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—— Abstract
This paper proposes a formal definition of influence in Bayesian reasoning, based on the notions of
state (as probability distribution), predicate, validity and conditioning. Our approach highlights
how conditioning a joint entwined /entangled state with a predicate on one of its components has
‘crossover’ influence on the other components. We use the total variation metric on probability
distributions to quantitatively measure such influence. These insights are applied to give a
rigorous explanation of the fundamental concept of d-separation in Bayesian networks.
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1 Introduction

A key feature of Bayesian (probabilistic) reasoning is that an observation leads to an update

of knowledge. This is best seen in Bayesian networks: in these graph-like models, dependency

relations between events are visually depicted as arcs between nodes. Information about a

node-event A will update knowledge of all the nodes connected by an arc to A. However,

influence may act also in more indirect ways, classified by Pearl [13] as the following “d-

separation” scenarios:

(i) in a serial connection — — , event A influences C through B (and viceversa),
but knowledge of B “blocks” this mutual influence — one also says that B d-separates A
and C.

(ii) in a fork connection — — , information on A will influence C and viceversa,
but this flow is blocked once B is known.

(iii) in a collider situation — — , any evidence about B (and its descendants)
will make A and C depend on each other.

In these three scenarios one may observe many phenomena at work which are usually

explained informally in terms of influence, dependence, blocking and evidence. But what

is the formal semantics underpinning these concepts? The basic language of conditional

probability, based on the reading of Pr(A|B) as “the probability of A given B”, appears to be

unsuitable for such an account. For instance, it cannot express that, in the collider situation,

any evidence on the occurrence of B will make A and C dependent, whereas the blocking of

the first two scenarios only occurs when B is known with certainty (probability 1).

This paper proposes a rigorous formal treatment of influence in Bayesian reasoning,
yielding an expressive and firmly established language for describing the above scenarios. Our
methodology draws inspiration from the area of programming language semantics, and in
particular from Effectus theory [4, 2], a comprehensive logical framework for probabilistic and
quantum computation. At the foundation of our approach there is a conceptual distinction
? Bart Jacobs and Fé.lbiO Zanasi; .
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between the knowledge of an event, called a state, and an observation/evidence of such
event, called a predicate. Concretely, a state on a ‘sample’ space X will be a (finite) discrete
probability distributions w on X, whereas a (fuzzy) predicate p on X is a function X — [0, 1].
The ‘knowledge update’ is then given by a conditioned distribution, which we write as w|,,
pronounced as: w given p. Moreover, our approach includes predicate and state transformers,
adding expressive power to the language.

Our first contribution (§ 3) is a semantic description of d-separation in the serial (i) and
fork connection (ii): we reduce these scenarios into formal statements, whose proofs are made
straightforward by our formalism. Here the phenomenon at stake is influence blocking, for
which the basic language of states and predicates suffices. However, the collider scenario (iii),
in which influence is not blocked but rather enabled, demands a deeper analysis.

This leads to our second contribution (§ 4), namely the concept of state entwinedness.
Intuitively, for a joint state/distribution being entwined means, by analogy with the quantum
world, that its components are entangled or, in the Bayesian jargon, they model dependent
events. In order to capture the collider situation, the key observation is that the join (tensor
product) of non-entwined states (say, in (iii), the join of A and C') may become entwined
after conditioning (information about B); from that moment on, any new information on
one component of the joint state will have influence also on the other component.

As a third contribution (§ 5), we introduce a formal, quantitative definition of such influ-
ence: we call it crossover influence, as it measures the non-local action between components
of a joint states. We also define a notion of direct influence, which measures the local action of
a predicate (an information update) on a certain state. Both definitions take as a parameter
a notion of ‘distance’ between states: for our scenarios we pick the total variation metric on
probability distributions, which coincides with the Kantorovich metric [17] on discrete metric
spaces (sets). We make no claim on total variation being ‘canonical” in the sense of [10]. Our
emphasis is rather on the abstract definition of influence: this is independent of the choice
of the underlying metric, which is not itself an essential part of our analysis, see also § 7.
As far as we know, probabilistic influence has not been formalised and investigated in this
quantitative form before.

We conclude our developments with a reprise of the collider scenario (§ 6), which we
are now able to adequately describe using the toolkit introduced in § 4 and § 5. Our
analysis clarifies that the commonly used description in the literature (see e.g. [14, 8, 15])
for describing the serial (i) and fork (ii) scenarios only works for very special ‘singleton’
predicates — which we call Dirac predicates, whereas in the collider scenario (iii) any predicate
on B creates dependence (entwinedness) between A and C.

2 Background: states, predicates, and conditional probability

In this background section we introduce the notation, terminology and basic definitions for
several constructions in (finite) discrete probability. There is a categorical formalisation
using monads behind this, see e.g. [5], but we prefer to keep constructions more concrete.

