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Abstract
For a regular cardinal κ, a formula of the modal µ-calculus is κ-continuous in a variable x if,
on every model, its interpretation as a unary function of x is monotone and preserves unions
of κ-directed sets. We define the fragment Cℵ1 (x) of the modal µ-calculus and prove that all
the formulas in this fragment are ℵ1-continuous. For each formula φ(x) of the modal µ-calculus,
we construct a formula ψ(x) ∈ Cℵ1 (x) such that φ(x) is κ-continuous, for some κ, if and only
if φ(x) is equivalent to ψ(x). Consequently, we prove that (i) the problem whether a formula
is κ-continuous for some κ is decidable, (ii) up to equivalence, there are only two fragments
determined by continuity at some regular cardinal: the fragment Cℵ0 (x) studied by Fontaine
and the fragment Cℵ1 (x). We apply our considerations to the problem of characterizing closure
ordinals of formulas of the modal µ-calculus. An ordinal α is the closure ordinal of a formula
φ(x) if its interpretation on every model converges to its least fixed-point in at most α steps
and if there is a model where the convergence occurs exactly in α steps. We prove that ω1, the
least uncountable ordinal, is such a closure ordinal. Moreover we prove that closure ordinals are
closed under ordinal sum. Thus, any formal expression built from 0, 1, ω, ω1 by using the binary
operator symbol + gives rise to a closure ordinal.
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1 Introduction

The propositional modal µ-calculus [17, 20] is a well established logic in theoretical com-
puter science, mainly due to its convenient properties for the verification of computational
systems. It includes as fragments many other computational logics, PDL, CTL, CTL∗, its
expressive power is therefore highly appreciated. Also, being capable to express all the
bisimulation invariant properties of transition systems that are definable in monadic second
order logic, the modal µ-calculus can itself be considered as a robust fragment of an already
very expressive logic [14]. Despite its strong expressive power, this logic is still considered as
a tractable one: its model checking problem, even if in the class UP ∩ co-UP [15], becomes
polynomial as soon as some critical parameters are fixed or restricted classes of models are
considered [22, 3, 5]. The widespread interest for this logic has triggered further researches
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38:2 ℵ1 and the Modal µ-Calculus

that spread beyond the realm of verification: these concern the expressive power [7, 4], ax-
iomatic bases [30], algebraic and order theoretic approaches [26], deductive systems [21, 27]
and the semantics of functional programs [11].

The present paper lies at the intersection of two lines of research on the modal µ-calculus,
on continuity [10] and on closure ordinals [9, 2]. Continuity of monotone functions is a fun-
damental phenomenon in modal logic, on which well known uniform completeness theorems
rely [24, 12, 16]. Fontaine [10] characterized the formulas of the modal µ-calculus that give
rise to continuous functions on Kripke models. It is well known, for example in categorical
approaches to model theory [1], that the notion of continuity of monotone functions (and
of functors) can be generalized to κ-continuity, where the parameter κ is an infinite regular
cardinal. In the work [25] one of the authors proved that ℵ1-continuous functors are closed
under their greatest fixed-points. Guided by this result, we present in this paper a natural
syntactic fragment Cℵ1(x) of the modal µ-calculus whose formulas are ℵ1-continuous—that
is, they give rise to ℵ1-continuous monotone unary functions of the variable x on arbitrary
models. A first result that we present here is that the fragment Cℵ1(x) is decidable: for each
φ(x) ∈ Lµ, we construct a formula ψ(x) ∈ Cℵ1(x) such that φ(x) is ℵ1-continuous on every
model if and only if φ(x) and ψ(x) are semantically equivalent formulas. We borrow some
techniques from [10], yet the construction of the formula ψ(x) relies on a new notion of
normal form for formulas of the modal µ-calculus. A closer inspection of our proof uncovers
a stronger fact: the formulas φ(x) and ψ(x) are equivalent if and only if, for some regular
cardinal κ, φ(x) is κ-continuous on every model. The stronger statement implies that we
cannot find a fragment Cκ(x) of κ-continuous formulas for some cardinal κ strictly larger
than ℵ1; any such hypothetical fragment collapses, semantically, to the fragment Cℵ1(x).

Our interest in ℵ1-continuity was wakened once more when researchers started investig-
ating closure ordinals of formulas of the modal µ-calculus [9, 2]. Indeed, we consider closure
ordinals as a wide field where the notion of κ-continuity can be exemplified and applied; the
two notions, κ-continuity and closure ordinals, are naturally intertwined. An ordinal α is
the closure ordinal of a formula φ(x) if (the interpretation of) this formula (as a monotone
unary function of the variable x) converges to its least fixed-point µx.φ(x) in at most α
steps in every model and, moreover, there exists at least one model in which the formula
converges exactly in α steps. Not every formula has a closure ordinal. For example, the
simple formula [ ]x has no closure ordinal; more can be said, this formula is not κ-continuous
for any κ. As a matter of fact, if a formula φ(x) is κ-continuous (that is, if its interpretation
on every model is κ-continuous), then it has a closure ordinal cl(φ(x)) 6 κ—here we use the
fact that, using the axiom of choice, a cardinal can be identified with a particular ordinal,
for instance ℵ0 = ω and ℵ1 = ω1. Our results on ℵ1-continuity shows that all the formu-
las in Cℵ1(x) have a closure ordinal bounded by ω1. For closure ordinals, our results are
threefold. Firstly we prove that the least uncountable ordinal ω1 belongs to the set Ord(Lµ)
of all closure ordinals of formulas of the propositional modal µ-calculus. Secondly, we prove
that Ord(Lµ) is closed under ordinal sum. It readily follows that any formal expression built
from 0, 1, ω, ω1 by using the binary operator symbol + gives rise to an ordinal in Ord(Lµ).
Let us recall that Czarnecki [9] proved that all the ordinals α < ω2 belong to Ord(Lµ).
Our results generalize Czarnecki’s construction of closure ordinals and give it a rational
reconstruction—every ordinal strictly smaller than ω2 can be generated by 0, 1 and ω by
repeatedly using the sum operation. Finally, the fact that there are no relevant fragments
of the modal µ-calculus determined by continuity at some regular cardinal other than ℵ0
and ℵ1 implies that the methodology (adding regular cardinals to Ord(Lµ) and closing them
under ordinal sum) used until now to construct new closure ordinals for the modal µ-calculus
cannot be further exploited.
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Let us add some final considerations. In our view, the discovery of the fragment Cℵ1(x)
opens an unsuspected new dimension (thus new tools, new ideas, new perspectives, etc.)
in the theory of the modal µ-calculus and of fixed-point logics. Consider for example the
modal µ-calculus on deterministic models, where states have at most one successor; we
immediately obtain that every formula is ℵ1-continuous on these models. Whether this
and other observations can be exploited (towards understanding alternation hierarchies or
reasoning using axiomatic bases, for example) is part of future researches. Yet we believe
that the scopes of this work and of the problems studied here go well beyond the pure
theory of the modal µ-calculus. Our interest in closure ordinals stems from a proof-theoretic
work on induction and coinduction [11, 25]. There we banned ordinal notations from the
syntax, as we considered the theory of ordinals too strong for our constructive goals. Yet our
judgement might have gone too far, since the theory needed to deal with ordinals is not that
strong; for example, many statements on ordinals do not need the axiom of choice. This
makes reasonable to devise syntaxes based on ordinals. With respect to these problems,
related to the semantics of programming languages, the closure ordinal problem becomes an
optimal playground where to develop and test intuitions.

