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Abstract
We initiate the algorithmic study of the following “structured augmentation” question: is it
possible to increase the connectivity of a given graph G by superposing it with another given
graph H? More precisely, graph F is the superposition of G and H with respect to injective
mapping ϕ : V (H) → V (G) if every edge uv of F is either an edge of G, or ϕ−1(u)ϕ−1(v) is an
edge of H. Thus F contains both G and H as subgraphs, and the edge set of F is the union of
the edge sets of G and ϕ(H). We consider the following optimization problem. Given graphs G,
H, and a weight function ω assigning non-negative weights to pairs of vertices of V (G), the task
is to find ϕ of minimum weight ω(ϕ) =

∑
xy∈E(H) ω(ϕ(x)ϕ(y)) such that the edge connectivity

of the superposition F of G and H with respect to ϕ is higher than the edge connectivity of G.
Our main result is the following “dichotomy” complexity classification. We say that a class of
graphs C has bounded vertex-cover number, if there is a constant t depending on C only such that
the vertex-cover number of every graph from C does not exceed t. We show that for every class
of graphs C with bounded vertex-cover number, the problems of superposing into a connected
graph F and to 2-edge connected graph F , are solvable in polynomial time when H ∈ C. On
the other hand, for any hereditary class C with unbounded vertex-cover number, both problems
are NP-hard when H ∈ C. For the unweighted variants of structured augmentation problems, i.e.
the problems where the task is to identify whether there is a superposition of graphs of required
connectivity, we provide necessary and sufficient combinatorial conditions on the existence of
such superpositions. These conditions imply polynomial time algorithms solving the unweighted
variants of the problems.
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1 Introduction

In connectivity augmentation problems, the input is a (multi) graph and the objective is to
increase edge or vertex connectivity by adding the minimum number (weight) of additional
edges, called links. This is a fundamental combinatorial problem with a number of important
applications, we refer to the books of Nagamochi and Ibaraki [12] and Frank [6] for a detailed
introduction to the topic. In this paper we initiate the study of a “structural” connectivity
augmentation problem, where the set of additional edges should satisfy some additional
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Figure 1 For injective mapping ϕ : V (H) → V (G) such that ϕ(u1) = v1, ϕ(u2) = v4, and
ϕ(u3) = v3, we have F = G⊕ϕ H.

constrains. For example, such constrains can be that all new edges should be visible from
one vertex, i.e. the new set of edges forms a star, forms a cycle, or can be controlled from a
small set of vertices, i.e. the graph formed by the additional edges has a small vertex cover.

It is convenient to model such an augmentation problem as a graph superposition problem.
Let G and H be simple graphs (i.e. graphs without loops and multiple edges), |V (G)| ≥
|V (H)|, and let ϕ : V (H) → V (G) be an injective mapping of the vertices of H to the set
of vertices of V (G). We say that a simple graph F is the superposition of G and H with
respect to ϕ and write F = G⊕ϕ H if V (F ) = V (G) and two distinct vertices u, v ∈ V (F )
are adjacent in F if and only if uv ∈ E(G) or u, v ∈ ϕ(V (H)) and ϕ−1(u)ϕ−1(v) ∈ E(H).
See Fig. 1 for an example. Thus graph F contains G and H as subgraphs, and the edge set
of F is the union of the edge sets of G and ϕ(H).

We study the algorithmic problem of increasing the edge-connectivity of graph G by
superposing it with a graph H. We are interested in the weighted variant of the problem,
where for every pair of vertices v and u of G, mapping the endpoints of an edge of H to u
and v has a specified weight ω(uv). We consider the following problem.

Input: Graphs G and H, a weight function ω :
(

V (G)
2

)
→ N0, and a nonnegative

integer W .
Task: Decide whether there is an injective mapping ϕ : V (H) → V (G) such

that graph F = G ⊕ϕ H is connected and the weight of the mapping
ω(ϕ) =

∑
xy∈E(H) ω(ϕ(x)ϕ(y)) ≤W .

Structured Connectivity Augmentation

We also study the problem of obtaining a 2-edge connected graph F by superposing
graphs G and H. More precisely, we consider the following problem.

Input: Connected graph G and a graph H, a weight function ω :
(

V (G)
2

)
→ N0 and

a nonnegative integer W .
Task: Decide whether there is an injective mapping ϕ : V (H)→ V (G) of weight

at most W such that F = G⊕ϕ H is 2-edge connected.

Structured 2-Connectivity Augmentation

Our results. Our main result is the following “dichotomy” complexity classification of
structured augmentation problems. We say that a class of graphs C has bounded vertex-cover
number, if there is a constant t depending on C only such that the vertex-cover number of
every graph from C does not exceed t. We show that for every class of graphs C with bounded
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vertex-cover number, Structured Connectivity Augmentation and Structured
2-Connectivity Augmentation are solvable in polynomial time when H ∈ C. We
complement this result by showing that for any hereditary class C with unbounded vertex-
cover number, both problems are NP-complete when H ∈ C. Thus for any hereditary class
C both problems with H ∈ C are NP-complete if and only if C has unbounded vertex-cover
number.

