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Abstract
The program-over-monoid model of computation originates with Barrington’s proof that it cap-
tures the complexity class NC1. Here we make progress in understanding the subtleties of the
model. First, we identify a new tameness condition on a class of monoids that entails a natural
characterization of the regular languages recognizable by programs over monoids from the class.
Second, we prove that the class known as DA satisfies tameness and hence that the regular
languages recognized by programs over monoids in DA are precisely those recognizable in the
classical sense by morphisms from QDA. Third, we show by contrast that the well studied class
of monoids called J is not tame and we exhibit a regular language, recognized by a program over
a monoid from J, yet not recognizable classically by morphisms from the class QJ. Finally, we
exhibit a program-length-based hierarchy within the class of languages recognized by programs
over monoids from DA.
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1 Introduction

A program of range n on alphabet Σ over a finite monoid M is a sequence of pairs (i, f)
where i is a number between 1 and n and f is a function assigning an element of the monoid
M to any letter of Σ. This program assigns to each word w1w2 · · ·wn the monoid element
obtained by multiplying out in M the elements f(wi), one per pair (i, f), in the order of the
sequence. When associated with a subset F of M as an acceptance set, a program naturally
defines the language Ln of words of length n to which it assigns a monoid element in F . A
program sequence (Pn)n∈N then defines the language formed by the union of the Ln.

Such sequences became the focus of attention when Barrington [3] made the striking
discovery, in fact partly observed earlier [17], that polynomial length program sequences over
the group S5 and sequences of Boolean circuits of polynomial size, logarithmic depth and
constant fan-in (defining the complexity class NC1) recognize precisely the same languages.

A flurry of work followed. After all, a program over M is a mere generalization of a
morphism from Σ∗ toM and recognition by a morphism equates with acceptance by a finite
automaton. Given the extensive algebraic automata theory available at the time [15, 11, 22],
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2:2 The Power of Programs over Monoids in DA

it was to be a matter of a few years before the structure of NC1 got elucidated by algebraic
means.

The “optimism period” produced many significant results. The classes AC0 ⊂ ACC0 ⊆
NC1 were characterized by polynomial length programs over the aperiodic, the solvable,
and all monoids respectively [3, 6]. More generally for any variety V of monoids (a variety
being the undisputed best fit with the informal notion of a natural class of monoids) one
can define the class P (V) of languages recognized by polynomial length programs over a
monoid drawn from V. In particular, if A is the variety of aperiodic monoids, then P (A)
characterizes the complexity class AC0 [6].

But sadly, the optimism period ended: although partial results in restricted settings were
obtained, the holy grail of reproving significant circuit complexity results and forging ahead
by recycling the deep theorems afforded by algebraic automata theory never materialized.
The test case for the approach was to try to prove, independently from the known combina-
torial arguments [1, 12, 14] and those based on approximating circuits by polynomials over
some finite field [24, 27], that P (A) does not contain the parity language MOD2, i.e., that
MOD2 /∈ AC0. But why has this failed?

The answer of course is that programs are much more complicated than morphisms:
programs can read an input position more than once, in non-left-to-right order, possibly
assigning a different monoid element each time. Linear-length programs can indeed trivially
recognize non-regular languages. In the classical theory, any two varieties provably recognize
distinct classes of languages [11, 22]. In the theory of recognition by polynomial length
programs (we will speak then of p-recognition), distinct varieties can yield the same class,
as do, for instance, any two varieties of monoids V and W that each contain a simple
non-Abelian group, for which P (V) = P (W) = NC1 [18, Theorem 4.1].

To further illustrate the subtle behavior of programs, consider the variety of monoids
known as J. J is the variety of monoids generated by the syntactic monoids of the languages
such that membership can be decided by looking for the presence or absence of certain
subwords, where u is a subword of v if u can be obtained from v by removing some letters of
v [26]. It follows that J is unable to recognize the language defined by the regular expression
(a + b)∗ac+. Yet (a + b)∗ac+ is p-recognizable over J. To see this consider the language L
of all words having ca as a subword but not the subwords cca, caa and cb. L is therefore
recognized by a morphism ϕ to some monoid M of J, i.e. L = ϕ−1(F ) for some F ⊆M . A
program of range n over M can recognize the words of length n of (a+ b)∗ac+ by using the
following trick: reading the input letters in the order 2, 1, 3, 2, 4, 3, 5, 4, . . . , n, n−1, assigning
to each letter read its image in M by ϕ and using the same acceptance set F as for L. For
instance, on input abacc the program outputs ϕ(baabcacc) which is in F , while on inputs
abbcc and abacca the program outputs respectively ϕ(babbcbcc) and ϕ(baabcaccac) which are
not in F .

Our paper is motivated by the need to better understand such subtle behaviors of poly-
nomial length programs over monoids. Quite a bit of knowledge on such programs has
accumulated over nearly thirty years (consider [5, 20, 21, 16, 28] beyond the references al-
ready mentioned). Yet, even within the realm of questions that do not hold pretense to
major complexity class separations, gaps remain.

One beaming such gap concerns the variety of monoids DA. The importance of DA in
algebraic automata theory and its connections with other fields are well established (see [30]
for an eloquent testimony). DA is a relatively “small” variety, well within the variety of
aperiodic monoids. One could argue that “small” varieties will be sensitive to duplications
and rearrangements in the order in which input letters are read by a program. Presumably
in part for that reason, programs over DA have seemingly not been successfully analyzed
prior to our work.
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Our main result is a characterization of the regular languages recognized by polynomial
length programs over DA. We show that P (DA) ∩ Reg is precisely the class L (QDA) of
languages recognized classically by morphisms in quasi-DA (QDA). A surjective morphism
ϕ from Σ∗ to a finite monoid M is quasi-DA if, though M might not be in DA, there is a
number k such that the image by ϕ of all words over Σ whose length is a multiple of k forms
a submonoid of M which is in DA. In this particular case, this statement is equivalent to
the fact that the only power added by p-recognition relative to classical recognition through
monoids in DA is the ability to count input positions modulo a constant. Our proof shows,
independently from [1, 12, 14, 24, 27], that, for regular languages, p-recognition over DA
does not distort the algebraic properties of the underlying morphisms beyond adding the
ability for fixed modulo counting on lengths. (This is precisely the statement, once extended
to the variety of all aperiodic monoids, that would yield the elusive semigroup-theoretic proof
that MOD2 /∈ AC0.)

Our main result builds upon a statement of independent interest, namely, that any variety
of monoids V that fulfills an appropriate tameness condition satisfies P (V)∩Reg ⊆ L (QV).
The new tameness condition (see Definition 2) differs subtly but fundamentally from a similar
notion developed for semigroups by Péladeau, Straubing and Thérien [21] and also studied
in the case of monoids by Péladeau [20] and later Tesson [28] in their respective Ph.D. theses,
and thus requires a separate treatment here. Proving that DA indeed satisfies our tameness
condition is the main technical difficulty behind our characterization of P (DA) ∩Reg.

We further consider P (DA). With Ck the class of languages recognized by programs of
length O(nk) over DA, we prove that C1 ⊂ C2 ⊂ · · · ⊂ Ck ⊂ · · · ⊂ P (DA) forms a strict
hierarchy. We also relate this hierarchy to another algebraic characterization of DA and
exhibit conditions on M ∈ DA under which any program over M can be rewritten as an
equivalent subprogram (made of a subsequence of the original sequence of instructions) of
length O(nk), refining a result by Tesson and Thérien [29].

Our final result concerns the variety J. Observing that the regular language (a+ b)∗ac+
mentioned above is not recognizable by a morphism in QJ, we conclude that J is not a tame
variety. Be it the chicken or the egg, this lack of tameness “explains” the unexpected power
of P (J) witnessed in our example above. Furthermore, since J is a p-variety of monoids in
the sense of [21, 20, 28], J explicitly shows that our notion of tameness and that of [21, 20, 28]
differ.