The paper is structured as follows. In Section 2 we introduce the notion of κ-continuity
and illustrate its interactions with fixed-points. In Section 3 we present the modal µ-calculus
and some tools that shall be needed in the following sections. Section 4 presents our results
on the fragment Cℵ1(x). In Section 5 we argue that the least uncountable ordinal is a closure
ordinal for the modal µ-calculus and that Ord(Lµ) is closed under ordinal sum.

Proof of all the statements can be found in the preprint [13].

2 κ-continuous mappings and their extremal fixed-points

In this section we consider κ-continuity of mappings between powerset Boolean algebras,
where the parameter κ is an infinite regular cardinal. If κ = ℵ0, then κ-continuity coincides
with the usual notion of continuity as known, for example, from [10]. The interested reader
might find further informations in the monograph [1]. In the second part of this section we
recall how κ-continuity interacts with least and greatest fixed-points.

In the following κ is a fixed infinite regular cardinal, P (A) and P (B) are the powerset
Boolean algebras, for some sets A and B, and f : P (A) −→ P (B) is a monotone mapping.

I Definition 1. A subset I ⊆ P (A) is a κ-directed set if every collection J ⊆ I with
cardJ < κ has an upper bound in I. A mapping f : P (A) −→ P (B) is κ-continuous if
f(

⋃
I) =

⋃
f(I), whenever I is a κ-directed set.

I Remark. If κ′ is a regular cardinal and κ < κ′, then a κ′-directed set is also a κ-directed
set. Whence, if f is κ-continuous, then it also preserves unions of κ′-directed sets, thus it is
also κ′-continuous.

We shall say that a subset X of A is κ-small if cardX < κ. For example, a set X is
ℵ0-small if and only if it is finite, and it is ℵ1-small if and only if it is countable.

I Proposition 2. For each X ⊆ A, X is κ-small if and only if, for every κ-directed set I,
X ⊆

⋃
I implies X ⊆ I, for some I ∈ I.

I Proposition 3. A monotone mapping f : P (A) −→ P (B) is κ-continuous if and only if,
for every X ∈ P (A),

f(X) =
⋃
{ f(X ′) | X ′ ⊆ X,X ′ is κ-small } .

CSL 2017
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Proof. Let f : P (A) −→ P (B) be a monotone mapping and suppose that f is κ-continuous. In
P (A) every element X is the union of the set Iκ(X) := {X ′ | X ′ ⊆ X,X ′ is κ-small } which
is a κ-directed set: just observe that if J ⊆ P (A) is a κ-small collection of κ-small subsets
of A, then

⋃
J is κ-small, since the cardinal κ is regular. Then f(X) = f(

⋃
Iκ(X)) =⋃

f(Iκ(X)).
Conversely suppose that f : P (A) −→ P (B) is a monotone mapping such that f(X) =⋃
f(Iκ(X)) for every X ∈ P (A). Let I be a κ-ideal and let X ′ be a κ-small set contained

in
⋃
I. By Proposition 2 there exists I ∈ I such that X ′ ⊆ I. But then X ′ ∈ I since I

is a downward closed set. Thus Iκ(
⋃
I) ⊆ I and consequently f(

⋃
I) =

⋃
f(Iκ(

⋃
I)) ⊆⋃

f(I) . Since
⋃
f(I) ⊆ f(

⋃
I) we obtain f(

⋃
I) =

⋃
f(I). J

2.1 Fixed-points of κ-continuous mappings
The Knaster-Tarski theorem [28] states that if f : P (A) −→ P (A) is monotone, then the set⋂
{X ⊆ A | f(X) ⊆ X } is the least fixed-point of f . On the other hand, Kleene’s fixed-

point theorem states that least fixed-point of an ℵ0-continuous mapping f is constructible
by iterating ω0-times f starting from the empty set, namely it is equal to

⋃
n≥0 f

n(∅).
Generalizations of Kleene’s theorem, constructing the least fixed-point of a monotone f by
ordinal approximations, appeared later, see for example [8], [19]. The following Proposition 5
generalizes Kleene’s theorem to κ-continuous mappings. To state it, we firstly introduce the
notions of approximant and convergence.

I Definition 4. If f : P (A) −→ P (A) is a monotone function, then the approximants fα(∅),
α an ordinal, are inductively defined as follows:

fα+1(∅) := f(fα(∅)) , fα(∅) :=
⋃
β<α f

β(∅) when α is a limit ordinal.

We say that f converges to its least fixed-point in at most α steps if fα(∅) is a fixed-point
(necessarily the least one) of f . We say that f converges to its least fixed-point in exactly α
steps if fα(∅) is a fixed-point of f and fβ(∅) ( fβ+1(∅), for each ordinal β < α.

Let us recall that in set theory a cardinal κ is identified with the least ordinal of cardinality
equal to κ. We exploit this, notationally, in the next proposition.

I Proposition 5. If f : P (A) −→ P (A) is a κ-continuous monotone function, then it con-
verges to its least fixed-point in at most κ steps.

