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Abstract
Single occurrence regular expressions (SORE) are a special kind of deterministic regular expres-
sions, which are extensively used in the schema languages DTD and XSD for XML documents.
In this paper, with motivations from the simplification of XML schemas, we consider the SORE-
definability problem: Given a regular expression, decide whether it has an equivalent SORE.
We investigate extensively the complexity of the SORE-definability problem: We consider both
(standard) regular expressions and regular expressions with counting, and distinguish between
the alphabets of size at least two and unary alphabets. In all cases, we obtain tight complexity
bounds. In addition, we consider another variant of this problem, the bounded SORE-definability
problem, which is to decide, given a regular expression E and a number M (encoded in unary
or binary), whether there is an SORE, which is equivalent to E on the set of words of length at
most M . We show that in several cases, there is an exponential decrease in the complexity when
switching from the SORE-definability problem to its bounded variant.
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1 Introduction

Background. Deterministic regular expressions are a special kind of regular expressions,
which are mainly used in DTD and XML Schema [11]. Intuitively, deterministic regular
expressions require that when reading from left to right a word in the language, each symbol
in the word can directly match the symbol in the expression without knowing the next symbol
or the length of the word [35, 1]. For example, (a + b)a∗ is deterministic. Since for each
word w in L((a+ b)a∗), if the first symbol in w is a, then it matches the first a in (a+ b)a∗,
and the other occurrences of a match the second one. On the other hand, a∗(a+ b) is not
deterministic. Because given a word w = aa, without knowing the length of the word, we do
not know whether the first a in w should match the first a in a∗(a+ b) or the second one.
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22:2 The Complexity of SORE-definability Problems

Although deterministic regular expressions ensure the effective processing of XML docu-
ments [11, 16], it is not an easy task to design schema for XML documents with deterministic
regular expressions. The major obstacle is that they are defined in a semantic manner, and
do not have syntax rules to guide the design [1]. Considerable efforts have been made to solve
this problem [2, 3, 4, 13, 23, 21, 7]. Among these is the introduction of single occurrence
regular expressions (SORE) [2, 3, 4, 13]. SORE are regular expressions where each alphabet
symbol appears at most once [2]. For example, E = abc is an SORE, since there is only one
of a, b, and c in E. While E = aa∗b is not, because the symbol a appears twice in E.

Motivation. XML schemas defined with SORE are desirable, since they are very simple and
intuitive to comprehend, and it is easy to check the conformance of XML documents with
respect to them. As a result, though SORE constitute a restricted class of regular expressions,
it turns out that deterministic regular expressions used in DTDs of XML documents from
the practice are mostly SORE [29]. In view of this, XML schema designers may tempt to
know whether the schema they proposed can in fact be changed into an equivalent, but
simpler, schema defined with SORE. This brings the SORE-definability problem: Given a
regular expression, decide whether there is an SORE defining the same language.

In this paper, we start an extensive investigation on the complexity of the SORE-
definability problem: We consider both (standard) regular expressions and regular expressions
with counting, and distinguish between the alphabets of size at least two and unary alphabets.
In all cases, we obtain tight complexity bounds.

In addition, we consider another variant of the SORE-definability problem, the bounded
SORE-definability problem, which is to decide, given a regular expression E (without or with
counting) and a number M (encoded in unary or binary), whether there is an SORE, which
is equivalent to E on the set of words of length at most M . The motivation of this problem
comes from the observation that in practice, there may exist some additional information
about the number of children that a node in XML documents can have, and this information
can be utilised to ease the design of XML schemas. Given a node n, suppose that its content
model (the format of its child elements) is defined by a regular expression E. Although L(E),
the language defined by E, might be not deterministic (thus not in SORE), if there is a bound
M on the number of children of n, then we may still construct a SORE E1 such that E and
E1 are equivalent over the set of words up to length M . In this way, we can obtain a regular
expression E1 with a simpler structure to define its content model. Moreover, E1 covers all
the possible XML documents. Checking the existence of SORE E1 such that E =<=M E1 is
the bounded-definability problem. In addition, the bounded-definability problem is related
to the bounded nonuniversality problem investigated in [10]. The bounded nonuniversality
problem is to decide for a given nondeterministic finite-state automaton A and a number M
encoded in unary, whether L(A)∩Σ≤M 6= Σ≤M . Note that this problem can be rephrased as
L(A) 6=≤M Σ∗, where Σ = {a1, . . . , an} and Σ∗ is the abbreviation of (a1 + . . .+ an)∗, which
is obviously an SORE.

Contributions. The results obtained in this work are summarised in Table 1. In the table,
R stands for the set of (standard) regular expressions, and R(#) stands for the set of regular
expressions with counting. We highlight some of them below.
(1) We first show that the SORE-definability problem is PSPACE-complete for regular

expressions, and EXPSPACE-complete for regular expressions with counting.
(2) We then consider the special case of unary alphabets. We show that the SORE-definability

problem becomes coNP-complete for regular expressions and Πp
2-complete for regular
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Table 1 The results of this paper: An overview.