Organization of the paper. In Section 2 we define programs over varieties of monoids,
p-recognition by such programs and the necessary algebraic background. The definition of
tameness for a variety V is given in Section 3 with our first result showing that regular
languages recognized by P (V) are included in L (QV) when V is tame; we also quickly
discuss the case of J, which isn’t tame. We show that DA is tame in Section 4. Finally,
Section 5 contains the hierarchy results about P (DA).

2 Preliminaries

This section is dedicated to introducing the mathematical material used throughout this
paper. Concerning algebraic automata theory, we only quickly review the basics and refer
the reader to the two classical references of the domain by Eilenberg [10, 11] and Pin [22].

General notations. Let i, j ∈ N be two natural numbers. We shall denote by [[i, j]] the set
of all natural numbers n ∈ N verifying i ≤ n ≤ j. We shall also denote by [i] the set [[1, i]].

MFCS 2017



2:4 The Power of Programs over Monoids in DA

Words and languages. Let Σ be a finite alphabet. We denote by Σ∗ the set of all finite
words over Σ. We also denote by Σ+ the set of all finite non empty words over Σ, the empty
word being denoted by ε. A language over Σ is a subset of Σ∗. A language is regular if it
can be defined using a regular expression. Given a language L, its syntactic congruence ∼L
is the relation on Σ∗ relating two words u and v whenever for all x, y ∈ Σ∗, xuy ∈ L if and
only if xvy ∈ L. It is easy to check that ∼L is an equivalence relation and a congruence
for concatenation. The syntactic morphism of L is the mapping sending any word u to its
equivalence class in the syntactic congruence.

The quotient of a language L over Σ relative to the words u and v is the language,
denoted by u−1Lv−1, of the words w such that uwv ∈ L.

Monoids, semigroups and varieties. A semigroup is a set equipped with an associative law
that we will write multiplicatively. A monoid is a semigroup with an identity. An example
of a semigroup is Σ+, the free semigroup over Σ. Similarly Σ∗ is the free monoid over Σ.
A morphism ϕ from a semigroup S to a semigroup T is a function from S to T such that
ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ S. A morphism of monoids additionally requires that the
identity is preserved. A semigroup T is a subsemigroup of a semigroup S if T is a subset
of S and is equipped with the restricted law of S. Additionally the notion of submonoids
requires the presence of the identity. The Cartesian (or direct) product of two semigroups
is simply the semigroup given by the Cartesian product of the two underlying sets equipped
with the Cartesian product of their laws.

A language L over Σ is recognized by a monoid M if there is a morphism h from Σ∗
to M and a subset F of M such that L = h−1(F ). We also say that the morphism h

recognizes L. It is well known that a language is regular if and only if it is recognized by a
finite monoid. Actually, as ∼L is a congruence, the quotient Σ∗/∼L is a monoid, called the
syntactic monoid of L, that recognizes L via the syntactic morphism of L. The syntactic
monoid of L is finite if and only if L is regular. The quotient Σ+/∼L is analogously called
the syntactic semigroup of L.

A variety of monoids is a class of finite monoids closed under submonoids, Cartesian
product and morphic images. A variety of semigroups is defined similarly. When dealing
with varieties, we consider only finite monoids and semigroups.

An element s of a semigroup is idempotent if ss = s. For any finite semigroup S there is
a positive number (the minimum such number), the idempotent number of S, often denoted
ω, such that for any element s ∈ S, sω is idempotent.

A variety can be defined by means of identities [25]. The variety is then the class of
monoids such that each of them has all its elements satisfy the identities. For instance, the
variety of aperiodic monoids A can be defined as the class of monoids satisfying the identity
xω = xω+1, where x ranges over the elements of the monoid while ω is the idempotent power
of the monoid. The variety of monoids DA is defined by the identity (xy)ω = (xy)ωx(xy)ω.
The variety of monoids J is defined by the identity (xy)ω = (xy)ωx = y(xy)ω.

Quasi and locally V languages, modular counting and predecessor. If S is a semigroup
we denote by S1 the monoid S if S is already a monoid and S ∪ {1} otherwise.

The following definitions are taken from [23]. Let ϕ be a surjective morphism from Σ∗
to a finite monoid M . For all k consider the subset ϕ(Σk) of M . As M is finite there is a
k such that ϕ(Σ2k) = ϕ(Σk). This implies that ϕ(Σk) is a semigroup. The semigroup given
by the smallest such k is called the stable semigroup of ϕ. If S is the stable semigroup of ϕ,
S1 is called the stable monoid of ϕ. If V is a variety of monoids, then we shall denote by
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QV the class of such surjective morphisms whose stable monoid is in V and by L (QV) the
class of languages whose syntactic morphism is in QV.

For V a variety of monoids, we say that a finite semigroup S is locally V if, for every
idempotent e of S, the monoid eSe belongs to V; we denote by LV the class of locally-V
finite semigroups, which happens to be a variety of semigroups. Finally, L (LV) denotes the
class of languages whose syntactic semigroup is in LV.

We now define languages recognized by V ∗ Mod and V ∗ D. We do not use the
standard algebraic definition using the wreath product as we won’t need it, but directly a
characterization of the languages recognized by such algebraic objects [7, 31].

Let V be a variety of monoids. We say that a language L over Σ is in L (V ∗Mod)
if there is a number k ∈ N>0 and a language L′ over Σ × {0, · · · , k − 1} whose syntactic
monoid is in V, such that L is the set of words w that belong to L′ after adding to each
letter of w its position modulo k.

Similarly we say that a language L over Σ is in L (V ∗D) if there is a number k ∈ N
and a language L′ over Σ× Σ≤k (where Σ≤k denotes all words over Σ of length at most k)
whose syntactic monoid is in V, such that L is the set of words w that belong to L′ after
adding to each letter of w the word composed of the k (or less when near the beginning of
w) letters preceding that letter. The variety of semigroups V∗D can then be defined as the
one generated by the syntactic semigroups of the languages in L (V ∗D) as defined above.

A variety V is said to be local if L (V ∗D) = L (LV). This is not the usual definition of
locality, defined using categories, but it is equivalent to it [31, Theorem 17.3]. One of the
consequences of locality that we will use is that L (V ∗Mod) = L (QV) [9, Corollary 18]
(see also [8, 19]).

Programs over varieties of monoids. Programs over monoids form a non-uniform model
of computation, first defined by Barrington and Thérien [6], extending Barrington’s permu-
tation branching program model [3]. Let M be a finite monoid and Σ a finite alphabet. A
program P over M is a finite sequence of instructions of the form (i, f) where i is a positive
integer and f a function from Σ to M . The length of P is the number of its instructions. A
program has range n if all its instructions use a number less than n. A program P of range
n defines a function from Σn, the words of length n, to M as follows. On input w ∈ Σn,
each instruction (i, f) outputs the monoid element f(wi). A sequence of instructions then
yields a sequence of elements of M and their product is the output P (w) of the program.

A language L over Σ is p-recognized by a sequence of programs (Pn)n∈N if for each n, Pn
has range n and length polynomial in n and there exists a subset Fn of M such that L∩Σn
is precisely the set of words w of length n such that Pn(w) ∈ Fn.

We denote by P (M) the class of languages p-recognized by a sequence of programs
(Pn)n∈N over M . If V is a variety of monoids we denote by P (V) the union of all P (M)
for M ∈ V.

The following is a simple fact about P (V). Let Σ and Γ be two finite alphabets and
µ : Σ∗ → Γ∗ be a morphism. We say that µ is length multiplying, or that µ is an lm-
morphism, if there is a constant k such that for all a ∈ Σ, the length of µ(a) is k.

I Lemma 1 ([18], Corollary 3.5). Let V be a variety of monoids, then P (V) is closed under
Boolean operations, quotients and inverse images of lm-morphisms.