Proof. Let us argue that fκ(∅) is a fixed-point of f :

f( fκ(∅) ) = f(
⋃
α<κ

fα(∅) ) =
⋃
α<κ

f(fα(∅)) ⊆
⋃
α<κ

fα(∅) = fκ(∅)

since the regularity of κ implies that { fα(∅) | α < κ } is a κ-directed set. J

Propositions 6 and 7 are specific instances of a result stated for categories [25]. In order
to clarify their statements, we first observe that if f : P (B)× P (A) −→ P (B) is a monotone
mapping, then the unary mapping f(−, X) : P (B) −→ P (B), Z 7→ f(Z,X), is also monotone.
Hence we may consider the mapping P (A) −→ P (A) that sends X to the least (resp. greatest)
fixed-point of f(−, X); by using the standard µ-calculus notation, we denote it by µz.f(z,−)
(resp. νz.f(z,−)). We also recall that f is κ-continuous w.r.t. the coordinate-wise order on
P (B)× P (A) if and only if it is κ-continuous in every variable.

I Proposition 6. Let f : P (B) × P (A) −→ P (B) be a κ-continuous monotone mapping. If
κ > ℵ0 then νz.f(z, −) : P (A) −→ P (B) is also κ-continuous.
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Proof. Let us write g(x) := νz.f(z, x). We shall show that, for every b ∈ B and for
X ∈ P (A), if b ∈ g(X), then b ∈ g(X ′) for some κ-small X ′ contained in X. Having shown
this, it follows by Proposition 3 that g is continuous. Note that the condition b ∈ g(X)
holds when there exists Z ⊆ B such that b ∈ Z and Z ⊆ f(Z,X). Aiming to find such a set
Z we recursively obtain a family (Xn)n≥1 of κ-small subsets of X and a family (Zn)n≥0 of
κ-small subsets of Z satisfying Zn ⊆ f(Zn+1, Xn+1).

For n = 0 we take Z0 := { b } which is a κ-small subset of f(Z,X). Now suppose we
have already constructed Zn which is κ-small and satisfies Zn ⊆ f(Z,X). Let us consider

I := { f(Z ′, X ′) | X ′ ⊆ X,Z ′ ⊆ Z and X ′, Z ′κ-small } .

Since Zn ⊆ f(Z,X) =
⋃
I and I is a κ-directed set, by Proposition 2 there exist Zn+1, Xn+1

κ-small such that Zn ⊆ f(Zn+1, Xn+1). Moreover, Zn+1 ⊆ Z ⊆ f(Z,X).
Let now Xω :=

⋃
n≥1 Xn and Zω :=

⋃
n≥0 Zn. Notice that Zω and Xω are κ-small, since

we assume that κ > ℵ0. We have therefore

Zω =
⋃
n≥0

Zn ⊆
⋃
n≥1

f(Zn, Xn) ⊆ f(
⋃
n≥1

Zn,
⋃
n≥1

Xn) ⊆ f(Zω, Xω) .

Whence b ∈ Zω ⊆ νz.f(z,Xω), with Xω ⊆ X and Xω κ-small, proving that νz.f(z,−) is
κ-continuous. J

I Proposition 7. Suppose that κ ≥ ℵ0 and let f : P (B)× P (A) −→ P (B) be a κ-continuous
monotone mapping. Then µz.f(z, −) : P (A) −→ P (B) is also κ-continuous.

3 The propositional modal µ-calculus

In this section we present the propositional modal µ-calculus and some known results on
this logic that we shall need later.

Henceforward Act is a fixed finite set of actions and Prop is a countable set of propos-
itional variables. The set Lµ of formulas of the propositional modal µ-calculus over Act is
generated by the following grammar:

φ := y | ¬y | > | φ ∧ φ | ⊥ | φ ∨ φ | 〈a〉φ | [a]φ | µz.φ | νz.φ ,

where a ∈ Act, y ∈ Prop, and z ∈ Prop is a positive variable in the formula φ, i.e. no
occurrence of z is under the scope of a negation. We assume that Prop contains vari-
ables x, x1, . . . , xn, . . . that are never under the scope of a negation nor bound in a for-
mula φ. In general, we shall use y, y1, . . . yn, . . . for variables that are free in formulas, and
z, z1, . . . , zn, . . . for variables that are bound in formulas.

An Act-model (hereinafter referred to as model) is a tripleM = 〈|M|, {Ra | a ∈ Act }, v〉
where |M| is a set, Ra ⊆ |M| × |M| for each a ∈ Act, and v : Prop −→ P (|M|) is an
interpretation of the propositional variables as subsets of |M|. Given a model M, the
semantics JψKM of formulas ψ ∈ Lµ as subsets of |M| is recursively defined using the
standard clauses from polymodal logic K. For example, we have

J〈a〉ψKM = { s ∈ |M| | ∃s′ s.t. sRas′ and ∈ JψKM } ,
J[a]ψKM = { s ∈ |M| | ∀s′sRas′ implies s′ ∈ JψKM } .

Here we only define the semantics of the least and greatest fixed-point constructors µ and
ν. To this goal, given a subset Z ⊆ |M|, we define M[Z/z] to be the model that differs

CSL 2017



38:6 ℵ1 and the Modal µ-Calculus

fromM only on the value Z that its valuation takes on z. The clauses for the fixed-point
constructors are the following:

Jµz.ψKM :=
⋂
{Z ⊆ |M| | JψKM[Z/z] ⊆ Z } ,

Jνz.ψKM :=
⋃
{Z ⊆ |M| | Z ⊆ JψKM[Z/z] } .

A formula φ ∈ Lµ and a variable x ∈ Prop determine on every modelM the correspondence
φxM : P (|M|) −→ P (|M|), that sends each S ⊆ |M| to JφKM[S/x] ⊆ |M|—in the following
we shall write φM for φxM, when x is understood. Due to the syntactic restriction on the
variable z in the productions of µz.φ and νz.φ, the function φzM is monotone. By Tarski’s
theorem [28], the above clauses state that Jµz.φKM and Jνz.φKM are, respectively, the least
and the greatest fixed-point of φzM. As usual, we writeM, s 
 ψ to mean that s ∈ JψKM.