The SORE-definability problem
|Σ| = 1 |Σ| ≥ 2

R coNP-c (Thm 6) PSPACE-c (Thm 4)
R(#) Πp

2 -c (Thm 7) EXPSPACE-c (Thm 5)

The bounded SORE-definability problem

R
M is unary PTIME (Thm 15) coNP-c (Cor 14)
M is binary coNP-c (Cor 19) PSPACE-c (Cor 17)

R(#) M is unary PTIME (Thm 15) coNP-c (Thm 13)
M is binary Πp

2 -c (Cor 18) coNEXPTIME-c (Thm 16)

expressions with counting. Moreover, by using the same idea of the lower bound proof, we
can show that the definability problem of deterministic regular expressions is Πp

2 -complete
for regular expressions with counting, which solves an open problem in [27].

(3) For the bounded SORE-definability problem, a bit surprisingly, we show that the
complexity is coNP-complete for both regular expressions and regular expressions with
counting, if the length bound M is encoded in unary. On the other hand, if M is
encoded in binary, the complexity is PSPACE-complete for regular expressions and
coNEXPTIME-complete for regular expressions with counting. In addition, when unary
alphabets are considered and M is encoded in unary, the bounded SORE-definability
problem can be solved in polynomial time, even for regular expressions with counting.
These results show that if the length boundM is encoded in unary, there is an exponential
decrease when switching from the SORE-definability problem to its bounded variant.

Related work. Single occurrence regular expressions were introduced in [2, 3, 4]. Most
works on SORE focus on inferring an SORE from a set of sample words. The basic idea
of these works is that given a set of sample words, we first construct a single occurrence
automaton (SOA) A, then derive an SORE E from A. The main technical difficulty is how to
construct E from A. To this end, Bex et al. [3, 4] developed an O(|A|5) algorithm. Recently,
Freydenberger et al. [13] reduced the complexity of the construction to linear time.

There are also works investigating how to automatically construct deterministic regular
expressions from (non-deterministic) regular expressions given by users. This problem entails
the definability problem of deterministic regular expressions: Given a regular expression,
decide whether there exists an equivalent deterministic regular expression. It was shown in
[1, 12, 26] that this problem is PSPACE-complete. For regular expressions with counting,
there are two notations of determinism, i.e., weak and strong determinism (see [14]). The
definability problem of weakly (resp. strongly) deterministic regular expressions with counting
can also be defined similarly. It was shown in [24] that the definability problem of weakly
deterministic regular expressions with counting is in 2-EXPSPACE when the inputs are
regular expressions, and in 3-EXPSPACE when the inputs are regular expressions with
counting, whereas the exact complexity of these problems are still open.

Researchers also investigated how to decide whether a given regular expression is de-
terministic [5, 6, 23, 21, 7, 16] (Note that this problem is different from the definability
problem of deterministic regular expressions in the sense that we do not check the existence
of an equivalent albeit potentially different deterministic regular expression). Remarkably, it
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22:4 The Complexity of SORE-definability Problems

was shown in [16] that the problem of whether a regular expression is deterministic can be
decided in linear time. In addition, in [16], it was also shown that the problem of whether
a regular expression with counting is weakly deterministic can be decided with the same
complexity bound. On the other hand, the work [8] provided a linear time algorithm to decide
whether a regular expression with counting is strongly deterministic. Moreover, in [18, 19],
efficient matching algorithms were provided for strongly deterministic regular expressions
with counting by using finite automata with counters.

Outline. This paper is structured as follows. Section 2 fixes some notations. Section 3
is devoted to the SORE-definability problem. The bounded SORE-definability problem is
investigated in Section 4. We conclude this paper in Section 5.

2 Preliminaries

For a natural number n ∈ N, let [n] denote {1, · · · , n}. In addition, for two natural numbers
m,n ∈ N such that m ≤ n, let [m,n] denote the set {m,m+ 1, · · · , n}.

An alphabet Σ is a finite set of symbols {a1, a2, . . . , an}. We will use a, b, · · · to denote
symbols from Σ. A word over Σ is a sequence of symbols from Σ. We will use u, v, w, · · · to
denote words and ε to denote the empty word. A language over Σ is a set of words on Σ.
For two languages L1 and L2, we use L1 · L2 to denote the language {uv | u ∈ L1, v ∈ L2}.
In addition, for a language L, we define L0 = {ε}, and Ln+1 = L · Ln for each natural
number n. We also use L∗ to denote

⋃
n∈N

Ln. A (standard) regular expression over Σ is

inductively defined as follows: ε and a are regular expressions for any a ∈ Σ; for any regular
expressions E1 and E2, the disjunction E1 + E2, the concatenation E1 · E2 (or E1E2), and
the star E∗1 are also regular expressions. The semantics of a regular expression E is given by
a language L(E) defined as follows: L(ε) = {ε}, L(a) = {a}, L(E1 + E2) = L(E1) ∪ L(E2),
L(E1 · E2) = L(E1) · L(E2), and L(E∗1) = (L(E1))∗. Let R denote the set of all regular
expressions. For a regular expression E, let ΣE denote the set of all symbols from Σ that
appear in E.