MFCS 2017



2:6 The Power of Programs over Monoids in DA

3 General results about regular languages and programs

Let V be a variety of monoids. By definition any regular language recognized by a monoid
in V is p-recognized by a sequence of programs over a monoid in V. Actually, since in
a program over some monoid in V, the monoid element output for each instruction can
depend on the position of the letter read, hence in particular on its position modulo some
fixed number, it is easy to see that any regular language in L (V ∗Mod) is p-recognized by
a sequence of programs over some monoid in V. In this section we show that for some “well
behaved” varieties V the converse inclusion holds.

For this we introduce the notion of an sp-variety of monoids. This notion is inspired by
the notion of p-varieties (program-varieties) of monoids, that seems to have been originally
defined by Péladeau in his Ph.D. thesis [20] and later used by Tesson in his own Ph.D.
thesis [28]. The notion of a p-variety has also been defined for semigroups by Péladeau,
Straubing and Thérien in [21] in order to obtain results similar to ours for varieties of
semigroups of the form V ∗D.

Let µ be a morphism from Σ∗ to a finite monoid M . We denote by W(µ) the set of
languages L over Σ such that L = µ−1(F ) for some subset F of M . Given a semigroup S
there is a unique morphism ηS : S∗ → S1 extending the identity on S, called the evaluation
morphism of S. We write W(S) for W(ηS). We define W(M) similarly for any monoid M .
It is easy to see that if M ∈ V then W(M) ⊆ P (V). The tameness condition requires a
converse of this observation.

I Definition 2. An sp-variety of monoids, which we will call a tame variety, is a variety V
of monoids such that for any finite semigroup S, if W(S) ⊆ P (V) then S1 ∈ V.

The p-variety of monoids in [20, 28] is similar to our sp-variety but the former only
requires that any finite monoid M verifying W(M) ⊆ P (V) must in fact belong to V. This
implies that any sp-variety of monoids is also a p-variety of monoids, but the converse is not
always true. For instance, J is a p-variety of monoids [28], but Proposition 5 below states
that J is not an sp-variety.

An example of an sp-variety of monoids is the class of aperiodic monoids A. This is a
consequence of the result that for any number k > 1, checking if the number of a modulo
k in a word is congruent to 0 is not in AC0 = P (A) [12, 1] (a language we shall denote
by MODk over the alphabet {0, 1}). Towards a contradiction, assume there would exist a
semigroup S such that S1 is not aperiodic but still W(S) ⊆ P (A). Then there is an x in S
such that xω 6= xω+1. Consider the morphism µ : {a, b}∗ → S1 sending a to xω+1 and b to
xω, and the language L = µ−1(xω). It is easy to see that L is the language of all words with a
number of a congruent to 0 modulo k, where k is the smallest number such that xω+k = xω.
As xω 6= xω+1, k > 1. From W(S) ⊆ P (A) it follows that η−1

S (xω) is p-recognized by a
sequence of programs (Pn)n∈N over an aperiodic monoid. For each n ∈ N, we can transform
Pn into P ′n where each instruction (i, f) in Pn simply becomes the instruction (i, f ′) in P ′n
with f ′(σ) = f(µ(σ)) for all σ ∈ {a, b}, so that P ′n(w) = Pn(µ(w1)µ(w2) · · ·µ(wn)) for all
w ∈ {a, b}n. This entails that the sequence of programs (P ′n)n∈N p-recognizes L, hence L is
in P (A), a contradiction.

The following is the desired consequence of tameness.

I Proposition 3. Let V be an sp-variety of monoids. Then P (V) ∩Reg ⊆ L (QV).

A similar result was proven for varieties of semigroups of the form V ∗ D: if V ∗ D is a
p-variety then the regular languages in P (V ∗D) are exactly those in L (V ∗D ∗Mod) [21]
(programs over semigroups being defined in the obvious way). Our proof follows the same
lines.
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Proof. Let L be a regular language in P (M) for some M ∈ V. Let ML be the syntactic
monoid of L and ηL its syntactic morphism. Let S be the stable semigroup of ηL, in
particular S = ηL(Σk) for some k. We wish to show that S1 is in V.

We show that W(S) ⊆ P (V) and conclude from the fact that V is an sp-variety that
S1 ∈ V as desired. Let ηS : S∗ → S1 be the evaluation morphism of S. Consider m ∈ S and
consider L′ = η−1

S (m). We wish to show that L′ ∈ P (V). This implies that W(S) ⊆ P (V)
by closure under union, Lemma 1.

Let L′′ = η−1
L (m). Since m belongs to the syntactic monoid of L and ηL is the syntactic

morphism of L, a classical algebraic argument [22, Chapter 2, proof of Lemma 2.6] shows
that L′′ is a Boolean combination of quotients of L or their complements. By Lemma 1, we
conclude that L′′ ∈ P (V).

By definition of S, for any element s of S there is a word us of length k such that
ηL(us) = s. Notice that this is precisely where we need to work with S and not S1.

Let f : S∗ → Σ∗ be the lm-morphism sending s to us and notice that L′ = f−1(L′′). The
result follows by closure of P (V) under inverse images of lm-morphisms, Lemma 1. J

We don’t know whether it is always true that for sp-varieties of monoids V, L (QV) is
included into P (V). We can only prove it for local varieties.

I Proposition 4. Let V be a local sp-variety of monoids. Then P (V) ∩Reg = L (QV).

Proof. This follows from the fact that for local varieties L (QV) = L (V ∗Mod) [9]. The
result follows from Proposition 3, as we always have L (V ∗Mod) ⊆ P (V). J

As A is local [31, Example 15.5] and an sp-variety, it follows from Proposition 4 that the
regular languages in P (A), hence in AC0, are precisely those in L (QA), which is the char-
acterization of the regular languages in AC0 obtained by Barrington, Compton, Straubing
and Thérien [4].

We will see in the next section that DA is an sp-variety. As it is also local [2], we get
from Proposition 4 that the regular languages of P (DA) are precisely those in L (QDA).

As explained in the introduction, the language (a + b)∗ac+ can be p-recognized by a
program over J. A simple algebraic argument shows that it is not in L (QJ). Hence, by
Proposition 3, we have the following result:

I Proposition 5. J is not an sp-variety of monoids.

4 The case of DA

In this section, we prove that DA is an sp-variety of monoids. Combined with the fact that
DA is local [2], we obtain the following result by Proposition 4.

I Theorem 6. P (DA) ∩Reg = L (QDA).

The result follows from the following main technical contribution:

I Proposition 7. (c + ab)∗, (b + ab)∗ and ((b∗ab∗)k)∗ for any integer k ≥ 2 are regular
languages not in P (DA).

Before proving the proposition we first show that it implies that DA is an sp-variety of
monoids. Assume S is a finite semigroup such that W(S) ⊆ P (DA). Let ηS : S∗ → S1 be
the evaluation morphism of S. We need to show that S1 is in DA.

Assume first that S1 is aperiodic. Towards a contradiction, assume S1 is not in DA.
Then, there exist x, y in S such that (xy)ω 6= (xy)ωx(xy)ω.

MFCS 2017



2:8 The Power of Programs over Monoids in DA

Set e = (xy)ω, f = (yx)ω, s = ex and t = ye. Our hypothesis says that exe 6= e. We
now have two cases, depending on whether fyf = f or not.

So, suppose fyf 6= f . In that case, let µ : {a, b, c}∗ → S1 be the morphism sending a to s,
b to t and c to e and consider the language L = µ−1({1, e}). Assume that L contains a word
w with two consecutive a. Then w = w1aaw2 and as w ∈ L, either e = µ(w1)exexµ(w2)
or 1 = µ(w1)exexµ(w2). In both cases e = u1exeu2 for some suitable values of u1 and u2.
This implies that e = uω1 e(xeu2)ω = (u1xe)ωeuω2 . Because S1 is aperiodic, this implies:
e = exeu2 = eu2. Hence exe = e, contradicting the fact that exe 6= e. Similar arguments
show that L cannot contain a word with two consecutive b, a factor ac or a factor cb.