States, predicates and validity. A (finite, discrete) distribution over a ‘sample’ set A is a
weighted combination of elements of A, where weights are probabilities from the unit interval
[0,1] that add up to 1. We call such a distribution a state, as it expresses knowledge the
occurrence of elements of A. As mentioned in §1, we pursue an analogy with quantum states,
emphasised by the use of the ‘ket’ notation: a state w is written as w = r1 |a1) + -+ rp |an),
where a; € A, r; € [0,1] and ), 7 = 1. Also, D(A) is the set of states/distributions on



B. Jacobs and F. Zanasi

A. We will sometimes treat w € D(A) equivalently as a function w: A — [0, 1] with finite
support supp(w) = {a € A | w(a) # 0} and with ), w(a) = 1.

An event is a subset E© C A of the sample space. We prefer to use a more general ‘fuzzy
kind of predicate, namely functions p: A — [0, 1]. In this discrete case, states (distributions)
are predicates, but not the other way around. Events can be identified with ‘sharp’ predicates
taking values in the subset of booleans {0,1} C [0, 1]. For z € A, we write d,, for the (sharp)
Dirac predicate over x, defined as 0,(a) =1 if x = a and 0,(a) = 0 otherwise.

For predicates p, ¢ € [0,1]* and scalar r € [0,1] we define p & ¢ as a — p(a) - q(a) and
r-pasa— r-pla). States and predicates are most effectively reasoned about using the
language of Kleisli categories. We call a function of shape f: A — D(B) a ‘Kleisli’ map from
A to B and write its type as A -» B. Kleisli maps can be understood as channels, or as
stochastic matrices, especially when A, B are finite sets. The (Kleisli) composition of maps
fi A~ Band g: B-»C is written as g e f: A <> C. It is essentially matrix multiplication:

(9o f)(@) = > (Zpep F(@)(b) - g(b)(e)]c)- (1)
ceC
We write KZ(D) for the Kleisli category whose objects are sets, and whose arrows from A to
B are the Kleisli maps A <» B. The identity map A <> A in KX(D) is the function a — 1 |a).
Note that arrows 1 > B in K¥(D) identify elements of D(B), i.e. the states on B, and arrows
B - 2 are elements of [0,1]5, i.e. the predicates on B.

Each (ordinary) function g: A — B gives a trivial (diagonal) matrix map <g>: A -» B
via <g>(a) = 1|g(a)). Then: <h> e <g> = <h o g>.

We will see later, in Example 3, how Bayesian networks can be seen as graphs of Kleisli
maps in K¢(D). For this interpretation, it is of importance that K¥(D) forms a monoidal
category. The monoidal product ® is defined on objects as the cartesian product x of sets,
with tensor unit the one-element set 1. On Kleisli maps f: A <» X and g: B > Y the map
f®g: A® B - X ®Y is defined as (f ® g)(a,b)(z,y) = f(a)(x) - g(b)(y).

)

» Definition 1. Let w € D(A) be a state and p € [0,1]4 be a predicate, both on the same
set A. We write w = p for the validity or expected value of p in state w. This validity is a
number in the unit interval [0, 1] defined as:

wkEp =Y eawla) -pla) = (A £ 2) e (1% A). (2)

If this validity is non-zero, it yields a conditioning operation on w. We write w|, or for the
conditional state “w given p”, defined as formal convex sum:

wly = Zw(a)-p(a)‘a>_ 3

a€A w ’:p

» Lemma 2 (From [5]).

(@) p& 0y =p(x) - 0y and w = 0y = w(x) and wls, = 1|z);

(b) wlrp =w|p forr #0 and w|pgs, = 1|x) when p(z) # 0 and w(z) # 0;

&

(c) Bayes’ rule holds for fuzzy predicates: w|, = ¢q = w|:'iq
wWwEPp

» Example 3. As a running example we will use the situation of a disease that can be caused

by environmental factors or by genetic heredity. The presence of the disease in a patient will

determine whether she manifests symptoms and also whether she tests positively. The test

outcome will also influence whether she receives health care. We express these data with a

Bayesian network, consisting of a graph together with conditional probability tables.
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As illustrated in [7] (¢f. also [3]), there is a canonical way to interpret our Bayesian network (4)
as an arrow in the Kleisli category KX(D). Each node N of the graph, say with k& incoming
edges from nodes Ni, Na, ..., Ny, is associated with an arrow N: 2F <3 2 in K{(D); as a
stochastic matrix, IV is defined by the probability table of the node N. It will be convenient
to write 2y := {n,n*} for the two-element target set of the node-arrow N, where n represents
occurrence and n* non-occurrence of the event INV. For instance, the arrow D: 25 ® 25 <> 2,
for the disease node is defined by the channel 2, x 25 — D(25)

(9:€) = 15ld) + 5 d*) (9:€*) = {5 ld) + 55 1d*)
(9*,€) = 15 ld) + 15 |d*) (g%, e") = L]d").