The running times of our algorithms solving Structured Connectivity Augmenta-
tion and Structured 2-Connectivity Augmentation are of the form |V (G)|O(f(t)) ·
logW , where f is some function and t is the vertex cover of H. Thus our algorithms are
not fixed-parameter tractable when t is the parameter. We show that from the perspective
of parameterized complexity, this situation is unavoidable. More precisely, we show that
both problems are W[1]-hard when parameterized by t. We refer to the book of Downey and
Fellows [2] for an introduction to parameterized complexity.

We also consider the unweighted variants of Structured Connectivity Augmenta-
tion and Structured 2-Connectivity Augmentation. In these cases, the weight is
ω(uv) = 0 for every pair of vertices of G andW = 0. The task is to identify whether there is a
superposition of graphs G and H of edge connectivity 1 or 2, correspondingly. Here we obtain
necessary and sufficient combinatorial conditions of the existence of an injective function
ϕ such that F = G ⊕ϕ H is edge k-connected provided that G is edge (k − 1)-connected,
k = 1, 2. These conditions imply polynomial time algorithms solving the unweighted variants
of the problems.

Due to space constraints some proof are either just sketched or omitted in this extended
abstract. The full details are available in [4].

Related work. The problem of increasing graph connectivity by adding additional edges is
the classic and well-studied problem. It was first studied by Eswaran and Tarjan [3] and
Plesnik [13] who showed that increasing the edge connectivity of a given graph to 2 by adding
minimum number of additional augmenting edges is polynomial time solvable. Subsequent
work in [14, 5] showed that this problem is also polynomial time solvable for any given
target value of edge connectivity to be achieved. However, if the set of augmenting edges
is restricted, that is, there are pairs of vertices in the graph which do not constitute a new
edge, or if the augmenting edges have (non-identical) weights on them, then the problem of
computing the minimum size (or weight) augmenting set is NP-complete [3]. Augmentation
problems with constraints like simplicity-preserving augmentations, augmentations with
partition constraints, or planarity requirements can be found in the literature, see the book
of Nagamochi and Ibaraki [12] for further references.

Strongly relevant to structural augmentation is the Minimum Star Augmentation
problem, see e.g. [12, Section 3.3.3] and [10]. Here one wants to increase the edge-connectivity
of a given graph by adding a new vertices and connecting it with a small number of edges
to the remaining vertices of the graph. In our setting this corresponds to the case of graph
G having an isolate vertex, and graph H being a star (a tree with vertex-cover number 1).
Tibor and Szigeti [10] studied a generalization of this problem where one wants to make a
graph edge r-connected by attaching p stars of specified degrees. In particular, they provided
combinatorial conditions which are necessary and sufficient for such an augmentation. Again,
this problem can be seen as a special case of structural augmentation, where graph G has p
isolated vertices and graph H is the union of stars of specified degrees.

MFCS 2017
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2 Preliminaries

We consider only finite undirected graphs. For a graph G,
(
V (G)

2
)
denotes the set of unordered

pairs of distinct vertices of G. For uniformity, we denote the elements of
(
V (G)

2
)
in the same

way as edges, i.e., we write uv ∈
(
V (G)

2
)
. A subgraph H of G is spanning if V (H) = V (G).

For a graph G and a subset U ⊆ V (G) of vertices, we write G[U ] to denote the subgraph of
G induced by U . We write G − U to denote the graph G[V (G) \ U ]. Let S ⊆ E(G) for a
graph G. By G− S we denote by G− S the graph obtained by the deletion of the edges of
S. We write G− e instead of G− {e} for an edge e. For a vertex v, we denote by NG(v) the
(open) neighborhood of v, i.e., the set of vertices that are adjacent to v in G. Two nonadjacent
vertices u and v are (false) twins if NG(u) = NG(v). A set of edges with pairwise distinct
end-vertices is called a matching. A matching M is induced if the end-vertices of M are
pairwise nonadjacent. A vertex v is saturated in a matching M if v is incident to an edge of
M . We say that the disjoint union of copies of K2 is a matching graph. A graph class C is
said to be hereditary if for every G ∈ C and every induced subgraph H of G, H ∈ C. A set of
vertices X ⊆ V (G) is a vertex cover of a graph G if every edge of G has at least one of its
end-vertices in X. The minimum size of a vertex cover is called the vertex-cover number of
G and is denoted by β(G).