Any word in L is of the form u0v1u1 · · ·uk−1vkuk where k ∈ N, v1, . . . , vk ∈ c+ and
u0, . . . , uk ∈ (a+ b)∗. As w does not contain aa nor bb as a factor, we have that u0, . . . , uk ∈
(b + ε)(ab)∗(a + ε). When k ≥ 1, as moreover w does not contain ac nor cb as a factor,
it follows that u1, . . . , uk−1 ∈ (ab)∗, u0 ∈ (b + ε)(ab)∗ and uk ∈ (ab)∗(a + ε); now since
µ(ab) = exye = e by aperiodicity and µ(b)e = yee = ye /∈ {1, e} (otherwise fyf = f),
eµ(a) = eex = ex /∈ {1, e} (otherwise exe = e), µ(b)eµ(a) = yeeex = yex = f /∈ {1, e}
(by aperiodicity and as otherwise exe = e), w cannot start with b or end with a, hence
u0, uk ∈ (ab)∗. And similarly, u0 ∈ (ab)∗ when k = 0. Therefore, L = (c+ ab)∗.

The other case, when fyf = f , is treated similarly using the morphism µ : {a, b}∗ → S1

sending a to s and b to t and considering the language L = µ−1({1, e, t}). Using arguments
as for the previous case, one can conclude that L = (b+ ab)∗.

Assume now that S1 is not aperiodic. As in the two previous cases, we can then prove
that there exist a morphism µ : {a, b}∗ → S1 and a subset F ⊆ S1 such that L = µ−1(F )
is the regular language ((b∗ab∗)k)∗ for some k ∈ N, k ≥ 2 of all words over {a, b} with a
number of a congruent to 0 modulo k.

In all cases, we have a language L defined as µ−1(Q) for some subset Q of S1 and some
morphism µ to S1 sending letters to elements of S. As W(S) ⊆ P (DA), it follows that
η−1
S (Q) is p-recognized by a sequence of programs (Pn)n∈N over a monoid in DA. As in the
example prior to Proposition 3 in the previous section, for each n ∈ N, we can transform Pn
into P ′n over the same monoid so that the sequence of programs (P ′n)n∈N p-recognizes L. In
all cases, we get a contradiction with Proposition 7.

In the remaining part of this section we prove Proposition 7.

Proof of Proposition 7. The idea of the proof is the following. We work by contradiction
and assume that we have a sequence of programs over some monoid M of DA deciding
one of the targeted language. Let n be much larger than the size of M , and let Pn be the
program running on words of length n. Consider a language of the form ∆∗ for some finite
set ∆ of words (for instance assume ∆ = {c, ab}, ∆ = {b, ab}, . . . ). We will show that we
can fix a constant (depending on M and ∆ but not on n) number of entries to Pn such
that Pn always accepts or always rejects and there is a completion of the fixed entries in
∆∗; hence, if ∆ was chosen so that there is actually a completion of the fixed entries in the
targeted language and one outside of it, Pn cannot recognize it. We cannot prove this for
all ∆, in particular it will not work for ∆ = {ab} and indeed (ab)∗ is in P (DA). The key
property of our ∆ is that after fixing any letter at any position, except maybe for a constant
number of positions, one can still complete the word into one within ∆∗. This is not true
for ∆ = {ab} because after fixing a b in an odd position all completions fall outside of (ab)∗.

We now add some technical details.
Let ∆ be a finite set of words. Let Σ be the corresponding finite alphabet and let ⊥ be

a letter not in Σ. A mask is a word over Σ∪{⊥}. The positions of a mask carrying a ⊥ are
called free while the positions carrying a letter in Σ are called fixed. A mask λ′ is a submask
of a mask λ if it is formed from λ by replacing some occurrences of ⊥ by a letter in Σ.
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A completion of a mask λ is a word w over Σ that is built from λ by replacing all
occurrences of ⊥ by a letter in Σ. Notice that all completions of a mask have the same
length as the mask itself. A mask λ is ∆-compatible if it has a completion in ∆∗.

The dangerous positions of a mask λ are the positions within distance 2l− 2 of the fixed
positions or within distance l − 1 of the beginning or the end of the mask, where l is the
maximal length of a word in ∆. A position that is not dangerous is said to be safe.

We say that ∆ is safe if the following holds. Let λ be a ∆-compatible mask. Let i be any
free position of λ that is not dangerous. Let a be any letter in Σ. Then the submask of λ
constructed by fixing a at position i is ∆-compatible. We have already seen that ∆ = {ab}
is not safe. However our targeted ∆, ∆ = {c, ab}, ∆ = {b, ab}, ∆ = {a, b}, are safe. We
always consider ∆ to be safe in the following.

Finally, we say that a completion w of a mask λ is safe if w is a completion of λ
belonging to ∆∗ or is constructed from a completion of λ in ∆∗ by modifying only letters
at safe positions of λ, the dangerous positions remaining unchanged.

The following lemma is the key to the proof. It shows that modulo fixing a few entries,
one can fix the output.

I Lemma 8. Let M be a monoid in DA. Let λ be a ∆-compatible mask of length n, let P
be a program over M of range n, let u and v be elements of M . Then there is an element
t of M and a ∆-compatible submask λ′ of λ obtained by fixing a number of free positions
independent from n such that any safe completion w of λ′ verifies uP (w)v = t.

The proof of Lemma 8 is technical. As often in this setting, it relies on Green’s relations
for decomposing monoids. Then, at each stage of the decomposition, a small number of safe
positions are fixed accordingly. Details can be found in Appendix A.

Setting ∆ = {c, ab} or ∆ = {b, ab}, when applying Lemma 8 for some monoid M ∈ DA
with the trivial ∆-compatible mask λ of length n containing only free positions, with P

some program over M of range n and with u and v the identity of M , the resulting mask λ′
has the property that we have an element t ofM such that P (w) = t for any safe completion
w of λ′. Since the mask λ′ is ∆-compatible and as long as n is big enough, we have a safe
completion w0 ∈ ∆∗ and a safe completion w1 /∈ ∆∗. Hence P cannot recognize ∆∗. This
implies that (c+ ab)∗ /∈ P (M) and (b+ ab)∗ /∈ P (M). Finally, for any k ∈ N, k ≥ 2, we can
prove that ((b∗ab∗)k)∗ /∈ P (M) by setting ∆ = {a, b} and completing the mask given by the
lemma by setting the letters in such a way that we have the right number of a modulo k in
one case and not in the other case.

This concludes the proof of Proposition 7 because the argument above holds for any
monoid in DA.

5 A fine hierarchy in P (DA)

The definition of p-recognition by a sequence of programs over a monoid given in Section 2
requires that for each n, the program reading the entries of length n has a length polynomial
in n. In the case of P (DA), the polynomial length restriction is without loss of generality:
any program over a monoid in DA is equivalent to one of polynomial length over the same
monoid [29] (in the sense that they recognize the same languages). In this section, we show
that this does not collapse further: in the case of DA, programs of length O(nk+1) express
strictly more than those of length O(nk).

Following [13], we use an alternative definition of the languages recognized by a monoid
in DA. We define by induction a hierarchy of classes of languages SUMk, where SUM
stands for strongly unambiguous monomial. A language L is in SUM0 if it is of the form
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A∗ for some finite alphabet A. A language L is in SUMk if it is in SUMk−1 or L = L1aL2
for some languages L1 ∈ SUMi and L2 ∈ SUMj and some letter a with i+ j = k − 1 such
that no word of L1 contains the letter a or no word of L2 contains the letter a.

Gavaldà and Thérien showed that a language L is recognized by a monoid in DA iff there
is a k such that L is a Boolean combination of languages in SUMk [13]. For each k ∈ N, we
denote by DAk the variety of monoids generated by the syntactic monoids of the Boolean
combinations of languages in SUMk. It can be checked that, for each k, DAk forms a
variety of monoids recognizing precisely Boolean combinations of languages in SUMk (see
Appendix B).

5.1 Strict hierarchy
For each k we exhibit a language Lk ⊆ {0, 1}∗ that can be recognized by a sequence of
programs of length O(nk) over a monoid Mk in DA but cannot be recognized by any
sequence of programs of length O(nk−1) over any monoid in DA.