Another example is the initial map G: 1 <3 24 for the genetic heredity node, which amounts
to the distribution !/50|g) 4+ 49/50 |g*) in D(24) = [0,1]. In order to recover the whole
network (4), one pastes node-arrows together using the monoidal structure of XZ(D). Nodes
in (4) that have multiple outgoing edges are modeled by composing the corresponding
arrow 2% -+ 2 with the pairing map A: 2 < 2 ® 2 defined by = + 1|(z,2)). The Bayesian
network (4) in its entirety is then expressed as the following arrow in K¥(D).

1585 9 02, P2, 552,92, 29% 2, ©2, <95 2, ® 2 (5)

Inference via predicate/state transformers. Associated with a Kleisli map f: A - B
there are state transformer and predicate transformer maps f. and f*. For a state w € D(A)
and a predicate p € [0,1]” we define f.(w) € D(B) and f*(p) € [0,1]4

Fo@) = 3 (Yaea f@) (a))|b) Fp)@) = fla)®) - p(). (6)
beB beB
Notice that f, works forwardly, transforming a state on A into a state on B, whereas f*

works backwardly, transforming a predicate on B into a predicate on A. One can understand
these definitions in terms of Kleisli composition: f.(w) = f e w and f*(p) = p e f. We
collect a few basic results from [5].

» Lemma 4.
(a) For a Kleisli map f: A -> B, a state w € D(A) and a predicate
pel0,1]”, fuw)Ep=pefew=uwkEf(p)
(b) Predicate transformers f* preserve 1, 0, negation (—)* and scalar multiplication r - (—).
(c) For an ordinary function g: A — B we have <g>.(w)|p = <>« (W]cgy*(p))-

Using transformers and conditioning one can formulate Bayesian inference (learning). We
illustrate the relevant constructions with an example and refer to [7] for more details.

» Example 5 (Backward inference.). A typical learning task wrt. a Bayesian network is
backward inference: how the occurrence of a certain event changes the likelihood of its causes.
A formalisation of backward inference is proposed in [7] as “predicate transformation followed
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by conditioning”. We illustrate this for Example 3, focusing on the part of the graph that
describes the influence of having the disease on receiving health care. First, we compute our
a priori knowledge on the likelihood of a disease. In the formalisation (5), this is the Kleisli
arrow D e (G® E): 1 - 2y, i.e. a state on 2.

G®FE = 0.002|g,e) +0.018 |g,e*) 4+ 0.098 |g*, e) + 0.882|g*, e*)

De (G®E) = 0.055|d) 4+ 0.945 |d*) @)
The event of a positive test is interpreted as the Dirac predicate 9; € [0,1]?7 on 2., i.e. it
maps t to 1 and ¢+ to 0. We can now ask a backward inference question: if the patient tested
positive, what is the likelihood that she had the disease? The answer is enclosed in the state
(D o (GRE))|r+(s,): 1 =+ 2p, obtained by first using 7": 2, <> 2, to transform the predicate
J; on 2, into a predicate T*(9;) on 2p, and then conditioning the state D o (G ® E) over
T*(9¢). The latter predicate maps d to 9/10 and d* to 1/20. Next,

De (G®E) =T*(0) = 0.097 |d) + 0.903 |d*)

De(GRE)(x)-T*(0¢)(x
(Do (G@E))r-0,) = 2Zsezp 5.(G¢§5E>).=T*((af)( ) |)
= SToor " |d) + S5 dt) = 0.51[d) +0.49(d")

Thus evidence of a positive test raises the chances of a disease from 0.055 to 0.51.

Forward inference. A second kind of learning task is forward inference: how the occurrence
of an event changes the likelihood of its effects. Again following [7], forward inference is
formalised as “conditioning and then state transformation”. To illustrate this in our leading
example, consider a predicate p on 24 given by g — 88% and ¢g* — 0.1%: it expresses that

medical records of a patient show high likelihood of a genetic transmission of the disease.

Our forward inference question is: “how does the knowledge update given by predicate p
influence the positivity of the test?” For the answer, one first extends p to a (weakened)
predicate p’ on 24 ® 25, then conditions G ® E over p’. Finally, one applies T e D as state
transformer to (G ® E)|,. Conditioning over p’ makes a positive test much more likely:

(T e D).(G®E) = 0.1]t) + 0.9 |t*) (T @ D),((G® E)|,) = 0.505 [t) 4 0.495 [t+) .