Next, we define deterministic regular expressions. Before that, we introduce some
notations. Given a regular expression E, we replace every symbol a in E by a subscripted
symbol ai such that ai appears only once. Let E denote the resulting expression obtained by
this replacement. For instance, let E = (ε+a) ·a∗, then E = (ε+a1) ·a∗2. A regular expression
E is deterministic iff the following condition holds: for every two words uxw, uyv ∈ L(E),
if x = ai and y = aj , then i = j. A regular language L is deterministic, if there exists a
deterministic regular expression E such that L(E) = L. For E = (ε+ a) · a∗, consider two
words a1a2, a2 ∈ L(E). Let u = ε, x = a1, w = a2, y = a2, and v = ε, then uxw, uyv ∈ L(E),
x = a1, y = a2, but 1 6= 2. By the definition, (ε + a) · a∗ is not deterministic. But the
language L((ε+ a) · a∗) is deterministic, since L((ε+ a) · a∗) = L(a∗) and a∗ is deterministic.

Next, we define the Glushkov automata of regular expressions [15, 30]. Given a regular
expression E, we first define the following sets: first(E) = {a | aw1 ∈ L(E)}, follow(E, a) =
{b | w1abw2 ∈ L(E)}, and last(E) = {a | w1a ∈ L(E)}. Intuitively, first(E) comprises
the first symbols of words in L(E), follow(E, a) is the set of symbols, which can appear
immediately after a in a word from L(E), and last(E) contains the last symbols of words in
L(E). Then the Glushkov automaton of E, denoted by GE = (QE ∪ {qI},Σ, δE , qI , FE), is
constructed as follows:
1. QE is the set of symbols in E, and qI is the initial state;
2. For any a ∈ ΣE , let δE(qI , a) = {ai | ai ∈ first(E)};
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3. For any a, b ∈ ΣE , let δE(ai, b) = {bj | bj ∈ follow(E, ai)};

4. FE =
{
{ai | ai ∈ last(E)} ∪ {qI} if ε ∈ L(E),
{ai | ai ∈ last(E)} otherwise.

Given a regular expression E, the Glushkov automaton GE can be constructed in
polynomial time [6]. See Example 1 in the next section for an example of Glushkov automata.

Single occurrence regular expressions (SORE)[3, 4] are a special kind of deterministic
regular expressions, which require that every symbol in the alphabet appears at most once.
Moreover, SORE use the following operators: the disjunction (+), the concatenation (·),
the iteration (+), and the optional (?), where the iteration E+ and the optional E? are the
abbreviations of E · E∗ and ε + E, respectively. Since L(E∗) = L((E+)?), SORE do not
use the star operation. For example, a+bc is an SORE, but aa+ is not, since the symbol
a appears twice. Additionally, we require that the iteration (resp. the optional) cannot
be nested in an SORE, that is, the expressions of the form (E?)? or (E+)+ are forbidden.
We also forbid the expressions of the form ((E+)?)+ or ((E?)+)?. These constraints ensure
that for a fixed alphabet Σ, there are only a fixed number of SORE over Σ. Nevertheless,
these constraints do not affect the expressive power of SORE. For an SORE, its Glushkov
automaton can also be constructed in polynomial time [2].

A single occurrence automaton (SOA) S = (Q,Σ, δ, qI , F ) over an alphabet Σ is defined
as follows [13]: Q ⊆ Σ ∪ {qI}, where qI is the initial state; δ : Q× Σ→ Q is the transition
function such that whenever δ(q1, b) = q2, we have q2 = b; and F ⊆ Q is the set of final
states. Although SOA defined here are slightly different from those in [13], one can easily
add a sink state to each SOA defined in this paper to obtain an SOA in [13]. Later on, we
will ignore this difference and apply the algorithms in [13] directly on SOA in this paper.

A regular expression with counting is an extension of regular expressions, which addi-
tionally allows using the counting modalities E[m,n] or E[m,∞]. For a regular expression
with counting E, the language L(E[m,n]) =

⋃
i∈[m,n]

(L(E))i. The language L(E[m,∞]) can be

defined similarly. Let R(#) denote the set of regular expressions with counting.

3 The SORE-definability problem

In this section, we study the complexity of the SORE-definability problem: Given a regular
expression E, decide whether there exists an SORE Ec such that L(Ec) = L(E). We first
consider the general case of non-unary alphabets, then the special case of unary alphabets.

3.1 Non-unary alphabets
We start with regular expressions and consider regular expressions with counting later on1.

To solve the SORE-definability problem, our main idea is to construct for a regular
expression E, an SORE Ec such that L(E) = L(Ec) iff there exists an SORE E1 satisfying
that L(E) = L(E1). With such an SORE Ec, we can solve the SORE-definability problem
by checking whether L(E) = L(Ec).

The construction of the SORE Ec is divided into two steps: We first construct an SOA
SE from E, then an SORE Ec from SE .

Given a regular expression E, let GE = (QE ∪ {qI},Σ, δE , qI , FE) be the Glushkov
automaton of E, we construct the SOA SE = (ΣE ∪ {qI},ΣE , δ

′
E , qI , F

′
E) as follows:

1 Several results in this section are based on Chapter 7 of the PhD. thesis of Ping Lu (cf. [25]).
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Figure 1 GE and SE .

1. For any a ∈ ΣE , let δ′E(qI , a) = {a | ∃i. ai ∈ δE(qI , a)};
2. For any a, b ∈ ΣE , let δ′E(a, b) = {b | ∃i, j. bj ∈ δE(ai, b)};

3. F ′E =
{
{a | ∃i. ai ∈ FE} ∪ {qI} if qI ∈ FE ,

{a | ∃i. ai ∈ FE} otherwise.