The language Lk expresses a property of the first k occurrences of 1 in the input word.
To define Lk we say that S is a k-set over n if S is a set where each element is an ordered
tuple of k distinct elements of [n]. For any sequence ∆ = (Sn)n∈N of k-sets over n, we set
L∆ =

⋃
n∈NKn,Sn , where Kn,Sn is the set of words over {0, 1} of length n such that for each

of them, it contains at least k occurrences of 1 and the ordered k-tuple of the positions of
the first k occurrences of 1 belongs to Sn.

On the one hand, we show that for all k there is a monoid Mk in DA such that for all
∆ the language L∆ is recognized by a sequence of programs over Mk of length O(nk). The
proof is done by an inductive argument on k.

On the other hand, we show that there is a ∆ such that for any finite monoidM and any
sequence of programs (Pn)n∈N over M of length O(nk−1), L∆ is not recognized by (Pn)n∈N.
This is done using a counting argument: for some monoid size i, for n big enough, the
number of languages in {0, 1}n recognized by a program over some monoid of size i of length
at most α ·nk−1 is upper-bounded by a number that turns out to be asymptotically smaller
than the number of different possible Kn,Sn

.

Upper bound. We start with the upper bound. Notice that for ∆ = (Sn)n∈N, the language
of words of length n of L∆ is exactly Kn,Sn . Hence the fact that L∆ can be recognized by a
sequence of programs over a monoid in DA of length O(nk) is a consequence of the following
proposition.

I Proposition 9. For all k ∈ N>0 there is a monoid Mk ∈ DAk such that for all n ∈ N
and all Sn k-sets over n, the language Kn,Sn is recognized by a program over Mk of length
at most 4nk.

Proof. We first define by induction on k a family of languages Zk over the alphabet Yk =
{⊥l,>l | 1 ≤ l ≤ k}. For k = 0, Z0 is {ε}. For k > 0, Zk is the set of words containing >k
and such that the first occurrence of >k has no ⊥k to its left, and the sequence between the
first occurrence of >k and the first occurrence of ⊥k or >k to its right, or the end of the
word if there is no such letter, belongs to Zk−1. A simple induction on k shows that Zk is
defined by the following expression

Y ∗k−1>kY ∗k−2>k−1 · · ·Y ∗1 >2>1Y
∗
k

and therefore it is in SUMk and its syntactic monoid Mk is in DAk.
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Fix n. If n = 0, the proposition follows trivially, otherwise, we define by induction on k
a program Pk(i, S) for every k-set S over n and every 1 ≤ i ≤ n+1 that will for the moment
output letters of Yk instead of outputting elements of Mk.

For any k > 0 and S a k-set over n, let fj,S be the function with fj,S(0) = ε and
fj,S(1) = >k if j is the first element of some ordered k-tuple of S, fj,S(1) = ⊥k otherwise.
We also let gk be the function with gk(0) = ε and gk(1) = ⊥k. If S is a k-set over n and
j ≤ n then S|j denotes the (k − 1)-set over n containing the ordered (k − 1)-tuples t̄ such
that (j, t̄) ∈ S.

For k > 0, 1 ≤ i ≤ n + 1 and S a k-set over n, the program Pk(i, S) is the following
sequence of instructions:

(i, fi,S)Pk−1(i+ 1, S|i)(i, gk) · · · (n, fn,S)Pk−1(n+ 1, S|n)(n, gk).

In other words, the program guesses the first occurrence j ≥ i of 1, returns ⊥k or >k
depending on whether it is the first element of an ordered k-tuple in S, and then proceeds
for the next occurrences of 1 by induction.

For k = 0, 1 ≤ i ≤ n + 1 and S a 0-set over n (that is empty or contains ε, the only
ordered 0-tuple of elements of [n]), the program P0(i, S) is the empty program ε.

A simple computation shows that for any k ∈ N>0, 1 ≤ i ≤ n+ 1 and S a k-set over n,
the number of instructions in Pk(i, S) is at most 4nk.

A simple induction on k shows that when running on a word w ∈ {0, 1}n, for any k ∈ N>0,
1 ≤ i ≤ n + 1 and S a k-set over n, Pk(i, S) returns a word in Zk iff the ordered k-tuple
of the positions of the first k occurrences of 1 starting at position i in w exists and is an
element of S.

For any k > 0 and Sn a k-set over n, it remains to apply the syntactic morphism of Zk
to the output of the functions in the instructions of Pk(1, Sn) to get a program over Mk of
length at most 4nk recognizing Kn,Sn

. J

Lower bound. The following claim is a simple counting argument.

I Claim 10. For all i ∈ N>0 and n ∈ N, the number of languages in {0, 1}n recognized by
programs over a monoid of size i, reading inputs of length n over the alphabet {0, 1}, with
at most l ∈ N instructions, is bounded by ii22i · (n · i2)l.

Proof. Fix a monoidM of size i. Since a program overM of range n with less than l instruc-
tions can always be completed into such a program with exactly l instructions recognizing
the same languages in {0, 1}n (using the identity of M), we only consider programs with
exactly l instructions. As Σ = {0, 1}, there are n · i2 choices for each of the l instructions of
a range n program over M reading inputs in {0, 1}∗. Such a program can recognize at most
2i different languages in {0, 1}n. Hence, the number of languages in {0, 1}n recognized by
programs over M of length at most l is at most 2i · (n · i2)l. The result follows from the facts
that there are at most ii2 isomorphism classes of monoids of size i and that two isomorphic
monoids allow to recognize the same languages in {0, 1}n. J

If for some k ∈ N>0 and 1 ≤ i ≤ α, α ∈ N>0, we apply Claim 10 for all n ∈ N, l = α·nk−1,
we get a number of languages upper-bounded by nO(nk−1), which is asymptotically strictly
smaller than the number of distinct Kn,Sn

, which is 2(n
k).

Hence, for all j ∈ N>0, there exist an nj ∈ N and Tj a k-set over nj such that no program
over a monoid of size 1 ≤ i ≤ j and of length at most j · nk−1 recognizes Knj ,Tj . Moreover,
we can assume without loss of generality that the sequence (nj)j∈N>0 is increasing. Let
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2:12 The Power of Programs over Monoids in DA

∆ = (Sn)n∈N be such that Snj
= Tj for all j ∈ N>0 and Sn = ∅ for any n ∈ N verifying

that it is not equal to any nj for j ∈ N>0. We show that no sequence of programs over a
finite monoid of length O(nk−1) can recognize L∆. If this were the case, then let i be the
size of the monoid. Let j ≥ i be such that for any n ∈ N, the n-th program has length at
most j ·nk−1. But, by construction, we know that there does not exist any such program of
range nj recognizing Knj ,Tj , a contradiction.

This implies the following hierarchy (where P (V, s(n)) for some variety of monoids V
and a function s : N → N denotes the class of languages recognizable by a sequence of
programs of length O(s(n))):

I Proposition 11. For all k ∈ N, P
(
DA, nk

)
( P

(
DA, nk+1).

5.2 Collapse
Tesson and Thérien showed that any program over a monoid M in DA is equivalent to one
of polynomial length [29]. We now show that if we further assume that M is in DAk then
the length can be assumed to be O(nk).

I Proposition 12. Let k > 0. Let M ∈ DAk. Then any program over M is equivalent to a
program over M of length O(nk).

The equivalent program of length O(nk) is actually a subprogram of the initial one. For
each possible acceptance set, an input word to the program is accepted iff the word over
the alphabet M produced by the program belongs to some fixed Boolean combination of
languages in SUMk. The idea is then just to keep enough instructions so that membership
of the produced word over M in each of these languages does not change. For each of those
languages, the set of instructions to keep is defined by induction on k using the inductive
definition of SUMk given at the beginning of this section. Roughly, at each step, for each
input letter and each input position, the small program keeps the first or last instruction
of the big program producing the “pivot element” when reading this input letter at that
position. The number of instructions kept in the end is then in O(nk). The details can be
found in Appendix C.