3 Influence in d-separation

This section applies the language introduced in § 2 to give a precise explanation of the
fundamental concept of ‘d-separation’ in Bayesian networks, which is used as a criterion
for independence, via connections between nodes. These connections can be of three forms,
namely ‘serial’; ‘fork’, and ‘collider’. As we shall see, the language introduced so far is only
adapted to describe the first two scenarios. The third scenario needs a richer formalism,
which justifies the developments in the next sections.

3.1 Serial connections

4)—-(3B)—(c (8)

Consider a ‘serial connection’ Bayesian network as on the right. Clearly, what we know
about A influences our knowledge about C, and vice-versa. In the context of d-separation
one considers the special cases when there is evidence about the state of B, so that the

21:5
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mutual influencing between A and B is blocked. We first quote how this is formulated in
standard references (names of the nodes in the second quote are adapted to make them
consistent with diagram (8)).
(i) [8, §1.2]: Obviously, evidence on A will influence the certainty of B, which then influences
the certainty of C'. Similarly, evidence on C' will influence the certainty on A through B.
On the other hand, if the state of B is known, then the channel is blocked, and A and
C become independent.
(ii) [14, §1.2.3]: Figuratively, conditioning on B appears to “block” the flow of information
along the path, since learning about A has no effect on the probability of C, given B.
These descriptions are rather informal. (i) speaks about (mutual) independence, and (ii)
only about having no effect in the forward direction. We will make precise what is going
on. Consider the same diagram (8), but now with f, g interpreted as maps in the Kleisli
category KZ(D) and with predicates as below. The three predicates are inhabitants p € [0, 1]4,
0, €0,1]8, ¢ € 0,1]°.

A _£_>B_g_>c

i i : 9
v 2. 2 9)
2 9 2

» Proposition 6 (Blocking |). Consider the serial connection (9), with Dirac evidence 0, on
the middle node B, for some fized x € B. Then there is no influence from A to C, nor from
C to A, in the sense that for each distribution/state w € D(A),

(a) for any predicate p on A with w |=p # 0, there is an equality of states on C':

g+ (F+(@)lo,) = gu(Fe(wlp)lo,)-

(b) for any predicate q on C there is an equality of states on A:

wlfe(8,) = Wl f(0.&9%())-

We recall how to read the equation in point (a): given a state w on A, we can transform
it to a state f.(w) on B. We can also first condition w to w|, and then push forward to
f«(w|p) on B. These different states f.(w) and f.(w|,) become equal when we condition with
the Dirac predicate 0,, and then push them forward to C via g,. Thus, the influence of p is
‘annihilated’ or ‘blocked’ via the knowledge x € B used in conditioning with 0,.

Proof. For the first point it suffices to prove fi(w)|a, = f«(wl|p)|o,. But this equation follows
directly from Lemma 2 (a) since both sides are equal to 1 |z).

For the second point we have f*(9, & ¢*(q)) = f*(¢*(¢)(x) - 0;) by Lemma 2(a), which
is then equal to g*(¢)(z) - f*(0;) by Lemma 4(b). Finally, by Lemma 2(b), w

F*(0akeg (@) =
Wlg*(q)(x) f*(8z) = WIf*(0s)- <
» Example 7.
9, —+>9. 559,
A é (10)
w (’)t
¢ y
1 2

Nodes ‘Disease’; ‘Test’ and ‘Health Care’ in the network of Example 3 form a serial
connection, with Kleisli interpretation given by solid arrows as in (10) below. Clearly,
new information about the Disease will impact the likelihood of receiving Health Care,
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and viceversa, via the intermediate Test node. We examined these phenomena as forward
and backward inference in Example 5, following [7]. We now show that, as prescribed by
d-separation, mutual influence may be blocked: a positive test will determine the availability
of health care, disregarding whether the patient actually has the disease or not. Viceversa,
a positive test will nullify any influence of receiving health care on having the disease, as
health care is entirely determined by the test outcome. The dotted arrows in (10) describe a
state w = 15 |d) + 155 [d*) on 2, giving a 1% disease probability, and the Dirac predicate
9y € [0,1]27, asserting the positivity of the test. For the transformed predicate T(9,) on 2,
we have:

T (0)(d) = &

9
10 w ): T*(at) — 117 w
T*(9)(d*) = 55

2000

T8 = mas 1d) + % |d*) .

The latter distribution w|r«(s,) equals w
by Proposition 6 ((b)).

T+ (8,0 (q)) for each predicate ¢ € [0,1]%¢ on 2.,

» Remark. We emphasise that, if we replace the predicate d; on 2, by a non-Dirac predicate
p € [0,1]?7, then there is no blocking, in general. For instance, take: p(t) = %, p(t*) = 1,
q(c) = £ and g(c*) = 1. Then we compute a difference between the following states on 2.

