment over
V , and a (propositional) team X over V is a set of propositional assignments over V . A
team X over V induces a Kripke model MX = (TX , ∅, π) where TX = {ws | s ∈ X} and
ws ∈ π(p)⇔ s(p) = 1 for s ∈ X and p ∈ V . The team semantics for propositional formulae
is now defined as follows:

X |= φ :⇔MX , TX |= φ,

where MX , TX |= φ refers to the team semantics of modal formulae (see Sect. 3). If φ∗
is a formula obtained from φ by replacing all propositional atoms p (except those inside
a dependence atom) with predicates A(p), then we can alternatively describe that X |= φ

iff M = ({0, 1}, A := {1}) and X satisfy φ∗ under the lax team semantics of first-order
dependence logics [5].

We will also examine validity and entailment in quantified propositional dependence
logic which is a team semantics adaptation and generalization of the dependency quantified
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Boolean formula problem [8]. This problem, shown to be NEXPTIME-complete in [23],
extends the quantified Boolean formula problem, the standard PSPACE-complete problem,
with the introduction of additional quantification constraints. To this end, we start with
the introduction of quantified propositional logic. The syntax quantified propositional logic
(QPL) is obtained by extending that of PL with universal and existential quantification
over propositional variables. Their semantics is given in terms of so-called duplication
and supplementation teams. Let p be a propositional variable and s an assignment over
V . We denote by s(a/p) the assignment over V ∪ {p} that agrees with s everywhere,
except that it maps p to a. Universal quantification of a propositional variable p is defined
in terms of duplication teams X[{0, 1}/p] := {s(a/p) | s ∈ X, a ∈ {0, 1}} that extend
teams X with all possible valuations for p. Existential quantification is defined in terms of
supplementation teams X[F/p] := {s(a/p) | s ∈ X, a ∈ F (s)} where F is a mapping from
X into {{0}, {1}, {0, 1}}. The supplementation team X[F/p] extends each assignment of X
with a non-empty set of values for p. The satisfaction relations X |= ∃pφ and X |= ∀pφ are
now given as follows:

X |= ∃pφ :⇔ ∃F ∈ X{{0}, {1}, {0, 1}} : X[F/p] |= φ,

X |= ∀pφ :⇔ X[{0, 1}/p] |= φ.

We denote by QPDL the extension of PDL with quantifiers. Observe that the flatness
and downward closure properties of modal formulae (Propositions 2 and 3, resp.) apply now
analogously to propositional formulae. Note that by |=PL we refer to the standard semantics
of propositional logic.

I Proposition 10 (Flatness [26]). Let φ be a formula in QPL, and let X be a team over
V ⊇ Fr(φ). Then:

X |= φ ⇔ ∀s ∈ X : s |=PL φ.

I Proposition 11 (Downward Closure [26]). Let φ be a formula in QPDL or QPL(6 ), and
let X be a team over a set V ⊇ Fr(φ) of propositional variables. Then:

Y ⊆ X and X |= φ ⇒ Y |= φ.

We denote the restriction of an assignment s to variables in V by s � V , and define the
restriction of a team X to V , written X � V , as {s � V | s ∈ X}. We conclude this section
by noting that, similarly to the first-order case, quantified propositional dependence logic
satisfies the following locality property.

I Proposition 12 (Locality [26]). Let φ be a formula in L where L ∈ {QPDL,QPL(6 )}, let
X be a team over a set V ⊇ Fr(φ), and let Fr(φ) ⊆ V ′ ⊆ V . Then:

X |= φ ⇔ X � V ′ |= φ.