The closure of a formula

For φ ∈ Lµ, we denote by Sub(φ) the set of subformulas of φ. For ψ ∈ Sub(φ), the standard
context of ψ in φ is the (composed) substitution

σφψ := [Qnzn .ψn/zn] · · · · · [Q1
z1
.ψ1/z1]

uniquely determined by the following conditions:
1. { z1, . . . , zn } is the set of variables bound in φ and free in ψ,
2. for each i = 1, . . . , n, Qizi .ψi is the unique subformula of φ such that Qi ∈ {µ, ν },
3. Qjzj .ψj is a subformula of ψi, for i < j.

For φ ∈ Lµ, the closure of φ, see [17], is the set CL(φ) defined as follows:

CL(φ) := {ψ · σφψ | ψ ∈ Sub(φ) } .

Recall from [17] that CL(φ) is the least subset of Lµ such that
φ ∈ CL(φ),
if ψ1@ψ2 ∈ CL(φ), then ψ1, ψ2 ∈ CL(φ), with @ ∈ {∧,∨},
if 〈a〉ψ ∈ CL(φ) or [a]ψ ∈ CL(φ), then ψ ∈ CL(φ),
if Qz.ψ ∈ CL(φ), then ψ[µz.ψ/z] ∈ CL(φ), with Q ∈ {µ, ν }.

By definition, CL(φ) is finite. The characterization of CL(φ) as the least subset satisfying
the above conditions yields the following observation: if ψ ∈ CL(φ), then CL(ψ) ⊆ CL(φ).

Game semantics

Given φ ∈ Lµ and a model M = 〈|M|, {Ra | a ∈ Act }, v〉, the game G(M, φ) has |M| ×
CL(φ) as its set of positions. Moves are as in the table below:

Adam’s moves Eva’s moves

(s, ψ1 ∧ ψ2) −→ (s, ψi) , i = 1, 2

(s, [a]ψ) −→ (s′, ψ) , sRas
′

(s, νz.ψ) −→ (s, ψ[νz.ψ/z])

(s, ψ1 ∨ ψ2) −→ (s, ψi), i = 1, 2,

(s, 〈a〉ψ) −→ (s′, ψ), sRas
′,

(s, µz.ψ) −→ (s, ψ[µz.ψ/z]) .

From a position of the form (s,>) Adam loses, and from a position of the form (s,⊥) Eva
loses. Also, from a position of the form (s, p) with p a propositional variable, Eva wins if and
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only if s ∈ v(p); from a position of the form (s,¬p) with p a propositional variable, Eva wins
if and only if s 6∈ v(p). The definition of the game is completed by wins on infinite plays. To
this goal we choose a rank function ρ : CL(φ) −→ N such that, when ψ1 is a subformula of ψ2,
then ρ(ψ1 ·σφψ1

) ≤ ρ(ψ2 ·σφψ2
), and such that ρ(µz.ψ) is odd and ρ(νz.ψ) is even. An infinite

play { (sn, ψn) | n ≥ 0 } is a win for Eva if and only if max{n ≥ 0 | { i | ρ−1(ψi) is infinite } }
is even. Let us recall the following fundamental result (see for example [6, Theorem 6]):

I Proposition 8. For each modelM and each formula φ ∈ Lµ,M, s 
 φ if and only if Eva
has a winning strategy from position (s, φ) in the game G(M, φ).

Bisimulations

Let P ⊆ Prop be a subset of variables and let B ⊆ Act be a subset of actions. LetM and
M′ be two models. A (P,B)-bisimulation is a relation B ⊆ |M| × |M′| such that, for all
(x, x′) ∈ B, we have

x ∈ v(p) if and only if x′ ∈ v′(p), for all p ∈ P ,
for each b ∈ B,
xRby implies x′Rby′ for some y′ such that (y, y′) ∈ B,
x′Rby

′ implies xRby for some y such that (y, y′) ∈ B.
A pointed model is a pair 〈M, s〉 withM = 〈|M|, {Ra | a ∈ Act }, v〉 a model and s ∈ |M|.
We say that two pointed models 〈M, s〉 and 〈M′, s′〉 are (P,B)-bisimilar if there exists a
(P,B)-bisimulation B ⊆ |M| × |M|′ with (s, s′) ∈ B; we say that they are bisimilar if they
are (Prop,Act)-bisimilar.

Let us denote by Lµ[P,B] the set of formulas whose free variables are in P and whose
modalities are only indexed by actions in B. The following statement is a straightforward
refinement of [6, Theorem 10].

I Proposition 9. If 〈M, s〉 and 〈M′, s′〉 are (P,B)-bisimilar, then M, s 
 φ if and only if
M′, s′ 
 φ, for each φ ∈ Lµ[P,B].

Submodels

IfM = 〈|M|, {RMa | a ∈ Act }, v〉 is a model, then a subset S of |M| determines the model
M�S := 〈S, {Ra ∩ S × S | a ∈ Act }, v′〉 where v′(y) = v(y) ∩ S. We call the submodel of
M induced by S. A subset S of |M| is closed if s ∈ S and sRas′ imply s′ ∈ S, for every
a ∈ Act.

I Proposition 10. For each formula φ ∈ Lµ, there exists a formula tr(φ) ∈ Lµ, containing
a new propositional variable p, with the following property: for each model M, each subset
S ⊆ |M|, and each s ∈ |M|,

M[S/p], s |= tr(φ) iff s ∈ S andM�S , s |= φ .

Moreover, for each ordinal α, tr(φ)αM[S/p](∅) = φαM�S
(∅).

I Remark. In the statement of the previous proposition, the formula tr(φ) is, in general,
defined by induction. Yet, if S is a closed subset ofM, then we can simply let tr(φ) := p∧φ.

4 ℵ1-continuous fragment of the modal µ-calculus

We introduce in this section the fragment Cℵ1(x) of the modal µ-calculus whose formulas,
when interpreted as monotone functions of the variable x, are all ℵ1-continuous. We show

CSL 2017
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how to construct a formula φ′ ∈ Cℵ1(x) from a given formula φ such that φ is κ-continuous,
for some κ, if and only if φ and φ′ are equivalent formulas. We argue therefore that the
problem whether a formula is κ-continuous for some κ is decidable and, moreover, that there
are no interesting notions of κ-continuity, for the modal µ-calculus, besides those for the
cardinals ℵ0 and ℵ1.

A formula φ ∈ Lµ is κ-continuous in x if φM is κ-continuous, for each model M. If
X ⊆ Prop, then we say that φ is κ-continuous in X if φ is κ-continuous in x, for each
x ∈ X.