6 Conclusion

For local and tame varieties V we have shown that the regular languages recognized by
programs over V are exactly those in L (QV). It is not clear whether locality is necessary.
We don’t have any example of a tame variety V for which L (QV) is not included into
P (V). We leave this question for future work.

We have shown that DA is tame but that J is not. Another example of a tame variety
is A. However we needed the fact that MODm is not in AC0 for all m ≥ 2 in order to
prove tameness. It would be interesting to give a direct algebraic proof of this result. As
this would in particular imply that MOD2 is not in AC0 by Proposition 4, it is certainly a
challenging task.

Finding the regular languages recognized by programs over J is left for future work.
To conclude we should add, in fairness, that the progress reported here does not obviously

bring us closer to major NC1 complexity subclasses separations, but it does uncover new ways
in which a program can or cannot circumvent the limitations imposed by the underlying
monoid algebraic structure available to it.
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A Missing proofs from Section 4

Let M be a monoid in DA whose identity we will denote by 1.
Given two elements u, u′ of M we say that u ≤J u′ if there are elements v, v′ of M such

that u′ = vuv′. We write u ∼J u′ if u ≤J u′ and u′ ≤J u. We write u <J u′ if u ≤J u′ and
u′ 6∼J u. Given two elements u, u′ of M we say that u ≤R u′ if there is an element v of M
such that u′ = uv. We write u ∼R u′ if u ≤R u′ and u′ ≤R u. We write u <R u′ if u ≤R u′
and u′ 6∼R u. Given two elements u, u′ of M we say that u ≤L u′ if there is an element v
of M such that u′ = vu. We write u ∼L u′ if u ≤L u′ and u′ ≤L u. We write u <L u′ if
u ≤L u′ and u′ 6∼L u.

We shall use the following well-known fact about these preorders and equivalence rela-
tions (see [22, Chapter 3, Proposition 1.4]).

I Lemma 13. For all elements u and v ofM , if u ≤R v and u ∼J v, then u ∼R v. Similarly,
if u ≤L v and u ∼J v, then u ∼L v.

An element r of M is R-bad for u if u <R ur. Similarly an element r of M is L-bad for
v if u <L rv. It follows from M ∈ DA that being R-bad or L-bad only depends on the ∼R
or ∼L class, respectively:

I Lemma 14. [Folklore] If M is in DA, then u ∼R u′ and ur ∼R u implies u′r ∼R u.
Similarly u ∼L u′ and ru ∼L u implies ru′ ∼L u.

Let ∆ be a finite set of words and Σ be the corresponding finite alphabet, ∆ being safe,
and let n ∈ N. We are now going to prove the main technical lemma that allows us to assert
that after fixing a constant number of positions in the input of a program overM , it can still
be completed into a word of ∆∗, but the program cannot make the difference between any
two possible completions anymore. To prove the lemma, we define a relation ≺ on the set of
quadruplets (λ, P, u, v) where λ is a mask of length n, P is a program over M for words of
length n and u and v are two elements. We will say that an element (λ1, P1, u1, v1) is strictly
smaller than (λ2, P2, u2, v2), written (λ1, P1, u1, v1) ≺ (λ2, P2, u2, v2) if λ1 is a submask of
λ2, P1 is a subprogram of P2 and one of the following cases occurs:
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1. u2 <R u1 and v1 = v2 and P1 is a suffix of P2 and u1P1(w)v1 = u2P2(w)v2 for all safe
completions w of λ1;

2. v2 <L v1 and u1 = u2 and P1 is a prefix of P2 and u1P1(w)v1 = u2P2(w)v2 for all safe
completions w of λ1;

3. u2 = u1 and v1 = 1 and P1 is a prefix of P2 and u1P1(w)v1 <J u2P2(w)v2 for all safe
completions w of λ1;

4. v2 = v1 and u1 = 1 and P1 is a suffix of P2 and u1P1(w)v1 <J u2P2(w)v2 for all safe
completions w of λ1.

Note that, sinceM is finite, this relation is well-founded (that is, it has no infinite decreasing
chain, an infinite sequence of quadruplets µ0, µ1, µ2, . . . such that µi+1 ≺ µi for all i ∈ N)
and the maximal length of any decreasing chain depends only on M .

I Lemma 8 (restated). Let λ be a ∆-compatible mask of length n, let P be a program over
M of range n, let u and v be elements of M . Then there is an element t of M and a ∆-
compatible submask λ′ of λ obtained by fixing a number of free positions independent from
n such that any safe completion w of λ′ verifies uP (w)v = t.

Proof. The proof goes by induction on ≺.
Let λ be a ∆-compatible mask of length n, let P be a program over M for words of

length n, let u and v be elements of M such that (λ, P, u, v) is of height h, and assume
that for any quadruplet (λ′, P ′, u′, v′) strictly smaller than (λ, P, u, v), the lemma is verified.
Consider the following conditions concerning the quadruplet (λ, P, u, v):
(a) there does not exist any instruction (x, f) of P such that for some letter a the submask

λ′ of λ formed by setting position x to a (if it wasn’t already the case) is ∆-compatible
and f(a) is R-bad for u;

(b) v is not R-bad for u;
(c) there does not exist any instruction (x, f) of P such that for some letter a the submask

λ′ of λ formed by setting position x to a (if it wasn’t already the case) is ∆-compatible
and f(a) is L-bad for v;

(d) u is not L-bad for v.
We will now do a case analysis based on which of these conditions are violated or not.

Case 1: condition 1 is violated. So there exists some instruction (x, f) of P such that for
some letter a the submask λ′ of λ formed by setting position x to a (if it wasn’t already
the case) is ∆-compatible and f(a) is R-bad for u. Let i be the smallest number of such
an instruction.
Let P ′ be the subprogram of P until instruction i− 1. Let w be a safe completion of λ.
By minimality of i and by Lemma 14, it follows that u ∼R uP ′(w).
So, because f(a) is R-bad for u, any safe completion w of λ′, which is also a safe
completion of λ, is such that u ∼R uP ′(w) <R uP ′(w)f(a) ≤R uP (w)v by Lemma 14,
hence uP ′(w) <J uP (w)v by Lemma 13. So (λ′, P ′, u, 1) ≺ (λ, P, u, v), therefore, by
induction we get a ∆-compatible submask λ1 of λ′ and a monoid element t1 such that
uP ′(w) = t1 for all safe completions w of λ1.
Let P ′′ be the subprogram of P starting from instruction i+1. Notice that, since u ∼R t1
(by what we have proven just above), u <R t1f(a) (by Lemma 14) and t1f(a)P ′′(w)v =
uP ′(w)f(a)P ′′(w)v = uP (w)v for all safe completions w of λ1. Hence, (λ1, P

′′, t1f(a), v)
is strictly smaller than (λ1, P, u, v) and by induction we get a ∆-compatible submask λ2
of λ1 and a monoid element t such that t1f(a)P ′′(w)v = t for all safe completions w of
λ2.
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Hence any safe completion w of λ2 is such that

uP (w)v = uP ′(w)f(a)P ′′(w)v = t1f(a)P ′′(w)v = t .

Hence λ2 and t are the desired solutions.
Case 2: condition 1 is verified but condition 2 is violated, so v is R-bad for u and Case 1

does not apply.
Let w be a safe completion of λ: for any instruction (x, f) of P , as the submask λ′

of λ formed by setting position x to wx (if it wasn’t already the case) is ∆-compatible
(by the fact that ∆ is safe and w is a safe completion of λ), f(wx) cannot be R-bad
for u, otherwise condition 1 would be violated, so u ∼R uf(wx). Hence, by Lemma 14,
u ∼R uP (w) for all safe completions w of λ. Notice then that u ∼R uP (w) <R uP (w)v
(by Lemma 14), hence uP (w) <J uP (w)v (by Lemma 13) for all safe completions w of λ.
So (λ, P, u, 1) ≺ (λ, P, u, v), therefore we obtain a monoid element t1 and a ∆-compatible
submask λ′ of λ by induction such that uP (w) = t1 for all completions w of λ′. t = t1v

is the desired element of M .
Case 3: condition 3 is violated. So there exists some instruction (x, f) of P such that for

some letter a the submask λ′ of λ formed by setting position x to a (if it wasn’t already
the case) is ∆-compatible and f(a) is L-bad for v.
We proceed as for Case 1 by symmetry.