Wre(y = 0.013]d) +0.987]d*)  w

T (p&eer (q)) = 0.006 |d) + 0.994 |d*)

Hence, influence from right to left in (10) does exist for non-sharp predicates.

3.2 Fork connections

Next we consider a “fork” Bayesian network with predicates p,d;,¢q, for a given element
x € A, as below. The informal description of this situation is: influence can pass between
the children B and C via A, unless the state of A is known, as formulated e.g. in [8].

A
f ami g
11
2 (11)
2<% B C 49

» Example 8. The Bayesian network of Example 3 contains a fork, given by ‘Disease’; ‘Test’
and ‘Symptoms’. If a patient tests positively, it gets more likely that she has the disease, and
thus shows symptoms. However, if one gets to know with certainty that she has the disease,
then any evidence about the test will not change the likelihood of showing symptoms.

» Proposition 9 (Blocking Il). In the fork network (11), with Dirac evidence on the middle
node A, there is no influence from B to C, nor from C to B. This lack of influence from B

to C is expressed via the equation:

9+ (Wla,) = g« (Wl ma,) (12)

for each state w on A and predicate p on B, and x € A. The other direction is analogous.

Proof. The state transformer g, is irrelevant, as w|g, = 1|7) = w|f«(p)&a,- The first equation
is in point (a) in Lemma 2, and the second one in point (b). <
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3.3 Collider connections

The last d-separation scenario is the one of a collider:

which becomes in K¥(D), A®C
N with the addition of Y (13)

a predicate g, B 452

In [14] one can read about this situation: “if the two extreme variables are (marginally)
independent, they will become dependent (i.e. connected through unblocked path) once we
condition on the middle variable (i.e. the common effect) or any of its descendants.”

In our formalisms, this explanation unravels as follows. We fix states o € D(A) and
7 € D(C), giving rise to a product state 0 ® 7 € D(A® C). If we have evidence ¢: B -» 2 on
B, then we can pull it back to evidence f*(q): A ® C -=» 2. Now, in order to complete our
formalisation, we would like to express that o and 7 are initially independent of each other
when joint in o ® 7, but they get correlated after conditioning (o ® 7)|f=(4). This correlation
should be witnessed by the fact that from now on any predicate on the A-component o will
also have influence on the C-component 7, and viceversa. However, our formalisms of § 2
still lacks the means of expressing such ‘crossover’ properties, which echo the entanglement
phenomena commonly studied in quantum theory. We devote the next two sections to
rigorously describe them within our approach, and return to the collider scenario in § 6.

4  Joint states and entwinedness

We now commence the formal investigation of correlation phenomena which will lead to the
notion of crossover influence. We give an elementary illustration first.

» Example 10. Consider two diseases A; and As which may occur together, as given by the
prior joint probability distribution: w = § [a1az) + § |a1a3) + 3 |ataz) + § |afaz). Assume
that there is a test for disease A; with sensitivity 90% positive when a patient has the disease
Az, and 5% positive when the patient does not. It turns out the prior probability of As is %,
but decreases to g—g after a Aj-positive test. We shall see how this works in Example 15.

For two states/distributions o € D(A;) and 7 € D(A3) we can form the joint ‘product’
distribution o @ 7 € D(4;1 ® A3) as (0 ®7)(a1,az2) = o(a1)-7(az), as already used in (7). The
two original states o and 7 can be recovered as marginals of this product state: My (c®7) = o
and Mo (0 ®7) = 7. Marginalisation (of states) and weakening (of predicates) are special cases
of state and predicate transformation, namely for the (Kleisli) projection maps m;: A3 ® Ag >
A;, given by m;(a1,a2) = 1|a;). Marginalisation moves a ‘joint’ state on a product to one of
the components, and weakening moves a predicate on a component to the product. These
two operations play a special role in the sequel, and therefore we introduce explicit notation
M and W. First, for a joint state w € D(A; ® Az) we have first and second marginalisation
M;(w) = (m;)«(w) € D(A;) determined by (6) as:

Mi(w)(a1) = > 4,ea, w(a1,az) Mz (w)(az2) = 3, ca, wlar,az). (14)

Similarly we have weakening operations W;(p;) = (m;)*(p;) € [0,1]41®42 for predicates
p; € [0,1]% given by:

W1 (p1)(a,az) = pi(a1) Wo(p2)(a1,az) = pa2(az). (15)
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Also, for two predicates p; € [0,1]4¢, we introduce their parallel conjunction p; ® ps €
[0,1]4*42 mapping (a;,az) to pi(a1) - p2(az). The following definition describes the
interaction — dependence, in Bayesian jargon — between the components of a joint state.