Define Cℵ1(X) to be the set of formulas of the modal µ-calculus that can be generated
by the following grammar:

φ := x | ψ | > | ⊥ | φ ∧ φ | φ ∨ φ | 〈a〉φ | µz.χ | νz.χ ,

where x ∈ X, ψ ∈ Lµ is a µ-calculus formula not containing any variable x ∈ X, and
χ ∈ Cℵ1(X ∪ { z }). If we omit the last production from the above grammar, we obtain a
grammar for the continuous fragment of the modal µ-calculus, see [10], which we denote
here by Cℵ0(X). For i = 0, 1, we shall write Cℵi(x) for Cℵi({x }). The main achievement of
[10] is that a formula φ ∈ Lµ is ℵ0-continuous in x if and only if it is equivalent to a formula
in Cℵ0(x).

Observe that the set of κ-continuous functions from P (|M|)n to P (|M|), with n > 1,
contains constants, projections, intersections and unions, as well as the unary functions
φM with φ = 〈a〉x for some a ∈ Act. Moreover, this set is closed under composition and
diagonalisation, and so Propositions 6 and 7 immediately yield the following result:

I Proposition 11. Every formula in the fragment Cℵ1(X) is ℵ1-continuous in X.

4.1 Syntactic considerations
I Definition 12. The digraph G(φ) of a formula φ ∈ Lµ is obtained from the syntax tree
of φ by adding an edge from each occurrence of a bound variable to its binding fixed-point
quantifier. The root of G(φ) is φ.

I Definition 13. A path in G(φ) is bad if one of its nodes corresponds to a subformula
occurrence of the form [a]ψ. A bad cycle in G(φ) is a bad path starting and ending at the
same vertex.

Recall that a path in a digraph is simple if it does not visit twice the same vertex. The
rooted digraph G(φ) is a tree with back-edges; in particular, it has this property: for every
node, there exists a unique simple path from the root to this node.

I Definition 14. We say that an occurrence of a free variable x of φ is
1. bad if there is a bad path in G(φ) from the root to it;
2. not-so-bad (or boxed) if the unique simple path in G(φ) from the root to it is bad;
3. very bad if it is bad and not boxed.

I Example 15. Figure 1 represents the digraph of the formula

µz1 .(y0 ∧ νz0 .(z0 ∧ [ ]z1)) ∨ (〈 〉y0 ∧ y1).

From the figure we observe that:
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∨

µz1 ∧

∧ 〈 〉 y1

νz0y0 y0

∧

[ ]z0

z1

Figure 1 The digraph of a formula in Lµ.

The free occurrence of z1 in the digraph of νz0 .(z0 ∧ [ ]z1) (in dashed) is bad but not-so-
bad.
The free occurrence of y0 in the left branch of the digraph (in bold) is very bad. The
other occurrence of y0 is not bad.
The unique free occurrence of y1 in φ is not bad.

I Lemma 16. For every set X of variables and every φ ∈ Lµ, the following are equival-
ent:
1. φ ∈ Cℵ1(X),
2. no occurrence of a variable x ∈ X is bad in φ.

4.2 The Cℵ1(x)-flattening of formulas
We aim at defining the Cℵ1(x)-flattening φ[x of any formula φ of the modal µ-calculus. This
will go through the definition of the intermediate formula φ]x which has one more new free
variable x. The formula φ]x is obtained from φ by renaming to x all the boxed occurrences
of the variable x. The formal definition is given by induction as follows:

y]x = y (¬y)]x = ¬y >]x = > ⊥]x = ⊥

(ψ0@ψ1)]x = ψ]x0 @ψ]x1 with @ ∈ {∧,∨}, (〈a〉ψ)]x = 〈a〉ψ]x ([a]ψ)]x = [a]ψ[x/x]
(Qz.ψ)]x = Qz.ψ

]x with Q ∈ {µ, ν }.

In the definition of φ]x above, we assume that x has no bound occurrences in φ. The
following fact is proved by a straightforward induction.

I Lemma 17. Let φ ∈ Lµ. We have φ]x · [x/x] = φ .

The Cℵ1(x)-flattening φ[x of formula φ ∈ Lµ is then defined by:

φ[x := φ]x · [⊥/x]

and henceforward we shorten it up to φ[.
Let us notice that φ]x (or φ[) does not in general belong to Cℵ1(x). For example,

(µz.x∨ [a]z)[ = µz.x∨ [a]z 6∈ Cℵ1(x) since x∨ [a]z 6∈ Cℵ1({x, z}). Yet, the following definition
and lemma partially justify the choice of naming.

CSL 2017
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I Definition 18. A formula φ is almost-good w.r.t. a set X of variables if no occurrence of
a variable x ∈ X is very bad. A formula φ is almost-good if it is almost-good w.r.t. {x }.

I Lemma 19. If φ is an almost-good formula, then both φ]x and φ[ belong to Cℵ1(x).

We aim therefore to transform a formula φ into an equivalent formula in which there are not
very bad occurrences of the variable x. The transformation that we define next achieves this
goal. For φ ∈ Lµ and a finite set X of variables not bound in φ, we define ψ�X as follows.
When in ψ no occurrence of a variable x ∈ X is very bad, we take ψ�X := ψ . Otherwise:

(〈a〉ψ)�X := 〈a〉(ψ)�X , (ψ1@ψ2)�X := (ψ1)�X@ (ψ2)�X , with @ ∈ {∧,∨},

(Qz.ψ)�X := ψ0[ψ1/z] , where ψ0 := Qz.ψ2, ψ1 := Qz.ψ0 , ψ2 := (ψ�X∪{z})]z,

with Q ∈ {µ, ν }. That is, in the last clause, ψ2 is obtained from ψ�X∪{z} by renaming all
the boxed occurrences of z to z. Observe that the first defining clause implies that

x�X = x if x ∈ X, ψ�X = ψ if ψ contains no variable x ∈ X, and ([a]ψ)�X = [a]ψ .

I Proposition 20. The formula φ�X is almost-good w.r.t. X and it is equivalent to φ.

We can finally state the main result up to now.

I Theorem 21. Every formula φ is equivalent to a formula ψ with ψ]x and ψ[ in Cℵ1(x).