Intuitively, the SOA SE is constructed from GE by merging for each a ∈ ΣE , all the
states ai of GE into one state a and modifying the transition relation correspondingly.

I Example 1. Let E = (a+ b)∗a(a+ c+ d)∗. Then E = (a1 + b2)∗a3(a4 + c5 + d6)∗. The
Glushkov automaton GE and the SOA SE constructed from GE are given in Figure 1. Note
that the states a1, a3, and a4 in GE are merged into one state a in SE , and the other states
remain the same (modulo names).

The SOA SE enjoys the following property.

I Lemma 2. Given a regular expression E, L(E) can be defined by an SOA iff L(GE) =
L(SE).

To construct the desired SORE Ec, we apply the algorithm REWRITE in [3, 4] or
Soa2Sore in [13] to SE , and get an SORE Ec enjoying the following property: SE can be
represented by an SORE iff L(SE) = L(Ec). From Lemma 2, we deduce the following fact.

I Proposition 3. L(E) can be defined by an SORE iff L(E) = L(Ec).

The arguments for Proposition 3 proceed as follows: The “if” direction is trivial. For the
“only if” direction, suppose that L(E) is defined by an SORE E1. Then it can also be defined
by an SOA, since the Glushkov automaton of E1 is an SOA. By Lemma 2, we must have that
L(E1) = L(E) = L(GE) = L(SE). Hence, SE is represented by the SORE E1. From the
property of Ec, we know that L(SE) = L(Ec). We conclude that L(E) = L(SE) = L(Ec).

Given a regular expression E, by using Proposition 3, we solve the SORE-definability
problem of E as follows:
(1) Construct the SOA SE ;
(2) Construct the candidate SORE Ec;
(3) Check whether L(E) = L(Ec). If so, return true; otherwise, return false.

The correctness of the algorithm follows from Proposition 3. In the following, we analyze
the complexity of this algorithm. From the results in [6, 3, 4, 13], we know that steps (1) and
(2) can be done in polynomial time. Since the equivalence problem of regular expressions
is PSPACE-complete [31], we know that step (3) can be fulfilled in polynomial space. It
follows that the SORE-definability problem of regular expressions is in PSPACE. For the
lower bound, we apply a reduction from the complement of the acceptance problem of
polynomial-space bounded Turing machines. Then we get the following result.
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I Theorem 4. The SORE-definability problem is PSPACE-complete for regular expressions.

When E is a regular expression in R(#), i.e., a regular expression with counting, we
can expand E into a (standard) regular expression E′, and then use the above algorithm to
decide the SORE-definability problem. Since expanding E into E′ takes exponential time,
and the equivalence problem of regular expressions is PSPACE-complete [31], we conclude
that the SORE-definability problem of R(#) is in EXPSPACE. For the EXPSPACE
lower bound, we prove it by a reduction from the universality problem of regular expressions
in R(#), which is known to be EXPSPACE-complete [31].

I Theorem 5. The SORE-definability problem is EXPSPACE-complete for R(#).

3.2 Unary alphabets
In this section, we mainly consider the complexity of the SORE-definability problem for
unary alphabets. As a by-product, we also solve an open problem in [27].

Let Σ = {a}. One can verify that an SORE E1 over Σ must satisfy one of the following
constraints: L(E1) = L(ε), L(E1) = L(a), L(E1) = L(a?), L(E1) = L(a+), or L(E1) =
L((a+)?). Then to check whether L(E) can be defined by an SORE, we only need to check
whether L(E) = L(ε), L(E) = L(a), L(E) = L(a?), L(E) = L(a+), or L(E) = L((a+)?).
Since the equivalence problems of regular expressions and regular expressions with counting
over a unary alphabet are coNP-complete [34] and Πp

2-complete [34, 20] respectively, we
get the coNP and Πp

2 upper bounds respectively for their SORE-definability problems over
a unary alphabet. Moreover, we show the corresponding lower bounds by a reduction from
the universality problem of regular expressions over a unary alphabet and the connectedness
problem of integer expressions respectively, which are known to be coNP-complete [34] and
Πp

2-complete [36, 33] respectively. Therefore, we get the following results.

I Theorem 6. Over a unary alphabet, the SORE-definability problem is coNP-complete for
regular expressions.

I Theorem 7. Over a unary alphabet, the SORE-definability problem is Πp
2-complete for

R(#).

The work in [27] showed that the definability problem of deterministic regular expressions
over a unary alphabet is in Πp

2 for R(#), but left the lower bound open. By using a reduction
similar to the proof of the lower bound in Theorem 7, we can solve the open problem and
get the following result.

I Theorem 8. Over a unary alphabet, the definability problem of deterministic regular
expressions is Πp

2-complete for R(#).

Although the lower bound in Theorem 7 can also be proved by using the construction
in [9], that construction cannot be used to prove the lower bound in Theorem 8, since the
language defined by the regular expression constructed in [9] is already deterministic.