» Definition 11. A joint state w € D(A; ® As) is called non-entwined if it is the product of
its marginals: w = M (w) ® Ma(w). It is called entwined otherwise.

» Lemma 12.

(a) Mi(w) Ep = w i Ni(p) and Ma(w) Fp = w = Wa(p).

(b) Wi(p) =p©1 and Wa(q) =1 q and p© g = Wi(p) & Wa(q).

(c) car)E@og=(FEDp) (TEqQ and (0 ®7)poq = (alp) @ (7]y)-

The next result plays an important role in the sequel. The first equation below says that
if one takes the marginal of a joint state conditioned with a weakened predicate, then one
may as well condition the marginal directly. This holds if the weakening and marginalisation
use the same component. But it fails if the components are different, see the subsequent
inequality # below. The latter fact is remarkable, because it involves a form of influence
between components. This is also called ‘signalling’ in the quantum world, but apparently
already appears in the current probabilistic setting — only for entwinted states.

» Proposition 13. Let p € [0,1]2 be a predicate on a set A.
(a) For an arbitrary joint state w € D(A® B),

M1 (wlw, (p)) = Mi(w)|p,  but in general — Ma(w|w, () # Ma(w).

(b) For the special case of a (non-entwined) product state o @ T € D(A® B),

Mi (0 ® 7)lw, ) = ol Mz ((0 ® 7) |, () = T

Proof. We only prove the equality in point (a), and refer to Example 14 (b) for the inequality
in point (b), where a counterexample is given.

w(@h) Wip)(ab) 9 Tye(ab):po)
w [= Wi(p) w = Na(p)
Lem.12(a) My (w)(a) - p(a)
w) =
(

lp(a). <

(14) 3)
My (@l () (@) = 22 wlny (@, 0) = 32,

M (
®)
= Mi(w)
We illustrate two significant related phenomena via an example.

» Example 14. Given sets X = {z,y} and A = {a,b}, one can prove that a state w =

r1lx,a)+re |z, b)+r3 |y, a) +r4 |y, b) € D(X®A), where r1 +ro+r3+ry = 1, is non-entwined

if and only if 7 - 74 = r9 - r3. This fact also holds in the quantum case, see e.g. [12, §1.5]. It

plays a role in the next two illustrations.

(a) Conditioning creates entwinedness. Recall from Example 3 the joint state G ® E on
26 ®2p, defined as in (7). Consider now a predicate p € [0,1]22 defined by d — 85% and
d* — 20%. It models, for instance, the information that pallor appears as a symptom in
85% of patients with the disease, but also healthy patients may be pale for other reasons,
20% of the times. Using D as a predicate transformer, we can form the conditioned
state w = (G ® E)|p=(p) = 0.007 |g,e) +0.055[g,e*) +0.191 [g*, e) +0.747 [g*, e*). This
state is now entwined, see the above characterisation of non-entwinedness.

21:9
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(b) Influence between marginals of entwined states. Let’s now start with an entwined state
o=1lg,e)+1lg. et )+E gt e)+1 gt ) € D(2:®2,) and a predicate g = 9, € [0, 1]%¢.
By weakening we get Wy(g) = g @ 1 € [0,1]>6®22. Then: o = Wi(q) = 3-1+3-1= T,
so that:

olwig) = s lg.€) + 2 lg.e*) = Eg,e) + Eg,et).

Below, the second marginal of the original state ¢ differs from the second marginal of
this conditioned state, illustrating the inequality # in Proposition 13 (a).

Ma(o) = le) + 3 ]e*)  whereas  Ma(o|w, () = 2 le) + 2 ]e*).

» Example 15. We conclude with the formal description of the two-disease scenario with
which we started this section (Example 10). The test is a map T': 2,, — 2, given by
T(a1) = 35 [t) + 15 [t*) and T(af) = 55 |t) + 32 [t*). The impact of a positive test on the

disease Ay is given by the marginal of the conditional: Ma(w|w,(7+(a,))) = 52 la2) + 3% |ag).

5 A quantitative definition of influence

Last section showed how evidence on one component of an entwined state may influence the
other component. But how much did it change the latter component with respect to our
prior belief? This section addresses such aspect by introducing a quantitative semantics for
our influence vocabulary. We begin by recalling the total variation metric on distributions.

» Definition 16. Let 0,7 € D(X) be two distributions on a set X. Their total variation
distance d(o, ) is defined as the following number in the unit interval [0, 1].

d(o,7) = % Z |lo(z) — ().

zeX

» Lemma 17. Let f: X <> Y be a Kleisli map. The associated state transformer f.: D(X) —
D(Y) from (6) is non-expansive: d(f.(0), f«(7)) < d(o,7). This yields a functor Ki(D) —
Met, where Met; is the category of 1-bounded metric spaces and non-expansive maps.