4.3 Comparing the closures of φ and φ[

We develop here some syntactic considerations allowing us to relate the closures of φ and
φ[. In turn, this will make it possible to relate the positions of the games G(M, φ) and
G(M, φ[), so to construct, in the proof of Proposition 24, a winning strategy in the latter
game from a winning strategy in the former.

I Lemma 22. If x is a free variable of φ and κ is either a variable not bound in φ or a
constant, then

CL(φ · [κ/x]) = {ψ · [κ/x] | ψ ∈ CL(φ) } .

In particular, we have

CL(φ) = {φ′ · [x/x] | φ′ ∈ CL(φ]x) } , CL(φ[) = {φ′ · [⊥/x] | φ′ ∈ CL(φ]x) } .

The second statement of the lemma is an immediate of the first, considering that φ =
φ]x · [x/x] and φ[ = φ]x · [⊥/x].

4.4 The continuous fragments
Our next goal is to prove some sort of converse to Proposition 11.

A pointed model 〈M, s〉 is a tree model if the rooted digraph 〈|M|,
⋃
a∈ActRa, s〉 is a

tree. Let κ be a cardinal. A tree model 〈M, s〉 is κ-expanded if, for each a ∈ Act, whenever
xRax

′, there are at least κ a-successors of x that are bisimilar to x′. The following lemma
is a straightforward generalization of [10, Proposition 1].

I Lemma 23. For each pointed model 〈M, s〉 there exists a κ-expanded tree model 〈T , t〉
bisimilar to 〈M, s〉.
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I Proposition 24. IfM, s 
 φ and φ is κ-continuous in x, thenM, s 
 φ[.

Proof. Suppose that M = (|M|, {Ra | a ∈ A }, v) is a model and that s0 
 φ. We want
to prove that s0 
 φ[. Notice first that, by Lemma 23, we can assume that 〈M, s0〉 is
κ-expanded tree model.

Since φ is κ-continuous in x and s0 ∈ φM(v(x)), there exists U ⊆ v(x), with cardinality
of U striclty smaller than κ, such that s0 ∈ φM(U), so M[U/x], s0 
 φ. We shall argue
that M[U/x], s0 
 φ[, from which it follows that s0 ∈ φ[M(U) ⊆ φ[M(v(x))—since φ[M is
monotonic—thusM, s0 
 φ[.

In the following let N = M[U/x] (notice that N is not anymore κ-expanded). Since
N , s0 
 φ, let us fix a winning strategy for Eva in the game G(N , φ) from position (s0, φ).
We define next a strategy for Eva in the game G(N , φ[) from position (s0, φ

[). Observe first
that, by Lemma 22, positions in G(N , φ) (respectively, G(N , φ[)) are of the form (s, ψ[x/x])
(resp., (s, ψ[⊥/x])) for a formula ψ ∈ CL(φ]x). Therefore, at the beginning of the play, Eva
plays in G(N , φ[) simulating the moves of the given winning strategy for the game G(N , φ).
The simulation goes on until the play reaches a pair of positions p = (s, [a]χσφ

]x

[a]χ · [x/x])

and p′ = (s, [a]χσφ
]x

[a]χ · [⊥/x]), for some subformula [a]χ of φ]x, where χ = χ′[x/x] for some
subformula χ′ of φ.

I Claim. The positions p and p′ are respectively of the form (s, [a]ψ) ∈ G(N , φ) and
(s, [a]ψ′) ∈ G(N , φ[) for some ψ and ψ′ such that ψ[⊥/x]→ ψ′ is a tautology.

Thus Eva needs to continue playing in the game G(N , φ[) from a position of the form
(s, [a]ψ′) where ψ[⊥/x] → ψ′ is a tautology. We construct a winning stategy for Eva from
this position as follows. Since the play has reached the position (s, [a]ψ) of G(N , φ) we also
know that s ∈ J[a]ψKN . We argue then that s ∈ J[a]ψKN implies s ∈ J[a]ψ[⊥/x]KN . Since
J[a]ψ[⊥/x]KN ⊆ J[a]ψ′KN , Eva also has a winning strategy from position (s, [a]ψ′) of the
game G(N , φ[), which she shall use to continue the play.

I Claim. s ∈ J[a]ψKN implies s ∈ J[a]ψ[⊥/x]KN .

Proof of Claim. The statement of the claim trivially holds if s has no successors. Let s′ be
a fixed a-successor of s (i.e. sRas′), so N , s′ 
 ψ; we want to show that N , s′ 
 ψ[⊥/x]. To
this goal, recalling that ψ[⊥/x] ∈ Lµ[Prop\{x}, Act] and using Proposition 9, it is enough to
prove that 〈N , s′〉 is (Prop \ {x}, Act)-bisimilar to some 〈N , s′′〉 such that N , s′′ 
 ψ[⊥/x].

Let S be the set

{ t | sRat, 〈M, t〉 is bisimilar to 〈M, s′〉, and ↓ t ∩ U 6= ∅ },

where we have used ↓ t to denote the subtree of 〈M, s0〉 rooted at t. Recall that the
cardinality of U is strictly smaller than κ and so is the cardinality of S once it is at most equal
to the cardinality of U . But the cardinality of { t | sRat, 〈M, t〉 is bisimilar to 〈M, s′〉 } is
at least κ (recall 〈M, s0〉 is a κ-expanded tree model). Consequently there must be a
successor s′′ of s such that 〈M, s′′〉 is bisimilar to 〈M, s′〉 and which does not belong to
S, that is ↓s ′′ ∩ U = ∅ (i.e. no states in U are reachable from s′′). Since N , s′′ 
 ψ and
↓s ′′ ∩ U = ∅, we have N , s′′ 
 ψ[⊥/x]. Yet 〈M, s′′〉 and 〈M, s′〉 are bisimilar and since N
is obtained from M just by modifying the value of the variable x, 〈N , s′′〉 and 〈N , s′〉 are
(Prop\{x }, Act)-bisimilar. As stated before, this together with N , s′′ 
 ψ[⊥/x] imply that
N , s′ 
 ψ[⊥/x]. J

To complete the proof of Proposition 24 we need to argue that the strategy so defined for Eva
to play in the game G(M, φ[) is winning. The only difficulty in asserting this is to exclude
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the case where the initial simulation leads to a pair of positions of the form (s, x[x/x]) and
(s, x[⊥/x]). This is however excluded since in φ]x all the occurrences of x are boxed, so we
are enforced to go through the second step of the strategy. J

I Proposition 25. If, for some regular cardinal κ, φ ∈ Lµ is κ-continuous, then φ is equi-
valent to φ[.