4 The Bounded SORE-definability problem

In this section, we will study the complexity of the bounded SORE-definability problem:
Given a regular expression E (without or with counting) and a number M , whether there
exists an SORE E1 such that L(E) =≤M L(E1), i.e., for every word w such that |w| ≤M ,

MFCS 2017



22:8 The Complexity of SORE-definability Problems

w ∈ L(E) iff w ∈ L(E1). As mentioned in the introduction, if the content model E in a
DTD or XML Schema does not denote a deterministic regular language, if there is a bound
M on the maximum number of children of nodes in XML documents, then we only need to
give a deterministic content model E1 to ensure that the language L(E1) is equivalent to
L(E) within the bound M .

We assume that in the bounded SORE-definability problem, the given regular expression
(without or with counting) E and the number M satisfy that M ≥ 2 · |ΣE |. This assumption
is essential for the results in this section and it is open whether this assumption can be lifted.

Similar to the SORE-definability problem, the decision procedure for the bounded SORE-
definability problem proceeds as follows:
1. At first, an SOA SE is constructed from E such that L(E) =≤M L(SE) iff there exists

an SOA A such that L(A) =≤M L(E).
2. Then by using the algorithm Soa2Sore in [13], an SORE Ec is constructed from SE such

that L(E) =≤M L(Ec) iff there exists an SORE E′ such that L(E) =≤M L(E′).
3. Finally, decide whether L(E) =≤M L(Ec).

In the following, we will first show how to construct SE from E and Ec from SE in
Section 4.1, then based on these constructions, we derive the complexity results of the
bounded SORE-definability problem in Section 4.2.

4.1 The construction of SE and Ec

In this section, we assume that E is in R(#) and demonstrate how to construct an SOA
SE and an SORE Ec from E. The construction for regular expressions without counting is
relatively easy and taken as a special case.

For the construction of SE , one naive approach is to expand the expression E into a regular
expression (without counting) E′, and construct SE′ from E′. But since the expansion of E
incurs an exponential blow-up, we would not be able to achieve the tight complexity bounds
(see, e.g., Theorem 13 in Section 4.2). In the following, we show how we can circumvent the
exponential blow-up and construct a desired SOA SE in polynomial time.

I Lemma 9. Given a regular expression E in R(#) and a number M encoded in binary, an
SOA SE satisfying the following constraint can be computed in polynomial time: L(SE) =≤M

L(E) iff there exists an SOA A such that L(A) =≤M L(E).

Before presenting the construction of SE , we introduce some additional notations. Let us
assume that M > 0 in the following. For an expression E in R(#) and a natural number M ,
we define firstM (E) = {a ∈ ΣE | ∃w1. aw1 ∈ L(E) ∩ (ΣE)≤M}, followM (E) = {(a, b) ∈
ΣE × ΣE | ∃w1, w2. w1abw2 ∈ L(E) ∩ (ΣE)≤M}, and lastM (E) = {a ∈ ΣE | ∃w1. w1a ∈
L(E) ∩ (ΣE)≤M}.

For an expression E in R(#) and a natural number M , we construct an SOA SE =
(ΣE ∪ {qI},ΣE , δ

′
E , qI , F

′
E) satisfying the following constraints:

{a ∈ ΣE | δ′E(qI , a) = a} = firstM (E);
{(a, b) ∈ ΣE × ΣE | δ′E(a, b) = b} = followM (E);
if ε ∈ L(E), then F ′E = lastM (E) ∪ {qI}; otherwise, F ′E = lastM (E).

Therefore, the construction of SE is equivalent to the computations of firstM (E),
followM (E) and lastM (E), which, we will show, can be done in polynomial time.

For the computations of firstM (E), followM (E) and lastM (E), for each subexpression
E′ of E, we will compute an up-to-M counting abstraction of E′ over ΣE , denoted by
AbsΣE ,M (E′) = (x, T, F, L), in polynomial time, such that



Ping Lu, Zhilin Wu, and Haiming Chen 22:9

x ∈ {true, false} denotes whether ε ∈ L(E′);
T is a function from ΣE × ΣE to [M ] ∪ {∞} such that T (a, b) = min({|w| | w ∈
L(E′) ∩ (ΣE)≤M , w = w1abw2 for some w1, w2}), where min(∅) =∞ by convention;
F is a function from ΣE to [M ] ∪ {∞} such that F (a) = min({|w| | w ∈ L(E′) ∩
(ΣE)≤M , w = aw1 for some w1});
L is a function from ΣE to [M ] ∪ {∞} such that L(a) = min({|w| | w ∈ L(E′) ∩
(ΣE)≤M , w = w1a for some w1}).

Moreover, given AbsΣE ,M (E′) = (x, T, F, L), we define Nmin(AbsΣE ,M (E′)) as the minimum
length of the words in L(E′) ∩ (ΣE)≤M , that is, if x = true, then Nmin(AbsΣE ,M (E′)) = 0;
otherwise, Nmin(AbsΣE ,M (E′)) = min(rng(T ) ∪ rng(F ) ∪ rng(L)), where rng(T ) denotes the
range of T , similarly for rng(F ) and rng(L). It is assumed that n <∞ for each n ∈ [M ].

Evidently, given AbsΣE ,M (E) = (x, T, F, L), we have that firstM (E) = {a ∈ ΣE | F (a) 6=
∞}, followM (E) = {(a, b) ∈ ΣE×ΣE | T (a, b) 6=∞} and lastM (E) = {a ∈ ΣE | L(a) 6=∞}.