Case 4: condition 3 is verified but condition 4 is violated, so u is L-bad for v and Case 3
does not apply.
We proceed as for Case 2 by symmetry.

Case 5: conditions 1, 2, 3 and 4 are verified.
As it Case 2 and Case 4 we get that u ∼R uP ′(w) and v ∼L P ′′(w)v for any prefix P ′ of
P , any suffix P ′′ of P and all safe completions w of λ. Moreover, since condition 2 and
condition 4 are verified, by Lemma 14, we get that uP (w)v ∼R u and uP (w)v ∼L v for
all safe completions w of λ.
Let w0 be a completion of λ that is in ∆∗. Let λ′ be the submask of λ fixing all dangerous
positions of λ using w0. Then, for any completion w of λ′, which is a safe completion of
λ by construction, we have that uP (w)v ∼R u and uP (w)v ∼L v. As M is aperiodic,
this implies that there is a t in M such that uP (w)v = t for all completions w of λ′
(see [22, Chapter 3, Proposition 4.2]).

This concludes the proof of the lemma. J

B SULk is a variety of languages

A variety of languages is a class of languages over arbitrary finite alphabets closed under
Boolean operations, quotients and inverses of morphisms (i.e. if L is a language in the class
over a finite alphabet Σ, if Γ is some other finite alphabet and ϕ : Γ∗ → Σ∗ is a morphism
of monoids, then ϕ−1(L) is also in the class).

Eilenberg showed [11, Chapter VII, Section 3] that there is a bijective correspondence
between varieties of monoids and varieties of languages: to each variety of monoids V we
can bijectively associate L (V) the variety of languages whose syntactic monoids belong to
V and, conversely, to each variety of languages V we can bijectively associate M(V) the
variety of monoids generated by the syntactic monoids of the languages of V, and these
correspondences are mutually inverse.

We denote by SULk the class of regular languages that are Boolean combinations of
languages in SUMk.
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In this appendix, we show that, for all k ∈ N, SULk is a variety of languages. As DAk
is the variety of monoids generated by the syntactic monoids of the languages in SULk, by
Eilenberg’s theorem, we know that, conversely, all the regular languages whose syntactic
monoids lie in DAk are in SULk.

Closure under Boolean operations is obvious by construction. Closure under quotients
and inverses of morphisms is respectively given by the following two lemmas and by the fact
that both quotients and inverses of morphisms commute with Boolean operations.

Given a word u over a given finite alphabet Σ, we will denote by alph(u) the set of letters
of Σ that appear in u.

I Lemma 15. For all k ∈ N, for all L ∈ SUMk over a finite alphabet Σ and u ∈ Σ∗, u−1L

and Lu−1 both are a union of languages in SUMk over Σ.

Proof. We prove it by induction on k.
Base case: k = 0.
Let L ∈ SUM0 over a finite alphabet Σ and u ∈ Σ∗. This means that L = A∗ for
some A ⊆ Σ. We have two cases: either alph(u) * A and then u−1L = Lu−1 = ∅; or
alph(u) ⊆ A and then u−1L = Lu−1 = A∗ = L. So u−1L and Lu−1 both are a union of
languages in SUM0 over Σ. The base case is hence proved.
Inductive step. Let k ∈ N>0 and assume that the lemma is true for all k′ ∈ N, k′ < k.
Let L ∈ SUMk over a finite alphabet Σ and u ∈ Σ∗. This means that either L is in
SUMk−1 and the lemma is proved by applying the inductive hypothesis directly for L
and u, or L = L1aL2 for some languages L1 ∈ SUMi and L2 ∈ SUMj and some letter
a ∈ Σ with i + j = k − 1 and, either no word of L1 contains the letter a or no word of
L2 contains the letter a. We shall only treat the case in which a does not appear in any
of the words of L1; the other case is treated symmetrically.
There are again two cases to consider, depending on whether a does appear in u or not.
If a /∈ alph(u), then it is straightforward to check that u−1L = (u−1L1)aL2 and
Lu−1 = L1a(L2u

−1). By the inductive hypothesis, we get that u−1L1 is a union of
languages in SUMi over Σ and that L2u

−1 is a union of languages in SUMj over Σ.
Moreover, it is direct to see that no word of u−1L1 contains the letter a. By distributiv-
ity of concatenation over union, we finally get that u−1L and Lu−1 both are a union of
languages in SUMk over Σ.
If a ∈ alph(u), then let u = u1au2 with u1, u2 ∈ Σ∗ and a /∈ alph(u1). It is again
straightforward to see that

u−1L =
{
u2
−1L2 if u1 ∈ L1

∅ otherwise

and

Lu−1 = L1a(L2u
−1) ∪

{
L1u1

−1 if u2 ∈ L2

∅ otherwise
.

Again, by the inductive hypothesis, we get that L1u1
−1 is a union of languages in SUMi

over Σ and that both u2
−1L2 and L2u

−1 are unions of languages in SUMj over Σ. And,
again, by distributivity of concatenation over union, we get that u−1L and Lu−1 both
are a union of languages in SUMk over Σ.
This concludes the inductive step and therefore the proof of the lemma. J
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2:18 The Power of Programs over Monoids in DA

I Lemma 16. For all k ∈ N, for all L ∈ SUMk over a finite alphabet Σ and ϕ : Γ∗ → Σ∗
a morphism of monoids where Γ is another finite alphabet, ϕ−1(L) is a union of languages
in SUMk over Γ.

Proof. We prove it by induction on k.
Base case: k = 0.
Let L ∈ SUM0 over a finite alphabet Σ and ϕ : Γ∗ → Σ∗ a morphism of monoids where Γ
is another finite alphabet. This means that L = A∗ for some A ⊆ Σ. It is straightforward
to check that ϕ−1(L) = B∗ where B = {b ∈ Γ | ϕ(b) ∈ A∗}. B∗ is certainly a union of
languages in SUM0 over Σ. The base case is hence proved.
Inductive step. Let k ∈ N>0 and assume that the lemma is true for all k′ ∈ N, k′ < k.
Let L ∈ SUMk over a finite alphabet Σ and ϕ : Γ∗ → Σ∗ a morphism of monoids where
Γ is another finite alphabet. This means that either L is in SUMk−1 and the lemma
is proved by applying the inductive hypothesis directly for L and ϕ, or L = L1aL2 for
some languages L1 ∈ SUMi and L2 ∈ SUMj and some letter a ∈ Σ with i+ j = k − 1
and, either no word of L1 contains the letter a or no word of L2 contains the letter a.
We shall only treat the case in which a does not appear in any of the words of L1; the
other case is treated symmetrically.
Let us define B = {b ∈ Γ | a ∈ alph(ϕ(b))} as the set of letters of Γ whose image word
by ϕ contains the letter a. For each b ∈ B, we shall also let ϕ(b) = ub,1aub,2 with
ub,1, ub,2 ∈ Σ∗ and a /∈ ub,1. It is not too difficult to see that we then have

ϕ−1(L) =
⋃
b∈B

ϕ−1(L1ub,1
−1)bϕ−1(ub,2−1L2) .

By the inductive hypothesis, by Lemma 15 and by the fact that inverses of morphisms
commute with unions, we get that ϕ−1(L1ub,1

−1) is a union of languages in SUMi over
Γ and that ϕ−1(ub,2−1L2) is a union of languages in SUMj over Γ. Moreover, it is direct
to see that no word of ϕ−1(L1ub,1

−1) contains the letter b for all b ∈ B. By distributivity
of concatenation over union, we finally get that ϕ−1(L) is a union of languages in SUMk

over Γ.
This concludes the inductive step and therefore the proof of the lemma. J

C Collapse

In this appendix we prove Proposition 12, stating that whenM is in DAk then any program
over M is equivalent to one of length O(nk).