Proof. Notice that, by monotonicity in the variable x, φ[ → φ is a tautology. Proposition 24
exhibits the converse implication as another tautology. J

I Theorem 26. If for some regular cardinal κ, φ ∈ Lµ is a κ-continuous formula, then φ is
equivalent to a formula φ′ ∈ Cℵ1(x).

Proof. Suppose that φ is κ-continuous. By Corollary 21, φ is equivalent to a formula ψ with
ψ[ ∈ Cℵ1(x). Clearly, ψ is κ-continuous as well, so it is equivalent to ψ[ by Proposition 25.
It follows that φ is equivalent to ψ[ ∈ Cℵ1(x). J

As a consequence of the previous Theorem 26, we obtain the following result.

I Theorem 27. There are only two fragments of the modal µ-calculus determined by con-
tinuity conditions: the fragment Cℵ0(x) and the fragment Cℵ1(x).

I Theorem 28. The following problem is decidable: given a formula φ(x) ∈ Lµ, is φ(x)
κ-continuous for some regular cardinal κ?

Proof. From what has been exposed above, φ is κ-continuous if and only if it equivalent
to the formula φ′ ∈ Cℵ1(x), where φ′ = (φ�x)[. It is then enough to observe that there
are effective processes to construct the formula φ′ and to check whether φ is equivalent to
φ′. J

5 Large closure ordinals

We start by presenting some of the tools required for the two subsections in which this
section is organized. Then, we prove that ω1, the least uncountable ordinal, is a closure
ordinal for the modal µ-calculus. Finally, in the second subsection, we show that the set of
closure ordinals is closed under the ordinal sum.

I Definition 29. Let φ(x) be a formula of the modal µ-calculus. We say that an ordinal
α is the closure ordinal of φ (and write cl(φ) = α) if, for each model M, the function φM
converges to its least fixed-point in at most α steps, and there exists a model M in which
φM converges to its least fixed-point in exactly α steps.

I Lemma 30. If α is a closure ordinal, then there is a formula φ(x) such that cl(φ(x)) = α

and that is total, meaning that Jµx.φ(x)KM = |M|, for each modelM.

I Proposition 31. If a formula φ(x) belongs to the syntactic fragment Cℵ1(x), then it has a
closure ordinal cl(φ(x)) and ω1 is an upper bound for cl(φ(x)).

Proof. The formula φ belongs to the syntactic fragment Cℵ1(x), thus it is ℵ1-continuous
and, for every modelM, φM is ℵ1-continuous. It follows then from Proposition 5 that φM
converges to its least fixed-point in at most ω1 steps. J
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5.1 ω1 is a closure ordinal
We are going to prove that ω1 is the closure ordinal of the following bimodal formula:

Φ(x) := νz.(〈v〉x ∧ 〈h〉z) ∨ [v]⊥ . (1)

Later we shall also argue that ω1 is the closure ordinal of a monomodal formula.
For the time being, consider Act = {h, v}; ifM = 〈|M|, Rh, Rv, v〉 is a model, we think

of Rh as a set of horizontal transitions and of Rv as a set of vertical transitions. Thus, for
s ∈ |M|,M, s 
 Φ(x) if either (i) there are no vertical transitions from s, or (ii) there exists
an infinite horizontal path from s such that each state on this path has a vertical transition
to a state s′ such thatM, s′ 
 x.

By Proposition 31, the formula Φ(x) has a closure ordinal and cl(Φ(x)) 6 ω1. In order to
prove that cl(Φ(x)) = ω1, we are going to construct a modelMω1 where Φω1

Mω1
(∅) 6⊆ ΦαMω1

(∅)
for each α < ω1.

The construction relies on few combinatorial properties of posets and ordinals that we
recall here. For a poset P and an ordinal α, an α-chain in P is a subset { pβ | β < α } ⊆ P ,
with pβ ≤ pγ whenever β ≤ γ < α. An α-chain { pβ | β < α } ⊆ P is cofinal in P if, for
every p ∈ P there exists β < α with p ≤ pβ . The cofinality κP of a poset P is the least
ordinal α for which there exists an α-chain cofinal in P . Recall that an ordinal α might
be identified with the poset {β | β is an ordinal, β < α } and so κα = ω, whenever α is a
countable infinite limit ordinal; this means that, for such an α, it is always possible to pick
an ω-chain cofinal in α.

For a given ordinal α ≤ ω1, let

Sα := { (β, n) | β is an ordinal, β < α, 0 ≤ n < ω } .

We define Mω1 to be the model 〈Sω1 , Rh, Rv, v〉 where v(y) = ∅, for each y ∈ Prop, hori-
zontal transitions are of the form (β, n)Rh(β, n+ 1), for each ordinal β and each n < ω, and
vertical transitions from a state (β, n) ∈ Sω1 are as folllows:

if β = 0, then there are no vertical transitions outgoing from (0, n);
if β = γ + 1 is a successor ordinal, then the only vertical transitions are of the form
(γ + 1, n)Rv(γ, 0);
for β a countable limit ordinal distinct from 0, the vertical transitions are of the form
(β, n)Rv(βn, 0), where the set {βn | n < ω } is an ω-chain cofinal in β.

We prove that, we have ΦMω1
(Sα) = Sα+1, for each countable ordinal α, and, consequently,

ΦαMω1
(∅) = Sα, for each ordinal α ≤ ω1. To conclude the proof, it is enough to observe

that Sω1 6⊆ Sα, for each α < ω1. Indeed, if α < ω1, then we can find an ordinal β with
α < β < ω1, so the states (β, n), n ≥ 0, do not belong to Sα.

I Theorem 32. The closure ordinal of Φ(x) is ω1.

5.2 From a bimodal language to a monomodal language
The following statement generalizes to the modal µ-calculus a well known coding of poly-
modal logic to monomodal logic, see [29] and [18, Section 4].