Next, we show how to compute AbsΣE ,M (E′) from E′ by a structural induction on E′.
(1) E′ = ε. In this case, AbsΣE ,M (E′) = (true, T∞, F∞, L∞), where T∞ denotes the func-

tion where T∞(a, b) =∞ for each a, b ∈ ΣE .
(2) E′ = a for any a ∈ ΣE. In this case, AbsΣE ,M (E′) = (false, T∞, a→ 1, a→ 1), where

a→ 1 denotes the function that maps a to 1 and maps all the other symbols from ΣE to
∞.

(3) E′ = E′
1 + E′

2. In this case, suppose that AbsΣE ,M (E′i) = (xi, Ti, Fi, Li) for i = 1, 2,
then AbsΣE ,M (E′) = (x, T, F, L), where
x = x1 ∨ x2 (x is the disjunction of x1 and x2);
for each (a, b) ∈ ΣE × ΣE , T (a, b) = min({T1(a, b), T2(a, b)});
for each a ∈ ΣE , F (a) = min({F1(a), F2(a)});
for each a ∈ ΣE , L(a) = min({L1(a), L2(a)}).

(4) E′ = E′
1E′

2. In this case, suppose that AbsΣE ,M (E′i) = (xi, Ti, Ei, Li) for i = 1, 2, then
AbsΣE ,M (E′) = (x, T, F, L), where
x = x1 ∧ x2 (x is the conjunction of x1 and x2);
for each (a, b) ∈ ΣE × ΣE , let

T (a, b) = min

[M ]
⋂ {T1(a, b) + Nmin(AbsΣE ,M (E′

2))}
∪ {T2(a, b) + Nmin(AbsΣE ,M (E′

1))}
∪ {L1(a) + F2(b)}

 ,

note that here we assume ∞+∞ =∞+ n = n+∞ =∞ for every natural number n;
for each a ∈ ΣE , let

F (a) = min
(

[M ]
⋂(
{F1(a) + Nmin(AbsΣE ,M (E′

2))} ∪ {F2(a) | x1 = true}
))

;

for each a ∈ ΣE , let

L(a) = min
(

[M ]
⋂(
{L2(a) + Nmin(AbsΣE ,M (E′

1))} ∪ {L1(a) | x2 = true}
))

.

(5) E′ = (E′
1)[m,n] or E′ = (E′

1)[m,∞]. Since the analysis of E′ = (E′1)[m,∞] is almost the
same as E′ = (E′1)[m,n], we only show the analysis of E′ = (E′1)[m,n]. Let AbsΣE ,M (E′1) =
(x1, T1, F1, L1). Then AbsΣE ,M (E′) = (x, T, F, L), where

if m ≥ 2, then
x = x1,
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Figure 2 The SOA SE .

for each (a, b) ∈ ΣE × ΣE , let

T (a, b) = min
(

[M ]
⋂(

{T1(a, b) + (m− 1)Nmin(AbsΣE ,M (E′
1))} ∪

{L1(a) + F1(b) + (m− 2)Nmin(AbsΣE ,M (E′
1))}

))
,

note that here we assume that 0×∞ = 0 and n×∞ =∞ for each n > 0,
for each a ∈ ΣE , let

F (a) = min
(

[M ]
⋂
{F1(a) + (m− 1)Nmin(AbsΣE ,M (E′

1))}
)

,

for each a ∈ ΣE , let

L(a) = min
(

[M ]
⋂
{L1(a) + (m− 1)Nmin(AbsΣE ,M (E′

1))}
)

;

if m = 1 and n = 1, then AbsΣE ,M ((E′1)[m,n]) = AbsΣE ,M (E′1);
if m = 1 and n ≥ 2, then AbsΣE ,M ((E′1)[m,n]) = AbsΣE ,M (E′1 + (E′1)[m+1,n]), which
can be computed from AbsΣE ,M (E′1) and AbsΣE ,M ((E′1)[m+1,n]) by the aforementioned
construction for the + operator (note that (E′1)[m+1,n] satisfies that m+ 1 ≥ 2);
if m = 0 and n = 0, then AbsΣE ,M ((E′1)[m,n]) = AbsΣE ,M (ε);
if m = 0 and n ≥ 1, then AbsΣE ,M ((E′1)[m,n]) = AbsΣE ,M (ε+ (E′1)[m+1,n]) (note that
(E′1)[m+1,n] satisfies that m+ 1 ≥ 1).

The above computation of AbsΣE ,M (E) can be done in polynomial time, since
each AbsΣE ,M (E′) occupies only polynomial space and the computation takes at most
O(|E|) steps.