Proof.

d(f*(0)7 f*(T))

% Zer ‘ f*(a)(y) - f*(T)(y) ‘

3 2 yey | Lwex F@)(Y) - o(@) = X,y f(2)(y)  T(2) |

3 Ywex yey f@)(y) - [o(x) — ()|

3 2 pex L|o(@) —7(@)| = d(o,7). <
We refer to [6] for more information about total variation (and Kantorovich) distance

and the distribution monad D, and turn to our formal definition of influence. First we define

it in direct form, as a number indicating how much a predicate p influences a state o via

conditioning o|,, given by the (total variation) distance between o and o|,. This seems fairly
simple. But, as we have seen in Section 4, there may also be indirect, ‘crossover’ influence

—~
D
=

IN I

between the components of a joint entwined state: this is the content of our second definition.

» Definition 18. Let p € [0,1]” be a predicate on a set A with discrete metric.
1. For a state o € D(A) on A the direct influence of p on o is defined as:

Zi(p,0) := d(0,0|p) provided o = p #0.
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2. For a joint state w € D(A ® B) the crossover influence of p on w is:

Ze(p,w) := d(Mz(w), Ma(w|w, (p))) provided w = W;(p) # 0.

In general we say that a predicate has no (direct or crossover) influence on a state if the
corresponding influence function (Z; or Z..) has outcome zero.

» Example 19. We give an example of direct influence, postponing a detailed illustration of
crossover influence to the collider scenario in Section 6. Recall the Kleisli map (5) modeling
the Bayesian network of Example 3. We fix three different states on 2, = {d, d* }:

w=4+dld) p=i i) o =L+,

Intuitively, in state w it is likely that the patient has the disease, in state ¢ it is rather
unlikely, and p sits in the middle. Consider the Dirac predicate d; € [0,1]?T expressing
positivity of the test: we first use the predicate transformer T™* associated with the Kleilsi
map T: 2, <+ 2, to obtain a predicate T%(9;) € [0,1]?P; subsequently, we compute the
influence of T*(9;) on the above three states. This is done via a script.

Za(T*(8;),w) = 0.19 Za(T*(8:),p) = 0.45 Za(T*(8y),0) = 0.62

Influence measures how radically the positivity of the test challenges our belief on the disease:
a positive test does not come at surprise in state w, but it is more unexpected in state o.

» Example 20. Clearly, Z,4(1,w) = 0, for the truth predicate 1, since w|; = w. Is there also
an example where the (direct and crossover) influence reaches the maximal distance 1?7 We
show how to approximate it. Take A = {a,b} with predicate p(a) = 1, p(b) = 0 and state
o =c¢€la)+ (1 —¢€)|b). The direct influence Zy(p, o) goes to 1 as € — 0. Similarly, by taking
w=c€laa) 4+ (1 —€) |bb) € D(A x A) we get Z.(p,w) — 1 as € — 0 for crossover influence.

We now establish some facts on crossover influence: (1) it only makes sense if the state
is entwined, since for a product state the crossover influence is zero; (2) weakening and
marginalisation must work in different components, since otherwise we have direct influence;
(3) crossover influences is always less than direct influence. In the context of Definition 18:

» Lemma 21.

1. Z.(p,o ® 7) = 0;

2. d(My(w), M1 (@lw, ))) = Za(p, M1(w));

3. Z.(p,w) < Zy(N1(p),w)

4. For each function g: X — 'Y, considered as a Kleisli map <g>: X — D(Y), we have:
Za(p,<g>«(0)) < Zy(<g>*(p), o), where o € D(X).

Proof. The first two points follow directly from Proposition 13 (b) and (a). The inequality
in point (3) from the fact that marginalisation is a special form of state transformation,
which, as we know from Lemma 17, is non-expansive:

((Wz)*(w% (7T2)*(W|w1(p)))

L(pw) = d(Ma(), Ma(luy) = d
< d(w7W|V\|1(1))) = Id(wl(p)aw)'

Finally, for point (4) we use both Lemma 4 (¢) and Lemma 17 in:

(<9« (W), @+ (w)lp)
(<g>*(w)a<g>*(w|<g>*(p))) S d(waw‘<g>*(p)) = Id(<g>*(p)aw)' <

Za(p, <g>«(w)) = d
d
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» Remark. Crossover and direct influence are instances of a more general definition of influence
of a predicate p € [0, 1]/ on the i-th marginal A; of a joint state w € D(4; ®...® A,,). For
n = 2 and ¢ # j, this corresponds to crossover influence, whereas for n =i = j = 1 it would
be direct influence. We chose not to work within this uniform approach as we believe that it
is more insightful to think of the two notions of Definition 18 as conceptually distinct.