6 Lower Bound for PDL Entailment

In this section we prove that the entailment problem for PDL is co-NEXPTIMENP-hard.
This result is obtained by reducing from a variant of the quantified Boolean formula problem,
that is, the standard complete problem for PSPACE.
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I Definition 13 ([8]). A Σk-alternating dependency quantified Boolean formula (Σk-ADQBF)
is a pair (φ, C) where φ is an expression of the form

φ := (∃f1
1 . . . ∃f1

j1
) (∀f2

1 . . . ∀f2
j2

) (∃f3
1 . . . ∃f3

j3
) . . . (Qfk1 . . . Qfkjk)∀p1 . . . ∀pn θ,

where Q ∈ {∃,∀}, C = (c1
1, . . . , c

k
jk

) lists sequences of variables from {p1, . . . , pn}, and θ is a
quantifier-free propositional formula in which only the quantified variables pi and function
symbols f ij with arguments cij may appear. Analogously, a Πk-alternating dependency
quantified Boolean formula (Πk-ADQBF) is a pair (φ, C) where φ is an expression of the form

φ := (∀f1
1 . . . ∀f1

j1
) (∃f2

1 . . . ∃f2
j2

) (∀f3
1 . . . ∀f3

j3
) . . . (Qfk1 . . . Qfkjk)∀p1 . . . ∀pn θ,

The sequence C is called the constraint of φ.

The truth value of a Σk-ADQBF or a Πk-ADQBF instance is determined by interpret-
ing each Qf ij where Q ∈ {∃,∀} as existential/universal quantification over Skolem func-
tions f ij : {0, 1}|c

i
j | → {0, 1}. Let us now denote the associated decision problems by

TRUE(Σk-ADQBF) and TRUE(Πk-ADQBF). These problems characterize levels of the
exponential hierarchy in the following way.

I Theorem 14 ([8]). Let k ≥ 1. For odd k the problem TRUE(Σk-ADQBF) is ΣEXP
k -

complete. For even k the problem TRUE(Πk-ADQBF) is ΠEXP
k -complete.

Since TRUE(Π2-ADQBF) is co-NEXPTIMENP-complete, we can show the lower bound
via an reduction from it. Notice that regarding the validity problem of PDL, we already have
the following lower bound.

I Theorem 15 ([29]). The validity problem for PDL is NEXPTIME-complete, and for
MDL and EMDL it is NEXPTIME-hard.

This result was shown by a reduction from the dependency quantified Boolean formula
problem (i.e. TRUE(Σ1-ADQBF)) to the validity problem of PDL. We use essentially the
same technique to reduce from TRUE(Π2-ADQBF) to the entailment problem of PDL.

I Theorem 16. The entailment problem for PDL is co-NEXPTIMENP-hard.

Proof. By Theorem 14 it suffices to show a reduction from TRUE(Π2-ADQBF). Let (φ, C)
be an instance of Π2-ADQBF in which case φ is of the form

∀f1 . . . ∀fm∃fm+1 . . . ∃fm+m′∀p1 . . . ∀pnθ

and C lists tuples ci ⊆ {p1, . . . , pn}, for i = 1, . . . ,m + m′. Let qi be a fresh propositional
variable for each Skolem function fi. We define Σ := {dep(ci, qi) | i = 1, . . . ,m} and

ψ := θ ∨
m+m′∨
i=m+1

dep(ci, qi) .

Clearly, Σ and ψ can be constructed from (φ, C) in polynomial time. It suffices to show that
Σ |= ψ iff φ is true.

Assume first that Σ |= ψ and let fi : {0, 1}|ci| → {0, 1} be arbitrary for i = 1, . . . ,m.
Construct a team X that consists of all assignments s that map p1, . . . , pn, qm+1, . . . , qm+m′

into {0, 1} and q1, . . . , qm respectively to f1(s(c1)), . . . , fm(s(cm)). Since X |= Σ we find
Z, Y1, . . . , Ym′ ⊆ X such that Z ∪ Y1 ∪ . . . ∪ Ym′ = X, Z |= θ, and Yi |= dep(cm+i, qm+i) for
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i = 1, . . . ,m′. We may assume that each Yi is a maximal subset satisfying dep(cm+i, qm+i),
i.e., for all s ∈ X \Yi, Yi ∪{s} 6|= dep(cm+i, qm+i). By downward closure (Proposition 11) we
may assume that Z does not intersect any of the subsets Y1, . . . , Ym′ . It follows that there
are functions fi : {0, 1}|ci| → {0, 1}, for i = m+ 1, . . . ,m+m′, such that

Z = {s
(
fm+1(s(cm+1))/qm+1, . . . , fm+m′(s(cm+m′))/qm+m′

)
| s ∈ X}.