I Example 10. We will use the following example to show all the constructions. Let
E = ((a + b) · (c + d) · (ε + (ae)[5,5]))[2,∞] and M = 9. The computation of AbsΣE ,M (E′)
is shown in Table 2, where T stands for true, F stands for false, and the pairs (a, b)
such that T (a, b) = ∞ are omitted, similarly for F and L. Consider the computation of
AbsΣE ,M ((ae)[5,5]). It is easy to verify that AbsΣE ,M (ae) = (false, {(a, e)→2}, a→2, e→2).
Since M = 9, and ae is the shortest word in L(ae), we have that 2 + (m − 1) × 2 =
2 + 4 × 2 = 10 > M . Therefore, AbsΣE ,M ((ae)[5,5]) = (false, T∞, T∞, T∞), which means
that any word in L((ae)[5,5]) cannot be a sub-word of w in L(E) such that |w| ≤ M .
Let AbsΣE ,M (E) = (x, T, F, L). Then followM (E) = {(a′, b′) ∈ ΣE × ΣE | T (a′, b′) 6=
∞} = {(a, c), (b, c), (a, d), (b, d), (c, a), (d, a), (c, b), (d, b)}. Similarly, firstM (E) = {a′ ∈ ΣE |
F (a′) 6= ∞} = {a, b}, and lastM (E) = {a′ ∈ ΣE | L(a′) 6= ∞} = {c, d}. From the sets
firstM , followM , and lastM , we construct an SOA SE illustrated in Figure 2.

By using SE , we can construct the candidate SORE Ec for E in Example 12.

Computation of Ec. Again, we use the algorithm Soa2Sore [13] mentioned in Section 3
to compute an SORE Ec from SE in polynomial time. As a result of the assumption that
M ≥ 2 · |ΣE |, the SORE Ec enjoys the following property.
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Table 2 The computation of AbsΣE ,M (E′).

E′ AbsΣE ,M (E′) E′ AbsΣE ,M (E′)

a (F, T∞, a→ 1, a→ 1) c + d (F, T∞,
{

c→1
d→1

}
,
{

c→1
d→1

}
)

b (F, T∞, b→ 1, b→ 1) ae (F, {(a, e)→2}, a→2, e→2)

c (F, T∞, c→ 1, c→ 1) (a + b)(c + d) (F,

{
(a,c)→2
(b,c)→2
(a,d)→2
(b,d)→2

}
,
{

a→2
b→2

}
,{

c→2
d→2

}
)

d (F, T∞, d→ 1, d→ 1) (ae)[5,5] (F, T∞, T∞, T∞)
e (F, T∞, e→ 1, e→ 1) ε + (ae)[5,5] (T, T∞, T∞, T∞)

a+b (F, T∞,
{

a→1
b→1

}
,
{

a→1
b→1

}
) (a+b)(c+d)(ε+(ae)[5,5]) (F,

{
(a,c)→2
(b,c)→2
(a,d)→2
(b,d)→2

}
,
{

a→2
b→2

}
,{

c→2
d→2

}
)

((a + b)(c + d)(ε + (ae)[5,5]))[2,∞] (F,
{

(a,c)→4
(b,c)→4
(a,d)→4
(b,d)→4

(c,a)→4
(d,a)→4
(c,b)→4
(d,b)→4

}
,
{

a→4
b→4

}
,
{

c→4
d→4

}
)

I Proposition 11. L(E) =≤M L(Ec) iff there exists an SORE E′ such that L(E) =≤M L(E′).

The arguments for Proposition 11 proceed as follows: The “only if” direction is trivial.
For the “if” direction, suppose that there exists an SORE E′ such that L(E) =≤M L(E′).
Then from the fact that L(E′) can be defined by an SOA, according to Lemma 9, we know
that L(SE) =≤M L(E). Therefore, we have L(SE) =≤M L(E′). From the assumption
M ≥ 2 · |ΣE |, we can further show that L(SE) = L(E′). Moreover, in [13], it was proved
that the SORE Ec satisfies the “SORE-descriptive” property, i.e. there does not exist an
SORE E′′ such that L(SE) ⊆ L(E′′) ⊂ L(Ec). Therefore, we must have L(SE) = L(Ec).
From L(SE) =≤M L(E), we conclude that L(E) =≤M L(Ec).

I Example 12. Let us continue Example 10. By using the algorithm Soa2Sore in [13], from
the SOA SE in Figure 2, we obtain the following SORE: ((a + b)(c + d))+. It is easy to
verify that L(E) =≤9 L(((a+ b)(c+ d))+). Then E can be represented by an SORE within
the bound M = 9. On the other hand, by the results in Section 3, we can check that L(E)
cannot be defined by an SORE.

4.2 The Complexity
In this section, we establish the complexity results of the bounded SORE-definability problem.
Given a regular expression E in R(#) and a number M , by using Proposition 11, we can
develop the following algorithm to decide the bounded SORE-definability problem:
(1) Compute the set AbsΣE ,M (E);
(2) Construct firstM (E), followM (E), lastM (E), and the candidate SORE Ec;
(3) Check whether L(E) =≤M L(Ec). If so, return true; otherwise, return false.

The correctness of this algorithm follows from Proposition 11. In the following, we analyse
the complexity of the algorithm. From the computations of AbsΣE ,M (E), firstM , followM ,
lastM , and Ec in Section 4.1, we know that steps (1) and (2) can be done in polynomial
time. For step (3), we distinguish between the unary and binary encoding of M .
M is encoded in unary.
Since M is encoded in unary, to check whether L(E) =≤M L(Ec), we first guess a word
w such that |w| ≤ M , then check whether w ∈ (L(E) \ L(Ec)) or w ∈ (L(Ec) \ L(E)).
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Since checking whether w ∈ L(E) and w ∈ L(Ec) is in PTIME [22], we deduce that the
bounded SORE-definability problem for R(#) is in coNP. By a reduction from the bounded
universality problem, which is known to be coNP-complete [10], we also show that the
bounded SORE-definability problem for R(#) is coNP-hard.