Recall that if P is a program over some monoid M of range n, then P (w) denotes the
element of M resulting from the execution of the program P on w. It will be convenient
here to also work with the word over M resulting from the sequence of executions of each
instruction of P on w. We denote this word by EP (w).

The result is a consequence of the following lemma and the fact that for any acceptance
set F ⊆M , a word w ∈ Σn (where Σ is the input alphabet) is accepted iff EP (w) ∈ L where
L is a language in SULk, a Boolean combination of languages in SUMk.

I Lemma 17. Let Σ be a finite alphabet, M a finite monoid, and n, k natural numbers.
For any program P over M of range n, any set Γ ⊆ M and any language K over Γ in

SUMk, there exists a subsequence Q of the sequence of instructions P of length O(nmax{k,1})
such that for any subsequence Q′ of the sequence of instructions P containing Q as a sub-
sequence, we have for all words w over Σ of length n:

EP (w) ∈ K ⇔ EQ′(w) ∈ K .
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Proof. A program P over M of range n is a finite sequence (pi, fi) of instructions where
each pi is a natural number which is at most n and each fi is a function from Σ to M . We
denote by l the number of instructions of P . For each set I ⊆ [l] we denote by P [I] the
program over M consisting of the subsequence of instructions of P obtained after removing
all instructions whose index is not in I. In particular, P [1,m] denotes the initial sequence
of instructions of P , until instruction number m.

We prove the lemma by induction on k.
Inductive step. Let k ≥ 2 and assume the lemma proved for all k′ < k. Let n be a
natural number, P a program over M of range n and length l, Γ ⊆M and any language
K over Γ in SUMk. By definition, K = K1γK2 for some languages K1 ∈ SUMi and
K2 ∈ SUMj with i+ j = k− 1. Moreover either γ does not occur in any of the words of
K1 or it does not occur in any of the words of K2. We only treat the case where γ does
not appear in any of the words in K1. The other case is treated similarly by symmetry.
For each p ≤ n and each a ∈ Σ consider within the sequence of instructions of P the
first instruction of the form (p, f) with f(a) = γ. We let Iγ be the set of indices of these
instructions for all a and p. Notice that the size of I is in O(n).
For all i ∈ Iγ , we let Ji,1 be the set of indices of the instructions within P [1, i − 1]
obtained by induction for K1 and Ji,2 be the same for P [i+ 1, l] and K2.
We now let I be the union of Iγ and Ji,1 and J ′i,2 = {j + i | j ∈ Ji,2} for all i ∈ Iγ . We
claim that P [I] has the desired properties.
First notice that by induction the sizes of Ji,1 and J ′i,2 for all i ∈ Iγ are in O(nmax{k−1,1})
= O(nk−1) and because the size of Iγ is linear in n, the size of I is in O(nk) =
O(nmax{k,1}) as required.
Now take w ∈ Σn.
Assume now that EP (w) ∈ K. Let i be the position in EP (w) of label γ witnessing
the membership in K. Let (pi, fi) be the corresponding instruction of P . In particular
we have that fi(wpi

) = γ. Because γ does not occur in any word of K1, for all j < i

such that pj = pi we cannot have fj(wpj
) = γ. Hence i ∈ Iγ . By induction we have

that EP [1, i− 1][J ](w) ∈ K1 for any set J containing Ji,1 and EP [i+ 1, l][J ](w) ∈ K2
for any set J containing Ji,2. Hence, if we set I1 = {j ∈ I | j < i} as the subset of I of
elements less than i and I2 = {j − i ∈ I | j > i} as the subset of I of elements greater
than i translated by −i, we have EP [I](w) = EP [1, i− 1][I1](w)γEP [i+ 1, l][I2](w) ∈
K1γK2 = K as desired.
Assume finally that EP [I](w) ∈ K. Let i be the index in I whose instruction provides
the letter γ witnessing the fact that EP [I](w) ∈ K. If i ∈ Iγ we conclude easily by
induction. If not this shows that there is an instruction (pj , fj) with j < i, j ∈ I, pj = pi
and fj(wpj

) = γ. But that would contradict the fact that γ cannot occur in K1.
Base case. There are two subcases to consider.
k = 1. Let n be a natural number, P a program over M of range n and length l,
Γ ⊆M and any language K over Γ in SUM1.
Then K = A∗1γA

∗
2 for some finite alphabets A1 ⊆ Γ and A2 ⊆ Γ. Moreover either

γ /∈ A1 or γ /∈ A2. We only treat the case where γ does not belong to A1, the other
case is treated similarly by symmetry.
We use the same idea as in the inductive step.
For each p ≤ n, each α ∈ Γ and a ∈ Σ consider within the sequence of instructions
of P the first and last instruction of the form (p, f) with f(a) = α. We let I be the
set of indices of these instructions for all a, α and p. Notice that the size of I is in
O(n) = O(nmax{k,1}).
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We claim that P [I] has the desired properties. Take w ∈ Σn.
Assume now that EP (w) ∈ K. Let i be the position in EP (w) of label γ witnessing
the membership in K. Let (pi, fi) be the corresponding instruction of P . In particular
we have that fi(wpi) = γ and this is the γ witnessing the membership in K. Because
γ /∈ A1, for all j < i such that pj = pi we cannot have fj(wpj

) = γ. Hence i ∈ I. From
EP (w) ∈ K it follows that EP [I ∩ [[1, i− 1]]](w) ∈ A1 and EP [I ∩ [[i+ 1, l]]](w) ∈ A2
showing that EP [I](w) = EP [I ∩ [[1, i− 1]]](w)γEP [I ∩ [[i+ 1, l]]](w) ∈ K as desired.
Assume finally that EP [I](w) ∈ K. This means that EP [I ∩ [[1, i− 1]]](w) ∈ A∗1 and
EP [I ∩ [[i+ 1, l]]](w) ∈ A∗2. Let i be the index in I whose instruction provides the
letter γ witnessing the fact that EP [I](w) ∈ K. If there is an instruction (pj , fj), with
j < i and fj(wpj ) /∈ A1 then either j ∈ I and we get a direct contradiction with the
fact that EP [I ∩ [[1, i− 1]]](w) ∈ A∗1, or j /∈ I and we get a smaller j′ ∈ I with the
same property, contradicting again the fact that EP [I ∩ [[1, i− 1]]](w) ∈ A∗1. Hence
for all j < i, fj(wpj

) ∈ A1. By symmetry we have that for all j > i, fj(wpj
) ∈ A2,

showing that EP (w) ∈ A∗1γA∗2 = K as desired.
k = 0. Let n be a natural number, P a program over M of range n and length l,
Γ ⊆M and any language K over Γ in SUM0.
Then K = A∗ for some finite alphabet A ⊆ Γ.
We again use the same idea as before.
For each p ≤ n, each α ∈ Γ and a ∈ Σ consider within the sequence of instructions of
P the first instruction of the form (p, f) with f(a) = α. We let I be the set of indices
of these instructions for all a, α and p. Notice that the size of I is in O(n) = O(n{k,1}).
We claim that P [I] has the desired properties. Take w ∈ Σn.
Assume now that EP (w) ∈ K. As EP [I](w) is a subword of EP (w), it follows directly
that EP [I](w) ∈ A∗ = K as desired.
Assume finally that EP [I](w) ∈ K. If there is an instruction (pj , fj), with j ∈ [l]
and fj(wpj ) /∈ A then either j ∈ I and we get a direct contradiction with the fact
that EP [I](w) ∈ A∗ = K, or j /∈ I and we get a smaller j′ ∈ I with the same
property, contradicting again the fact that EP [I](w) ∈ A∗ = K. Hence for all j ∈ [l],
fj(wpj

) ∈ A, showing that EP (w) ∈ A∗ = K as desired. J
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