Notice that Z is maximal with respect to p1, . . . , pn, i.e., Z � {p1, . . . , pn} = {p1,...,pn}{0, 1}.
Hence, by the flatness property (Proposition 10), and since Z |= θ, it follows that θ holds for
all values of p1, . . . , pn and for the values of q1, . . . , qm+m′ chosen respectively according to
f1, . . . , fm+m′ . Therefore, φ is true which shows the direction from left to right.

Assume then that φ is true, and let X be a team satisfying Σ. Then there are functions
fi : {0, 1}|ci| → {0, 1} such that f(s(ci)) = s(qi) for s ∈ X and i = 1, . . . ,m. Since φ is true
we find functions fi : {0, 1}|ci| → {0, 1}, for i = m+ 1, . . . ,m+m′, such that for all s ∈ X:

s[fm+1(s(cm+1))/qm+1, . . . , fm+m′(s(cm+m′))/qm+m′ ] |= θ. (16)

Clearly, Yi := {s ∈ X | s(qi) 6= f(s(ci))} satisfies dep(ci, qi) for i = m+ 1, . . . ,m+m′. Then
it follows by (16) and flatness (Proposition 10) that X \ (Ym+1 ∪ . . . ∪ Ym+m′) satisfies θ.
Therefore, Σ |= ψ which concludes the direction from right to left. J

7 Entailment in Modal and Propositional Dependence Logics

We may now draw together the main results of Sections 4 and 6. There it was shown that
in terms of the entailment problem co-NEXPTIMENP is both an upper bound for EMDL
and an lower bound for PDL. Therefore, we obtain in Theorem 18 that for all the logics
inbetween it is also the exact complexity bound. Theorem 17 indicates that we can count
QPDL in this set of logics. The proof of this uses standard reduction methods and is located
in Appendix.

I Theorem 17. The satisfiability, validity, and entailment problems for QPDL are polynomial-
time reducible to the satisfiability, validity, and entailment problems for MDL, respectively.

I Theorem 18. The entailment problem for EMDL, MDL, QPDL, and PDL is
co-NEXPTIMENP-complete.

Proof. The upper bound for EMDL and MDL was shown in Theorem 8, and by Theorem 17
the same upper bound applies to QPDL and PDL. The lower bound for all of the logics
comes from Theorem 16. J

We also obtain that all the logics inbetween PDL and EMDL are NEXPTIME-complete
in terms of their validity problem. The proof arises analogously from Corollary 9 and
Theorem 15.

I Theorem 19. The validity problem for EMDL, MDL, QPDL, and PDL is NEXPTIME-
complete.

Recall that this close correspondence between propositional and modal dependence logics only
holds with respect to their entailment and validity problems. Satisfiability of propositional
dependence logic is only NP-complete whereas it is NEXPTIME-complete for its modal
variant. It is also worth noting that the proof of Theorem 8 gives rise to an alternative proof
for the NEXPTIME upper bound for MDL (and EMDL) satisfiability, originally proved in
[25]. Moreover, the technique can be succesfully applied to ML(6 ). The following theorem
entails that ML(6 ) is no more complex than the ordinary modal logic.
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Table 1 Summary of results. The stated complexity classes refer to completeness results.

satisfiability validity entailment

PL NP [2, 19] co-NP [2, 19] co-NP [2, 19]
ML PSPACE [18] PSPACE [18] PSPACE [18]
ML(6 ) PSPACE [25] PSPACE [Thm. 20] PSPACE [Thm. 20]
PDL NP [20] NEXPTIME [29] co-NEXPTIMENP [Thm. 18]
QPDL, MDL, EMDL NEXPTIME [23, 25], [Thm. 17] NEXPTIME [Thm. 19] co-NEXPTIMENP [Thm. 18]

I Theorem 20. The satisfiability, validity, and entailment problems for ML(6 ) are
PSPACE-complete.