I Theorem 13. The bounded SORE-definability problem is coNP-complete for R(#) and
natural numbers M encoded in unary.

One may wonder whether the bounded SORE-definability problem would be easier to
solve, if E is a regular expression. The answer to this question is negative, since the expression
constructed in the lower-bound proof of Theorem 13 is already a regular expression.

I Corollary 14. The bounded SORE-definability problem is coNP-complete for regular ex-
pressions and natural numbers M encoded in unary.

If |ΣE | = 1, then (ΣE)≤M contains at most M + 1 words. Therefore, in this case, when
M is encoded in unary, step (3) can be done in PTIME and we have the following result.

I Theorem 15. The bounded SORE-definability problem is in PTIME for unary regular
expressions in R(#) and natural numbers M encoded in unary.

From the aforementioned results and the ones in Section 3, we can see that if M is
encoded in unary, then there is an exponential decrease in the complexity when switching
from the SORE-definability problem to its bounded variant. For instance, for R(#), the
SORE-definability problem is EXPSPACE-complete, while the bounded SORE-definability
problem is coNP-complete if M is encoded in unary.
M is encoded in binary.
As mentioned above, AbsΣE ,M (E) can be computed in polynomial time even if M is encoded
in binary. Nevertheless, since M is encoded in binary, the complexity of step (3) may increase
exponentially.

Similar to the algorithm for Theorem 13, step (3) can also be done by guessing a word
w such that |w| ≤ M . Since M is encoded in binary, w can be exponentially large. Then
checking whether w ∈ L(E) and w ∈ L(Ec) can be done in exponential time and we get
a coNEXPTIME upper bound for bounded SORE-definability problem problem of R(#).
For the coNEXPTIME lower bound, we get a reduction from the complement of the
acceptance problem of nondeterministic exponential-time Turing machines. Therefore, we
obtain the following result.

I Theorem 16. The bounded SORE-definability problem is coNEXPTIME-complete for
R(#) and natural numbers M encoded in binary.

Next, we consider the case when E is a regular expression. Step (1) and (2) can still
be done in polynomial time. To check whether L(E) =≤M L(Ec), we can construct two
NFA from E and Ec respectively, guess a word w such that |w| ≤M , and check whether
w ∈ L(E) \ L(Ec) or w ∈ L(Ec) \ L(E). The nondeterministic algorithm uses polynomial
space. By Savitch’s Theorem [32], we conclude that the bounded SORE-definability problem
for regular expressions is in PSPACE. For the lower bound, we can directly use the same
reduction in Theorem 4, and let M = 2|E|. The correctness follows from the following
arguments: Since the number of states of the minimum DFA for E is at most M [17], it is
easy to check that there exists an SORE E1 such that L(E) =≤M L(E1) iff there exists an
SORE E2 such that L(E) = L(E2).
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I Corollary 17. The bounded SORE-definability problem is PSPACE-complete for regular
expressions and natural numbers M encoded in binary.

It is interesting to observe that the complexities of the SORE-definability problem and
its bounded variant are the same for regular expressions, while the complexities of the two
problems are different for R(#). This distinction is attributed to the following facts: (1)
given a regular expression E, L(E) = Σ∗E , if and only if, L(E) =≤2|E| Σ∗E ; while (2) given
E ∈ R(#), L(E) = Σ∗E , if and only if, L(E) =≤22|E| Σ∗E [31]. That is, to decide whether
L(E) = Σ∗E for E ∈ R(#), we have to check double-exponentially many words in L(E), while
for regular expressions, we only need to check exponentially many words. So the bounded
SORE-definability problem is simpler than the SORE-definability problem for R(#).

Given a regular expression E in R(#) over a unary alphabet, since the minimum DFA
for E has at most M = 22·|E|+4 + 1 states [27], we have the following results.

I Corollary 18. Over a unary alphabet, the bounded SORE-definability problem is Πp
2-

complete for R(#) and natural numbers M encoded in binary.

I Corollary 19. Over a unary alphabet, the bounded SORE-definability problem is coNP-
complete for regular expressions and natural numbers M encoded in binary.

5 Conclusion

In this paper, we study the complexity of the SORE-definability problem as well as its
bounded variant. The results of the paper were summarised in Table 1. As a by-product
of the results obtained in this paper, we also solved an open problem in [27] and showed
that over a unary alphabet, the definability problem of deterministic regular expressions is
Πp

2-complete for regular expressions with counting.
There are several directions for the future work. An obvious question left open in this

paper is whether the assumption M ≥ 2 · |ΣE | for the bounded SORE-definability problem
can be lifted. Without this assumption, given an SOA A, it is unclear whether it is still in
PTIME to decide whether there exists an SORE E1 such that L(E1) =≤M L(A). Another
interesting question is to investigate the definability problem for single occurrence regular
expressions with counting (SORE(#)). The main technical challenge is how to obtain a
candidate SORE(#). Similarly, one can also consider the CHARE-definability problem (see
[3, 28] for the definition of CHARE).
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