I Proposition 33. For each bimodal formula φ of the modal µ-calculus, we construct a
monomodal formula φsim; if φ belongs to Cℵ1(x), then so does φsim. Moreover, for each
bimodal modelM we can also construct a monomodal modelMsim, together with an injective
function (−)◦ : |M| −→ |Msim| such that, for each s ∈ |M|, M, s 
 φ if and only if
Msim, s◦ 
 φsim.
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I Theorem 34. The monomodal formula Φsim has closure ordinal ω1.

Proof. Since the translation φ 7→ φsim sends formulas in Cℵ1(x) to formulas in Cℵ1(x), Φsim

is ℵ1-continuous and therefore it has a closure ordinal bounded by ω1. To argue that the
closure ordinal of Φsim is equal to ω1 it is enough to consider the modelMsim

ω1
and rely on

Proposition 33. J

5.3 Closure under ordinal sum
Here we prove that the sum of any two closure ordinals is again a closure ordinal. To ease
the exposition, we shall make use of the universal modality [U ] of the µ-calculus which, in
case of a monomodal language, is defined as [U ]χ := νz.(χ∧ [ ]z ). The modal operator [U ]
does not satisfy the Euclidean axiom 5, yet it is satisfies all the axioms of an S4 modality.

I Theorem 35. Suppose φ0(x) and φ1(x) are monomodal formulas that have, respectively, α
and β as closure ordinals. For a variable p occurring neither in φ0 nor in φ1, for χ := χ0∧χ1
with χ0 = ¬p → ([ ]¬p ∧ (¬p ∧ µz.φ0(z))) and χ1 := p → ([ ](¬p → µz.φ0(z)) ∧
µz.tr(φ1(z))), and for

ψ(x) := (¬p ∧ φ0(x) ) ∨ ( tr(φ1)(x) ∧ [ ](¬p→ x) ),

the formula Ψ(x) := [U ]χ ∧ ψ(x) has closure ordinal α+ β.

We prove the theorem through a series of observations. Say that a model N is acceptable if
N |= [U ]χ. The first observation is the following: an ordinal γ is the closure ordinal of the
formula Ψ(x) if and only if (i) the formula ψ(x) converges to its least fixed point in at most
γ steps on all the acceptable models, and (ii) there exists an acceptable model on which the
formula ψ(x) converges to its least fixed point in exactly γ steps.

We continue by understanding how ψN acts on an acceptable model N . To this goal,
let N0 and N1 be the submodels of N induced by v(¬p) and v(p), respectively. To ease the
reading, let also N0 := v(¬p), N1 := v(p), φN0

:= φ0N0
and φN1

:= φ1N1
, so φN0

: P (N0) −→
P (N0) and φN1

: P (N1) −→ P (N1). Observe that since N , s |= ¬p→ [ ]¬p for every s ∈ |N |,
N0 is a closed subset of |N |. Then, by Proposition 10, we have ψN (X)∩N0 = φN0

(X ∩N0)
and tr(φ1)N1

(X) = φN1
(X ∩N1) for each X ⊆ |N |. Now let ∇(X) := N1 ∩ [ ]N (N0 → X) .

We consider that the domain of ∇ is P (N0) while its codomain is P (N1). Therefore, ψN is
of the form

ψN (X) = φN0
(X ∩N0) ∪ (φN1

(X ∩N1) ∩∇(X ∩N0)) . (2)

We notice that if N is an acceptable model, then N0 = Jµz.φ0(z)KM = φα
N0

(∅) and N1 =
Jµz.φ1(z)KM = φβ

N1
(∅). Moreover, N , s |= p→ [ ](¬p→ µx.φ0(x)), for each s ∈ |N |, so

∇(X) = N1, whenever X ⊇ φα
N0

(∅)(= N0). (3)

I Proposition 36. On every acceptable model N the equality ψα+β
N (∅) = |N | holds and,

consequently, the formula ψ(x) converges before α+ β steps.

Proof. Since N0 is a closed subset of |N |, by Proposition 10, we have

ψδ
N

(∅) ∩N0 = ψδN0
(∅) = φδ

N0
(∅) (4)
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for each ordinal δ. Consequently, ψα+γ
N (∅) ∩ N0 ⊇ ψα

N
(∅) ∩ N0 = φα

N0
(∅), for every ordinal

γ. By a straightforward induction we also prove that, for each ordinal γ,

φγ
N1

(∅) ⊆ ψα+γ
N

(∅) ∩N1 . (5)

Therefore |N | = N0∪N1 = φα
N0

(∅)∪φβ
N1

(∅) ⊆ (ψα+β
N

(∅)∩N0)∪ (ψα+β
N

(∅)∩N1) = ψα+β
N

(∅) .
J

I Proposition 37. There exists an acceptable model N on which ψ(x) converges exactly
after α+ β steps.

Proof. Since the formulas φ0(x) and φ1(x) have, respectively, α and β as closure ordinals,
by Proposition 30 there exist modelsMγ = 〈|Mγ |, Rγ , vγ〉, γ ∈ {α, β }, such that for every
α′ < α and β′ < β Jµx.φ0(x)KMα

= |Mα| = φ0
α
Mα

(∅) 6= φ0
α′

Mα
(∅) and Jµx.φ1(x)KMβ

=
|Mβ | = φ1

β
Mβ

(∅) 6= φ1
β′

Mβ
(∅).

We construct now the modelMα+β by making the disjoint union of the sets |Mα| and
|Mβ |, endowed with Rα ∪Rβ ∪ { (s, s′) | s ∈ |Mβ |, s′ ∈ |Mα| } and the valuation v defined
by v(q) := |M|β , if q = p, and v(q) := vα(q) ∪ vβ(q) otherwise. Let us put N = Mα+β .
Observe now that Mα+β is an acceptable model and that ∇(X) = ∅ for every X ⊆ |N |
such that X ∩N0 ( φα

N0
(∅). Because of this, the inclusion (5) is actually an equality. But

then we apply equations (4) and (5) to obtain ψα
N

(∅) = φα
N0

(∅) 6= φδ
N0

(∅) = ψδ
N

(∅) and
ψα+γ

N
(∅) = N0 ∪ φγN1

(∅), for ordinals δ < α and γ. Finally, ψα+β
N

(∅) = |N | = N0 ∪ φβN1
(∅) 6=

N0 ∪ φγN1
(∅) = ψα+γ

N
(∅) , for γ < β. J
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