Proof. The lower bound follows from the Flatness property of ML (Proposition 2) and the
PSPACE-hardness of satisfiability and validity problems for ML [18]. For the upper bound,
it suffices to consider the entailment problem. The other cases are analogous. As in the proof
of Lemma 5 (see also Theorem 5.2 in [29]) we reduce ML(6 )-formulae to large disjunctions
with the help of appropriate witness functions. For an ML(6 )-formula θ, denote by Fθ the
set of all functions that map subformulae α6β of θ to either α or β. For each f ∈ Fθ, we
then denote by θf the formula obtained from θ by replacing each subformula of the form
α6β with f(α6β). It is straightforward to show that θ is equivalent to 6

f∈Fθ
θf . Let now

φ1, . . . , φn be a sequence of ML(6 ) formulae. Analogously to the proof of Lemma 5 we can
show using Proposition 4 that {φ1, . . . , φn−1} |= φn iff for all f1 ∈ Fφ1 , . . . , fn−1 ∈ Fφn−1

there is fn ∈ Fφn such that {φf1
1 , . . . , φ

fn−1
n−1 } |= φfnn . Notice that the number of intuitionistic

disjunctions appearing in φ1, . . . , φn is polynomial, and hence any single sequence of functions
f1 ∈ Fθ1 , . . . , fn ∈ Fθn can be stored using only a polynomial amount of space. It follows
that the decision procedure presented in the proof of Theorem 8 can be now implemented
in polynomial space. We immediately obtain the PSPACE upper bound for validity. For
satisfiability, notice that 6

f∈Fθ
θf is satisfiable iff θf is satisfiable for some f ∈ Fθ. Checking

the right-hand side can be done as described above. This concludes the proof. J

Combining the proofs of Theorem 8 and Theorem 20 we also notice that satifiability, validity,
and entailment can be decided in PSPACE for EMDL-formulae whose dependence atoms
are of logarithmic length.

8 Conclusion

We have examined the validity and entailment problem for modal and propositional depend-
ence logics (see Table 1). We showed that the entailment problem for (extended) modal
and (quantified) propositional dependence logic is co-NEXPTIMENP-complete, and that
the corresponding validity problems are NEXPTIME-complete. We also showed that
modal logic extended with intuitionistic disjunction is PSPACE-complete with respect to
its satisfiability, validity, and entailment problems, therefore being not more complex than
the standard modal logic.
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A Appendix

A.1 From Quantified Propositional to Modal Logics
In this section we show how to generate simple polynomial-time reductions from quantified
propositional dependence logics to modal dependence logics with respect to their entailment
and validity problem. First we present Lemma 21 which is a direct consequence of [6,
Lemma 14] that presents prenex normal form translations in the first-order dependence
logic setting over structures with universe size at least 2. The result follows by the obvious
first-order interpretation of quantified propositional formulae: satisfaction of a quantified
propositional formula φ by a binary team X can be replaced with satisfaction of φ∗ by
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M := ({0, 1}, tM := 1, fM := 0) and X, where φ∗ is a formula obtained from φ by replacing
atomic propositional formulae p and ¬p respectively with p = t and p = f .

I Lemma 21 ([6]). Any formula φ in L, where L ∈ {QPDL,QPLInc,QPLInd}, is logically
equivalent to a polynomial size formula Q1p1 . . . Qnpnψ in L where ψ is quantifier-free and
Qi ∈ {∃,∀} for i = 1, . . . , n.