As observed in §3, the blocking action of Dirac predicates plays a key role in d-separation.
We can use Definition 18 to express that no predicate p has any influence on a Dirac-
conditioned state w|p, — by Lemma 2, (w|s, )|, = (w|p)ls, = 1]z) = wla,, so Za(p,wl|s,) = 0.

» Example 22. For instance, we can reformulate the fork scenario as follows. Because

conditioning is commutative, (12) is the same as: wls, = (wly,)
says that Z;(f*(p),wls,) = 0, i.e. f*(p) has no influence on wly, .
In the same vein, one may also revisit Example 8, an instance of the serial connection
scenario: in short, from (5), use states D, T e D and S e T' @ D to construct a joint state on
2, ® 2, ® 24; check that a ‘positive test’ predicate d; € [0,1]?7 has crossover influence on
the marginal 24, then prove that a ‘disease’ predicate d; € [0, 1]?2 blocks such influence.

#*(p)- Thus Proposition 9

6 Influence in d-separation (reprise)

We conclude with a return on the collider scenario, left unfinished at the end of § 3. With
the notation introduced therein, we now explain the collider situation in Diagram (13): the
initial joint (product) state o ® T is non-entwined, but it becomes entwined after conditioning
with evidence g on B, as in (o ® 7)|f+ (). Now any new evidence p € [0,1]* on A may have
crossover influence on C' — ¢f. Example 14 (b). It can be explicitly quantified by computing
Ze(p, (0 @)l (o))

A conceptual insight stemming from our analysis is the asymmetry between blocking and

enabling influence: while in the serial and fork scenarios only Dirac predicates are able to
block, in a collider any predicate may enable. We give a concrete example below.

» Example 23. The Bayesian network of Example 3 includes a collider, given by nodes
‘Genetic Heredity’ and ‘Environmental Factors’ both pointing to ‘Disease’. The two possible
causes for the disease are represented as a joint state G ® E on 24 ® 25, see (7). A priori,
they are unrelated. For instance, a Dirac predicate 9,. € [0, 1)%¢ that excludes any genetic
disorder of the patient has no effect on the chances that she has been exposed to the
environmental factors: formally, the crossover influence Z.(d,.,G ® E) is 0, as guaranteed
by Lemma 21.1. However, let’s include the information that pallor is a symptom of the
disease, modeled as a predicate p € [0,1]?P as in Example 14(a): it turns G ® E into an
entwined state (G ® E)|p«(,). In this changed scenario, d-separation tells that ruling out
genetic heredity (predicate d,.) does influence the belief that environment was the cause.
We can formally expressed it with crossover influence:

Ic(agL,G(@E) =0 Ic(agL, (G® E)|D*(p)) = 0.006.

Note that a Dirac predicate d; € [0, 1]?P expressing certainty of the disease entwines G' and
E much more: indeed Z.(0y1, (G ® E)|p+(a,)) = 0.26 > Z.(9y1, (G ® E)|p=(p))-

7 Discussion

Our ambition in this paper was to develop a framework where grounding concepts of Bayesian
reasoning (influence, dependence, blocking, evidence, ...) are given a clear, completely
formal meaning, building on [7], and can be reasoned about in an abstract and flexible
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manner. As a proof of concept, we analysed d-separation: the intention was to show how
event interactions with a subtle and potentially ambiguous natural language description can
be reduced to elementary formulas of our language, with a simple and transparent proof.

We based our approach on Kleisli categories, in harmony with the increasing importance of
algebraic methods from program semantics in the analysis of probabilistic systems [11, 16, 10].
The highlight of our developments is the notion of crossover influence, which we believe may
foster research in two directions. First, it draws a parallelism with non-locality phenomena
of quantum theory, see also [6]: we plan investigate the meaning of our definitions in that
setting, exploiting the formal bridge offered by Effectus theory [4, 2]. Second, our definition
is abstract enough to accommodate different choices for the underlying notion of distance
between states. The total variation metric suits the applications of this paper, but other
choices are also worth investigating: we think in particular of the Kantorovich metric [17],
for when the sample set has a non-discrete metric, and quantitative analyses of information
leakage [1]. Also connections with Kullback-Leibler divergence [9], focussing on loss of
information, in Shannon style, and to mutual information, remain to be investigated.

A related point concerns the relationship between the total variation distance and Bayesian
influence. In our choice, we simply aimed at the most basic additive distance which does
not (unlike Kantorovich) builds on a pre-existing metric, as our sample sets have none.
Admittedly, the suitability of total variation is only empirically justified by examples. In
future work we aim at a more satisfactory investigation: recent advances on an axiomatic
treatment of metrics [10] appear to be very suitable for the purpose.
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