Next we show how to describe in modal terms a quantifier block Q1p1 . . . Qnpn. Using
the standard method in modal logic we construct a formula tree(V, p, n) that enforces the
complete binary assignment tree over p1, . . . , pn for a team over V [18]. The formulation of
tree(V, p, n) follows the presented in [8]. We define storen(p) := (p ∧ �np) ∨ (¬p ∧ �n¬p),

where �n is a shorthand for
n many︷ ︸︸ ︷
� · · ·�, to impose the existing values for p to successors in the

tree. We also define branchn(p) := ♦p ∧ ♦¬p ∧ �storen(p) to indicate that there are ≥ 2
successor states which disagree on the variable p and that all successor states preserve their
values up to branches of length n. Then we let

tree(V, p, n) :=
∧
q∈V

n∧
i=1

storen(q) ∧
n−1∧
i=0
�ibranchn−(i+1)(pi+1).

Notice that tree(V, p, n) is an ML-formula and hence has the flatness property by Proposition 2.

I Theorem 17. The satisfiability, validity, and entailment problems for QPDL are polynomial-
time reducible to the satisfiability, validity, and entailment problems for MDL, respectively.

Proof. Consider first the entailment problem, and assume that Σ ∪ {φ} is a finite set of
formulae in either QPDL, QPLInd, or QPLInc}. By Lemma 21 each formula in θ ∈ Σ∪{φ} can
be transformed in polynomial time to the form θ0 = Q1p1 . . . Qnpnψ where ψ is quantifier-free.
Moreover, by locality principle (Proposition 12) we may assume that the variable sequences
p1, . . . , pn corresponding to these quantifier blocks are initial segments of a shared infinite
list p1, p2, p3, . . . of variables. Assume m is the maximal length of the quantifier blocks that
appear in any of the translations, and let V be the set of variables that appear free in some of
them. W.l.o.g. we may assume that {p1, . . . , pm} and V are disjoint. We let θ1 be obtained
from θ0 by replacing quantifiers ∃ and ∀ respectively with ♦ and �. It follows that Σ |= φ

iff {θ1 | θ ∈ Σ} ∪ {tree(V, p, n)} |= φ1.2 For the validity problem, we observe that |= φ

iff |= tree(V, p, n) ∨ (tree(V, p, n) ∧ φ1). Furthermore, for the satisfiability problem we have
that φ is satisfiable iff tree(V, p, n) ∧ φ1 is. Since the reductions are clearly polynomial, this
concludes the proof. J

B Space Analysis for Algorithm 1

Following [18] we show that Algorithm 1 requires only O
(
n2) space on an input of the form

Sat({φ}, ∅, ∅, ∅) : it takes O (n) recursive steps, each taking space O (n).

Size of esch recursive step. At each recursive step Sat(A,B, C,D) is stored onto the work
tape by listing all subformulae in A ∪ B ∪ C ∪ D in such a way that each subformula ψ has

2 Notice that the direction from left to right does not hold under the so-called strict team semantics where
∃ and ♦ range over individuals. These two logics are not downwards closed and the modal translation
does not prevent the complete binary tree of having two distinct roots that agree on the variables in V .
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its major connective (or relation/proposition symbol for atomic formulae) replaced with a
special marker which also points to the position of the subset where ψ is located. In addition
we store at each disjunctive/conjunctive recursive step the subformula or binary number that
points to the disjunct/conjunct under consideration. Each recursive step takes now space
O (n).

Number of recursive steps. Given a set of formulae A, we write |A| for Σφ∈A|φ| where |φ|
is the length of φ. We show by induction on n = |A ∪ B ∪ C ∪ D| that Sat(A,B, C,D) has
2n + 1 levels of recursion. Assume that the claim holds for all natural numbers less than
n, and assume that Sat(A,B, C,D) calls Sat(A′,B′, C′,D′). Then |A′ ∪ B′ ∪ C′ ∪ D′| < n

except for the case where A ∩ B is empty and C ∩ D is not. In that case it takes at most
one extra recursive step to reduce to a length < n. Hence, by the induction assumption the
claim follows. We conclude that the space requirement for Algorithm 1 on Sat({φ}, ∅, ∅, ∅) is
O
(
n2).
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