Let k be a positive integer. A graph G is (edge) k-connected if for every S ⊆ E(G) with
|S| ≤ k − 1, G − S is connected. Since we consider only edge connectivity, whenever we
say that a graph G is k-connected, we mean that G is edge k-connected. We assume that
every graph is 0-connected. A set of edges S ⊆ E(G) of a connected graph G is an edge
separator if G− S is disconnected. An edge e of a connected graph G is a bridge if {e} is a
separator. Clearly, a connected graph is 2-connected if and only if it has no bridge. Let B
be the set of bridges of a connected graph G. We call a component of G−B a biconnected
component of G. In other words, a biconnected component is an inclusion-wise maximal
induced 2-connected subgraph of G. We say that a biconnected component L of a graph G
is a pendant biconnected component (or simply a pendant) if a unique bridge of G is incident
to V (L). A biconnected component is trivial if it has a single vertex. For a graph G, we
denote by c(G) the number a components of G, and for a connected graph G, p(G) is the
number of pendants. We also denote by i(G) the number of isolated vertices of G.

Let S be an inclusion-wise minimal edge separator of a connected graph G. Then G− S
has exactly two components C1 and C2. Let G be a spanning subgraph of F . We say that
an edge e ∈ E(F ) \ E(G) covers a minimal separator S of G if e has its end-vertices in C1
and C2. The following observation about separators is useful.

I Observation 1. Let k ≥ 2 be an integer and let a (k− 1)-connected graph G be a spanning
subgraph of F . Then F is k-connected if and only if for each edge separator S of G with
|S| = k − 1, F has an edge that covers it.

We also need some additional terminology and folklore observations for the augmentation
of a connected graph to a 2-connected graph. Let G be a connected graph and let x and y be
distinct vertices of G. We say that a bridge uv of G belongs to an (x, y)-path P if uv ∈ E(P ).
Similarly, a biconnected component Q is crossed by P if V (Q) ∩ V (P ) 6= ∅. The following
observation show that the choice of an (x, y)-path is irrelevant if the biconnected components
containing the end-vertices are given.

I Observation 2. Let distinct {x1, y1} and {x1, y2} be pairs of distinct vertices of a connected
graph G such that x1, x2 are in the same biconnected component of G and, similarly, y1, y2
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are in the same biconnected component of G. Let also P1 and P2 be (x1, y1) and (x2, y2)-paths
respectively. Then the following holds:

a bridge uv of G belongs to P1 if and only if uv belongs to P2,
a biconnected component Q is crossed by P1 if and only if Q is crossed by P2.

I Observation 3. Let u and v be distinct nonadjacent vertices of a connected graph G and
let F be a graph obtained from G by the addition of the edge uv. Then uv covers all bridges
that belongs to a (u, v)-path P in G, and for the biconnected components Q1, . . . , Qs that are
crossed by P , F [V (Q1) ∪ . . . ∪ V (Qs)] is a biconnected component of F .

In the remaining part of the paper, we will be always assuming that in the instance of
the structured augmentation problem, we have
(i) |V (H)| ≤ |V (G)|;
(ii) Graph H has no isolated vertices.
Indeed, if |V (H)| > |V (G)|, then there is no superposition of G and H, and thus such an
instance is a no-instance. For (ii), it is sufficient to observe that mapping of isolated vertices
of H to vertices of G does not influence the connectivity of the superposition. Another
technical detail should be mentioned here. In Theorems 5 and 7, we evaluate the running
times of algorithms as a function of |V (G)| and the vertex cover number of H. In order to
do this, we should be able to recognize within this time the (trivial) no-instances, where
|V (H)| > |V (G)|. We can verify this condition in time |V (G)|O(1) just by refuting the
instances of size more than |V (G)|O(1) after reading the first |V (G)|O(1) bits.

3 Augmenting by graphs with small vertex cover

In this section we consider the situation when graph H is from a graph class C with
bounded vertex-cover number. In Subsection 3.1 we show that in this case Structured
Connectivity Augmentation and Structured 2-Connectivity Augmentation are
solvable in polynomial time. In Subsection 3.2 we show that this condition is tight by proving
that for any hereditary graph class C with unbounded vertex-cover number, both problems
are NP-hard. Due to space restrictions, we only sketch our results.

3.1 Algorithms
We start with a solution for Structured Connectivity Augmentation, which is simpler
than the solution for Structured 2-Connectivity Augmentation.

Structured Connectivity Augmentation. We need the following lemma.

I Lemma 4. Let G and H be graphs and let ϕ : V (H) → V (G) be an injection such that
F = G⊕ϕ H is connected. Let also X be a vertex cover of H of size t. Then there is a set
Y ⊆ V (H) \X of size at most 2(t − 1) such that for graph H ′ = H[X ∪ Y ] and mapping
ψ = ϕ|X∪Y , the vertices of ψ(X ∪Y ) are in the same connected component of F ′ = G⊕ψH ′.

Let us remind, that, given a positive integer t, a graph class C has vertex-cover number
at most t if every graph H ∈ C has a vertex cover of size at most t. We are ready to prove
the main theorem about Structured Connectivity Augmentation.

I Theorem 5. Let t be a positive integer and C be a graph class of vertex-cover number at
most t. Then for any H ∈ C, Structured Connectivity Augmentation is solvable in
time |V (G)|O(t) · logW .

MFCS 2017
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Sketch of the proof. Let G and H ∈ C be graphs and let ω :
(
V (G)

2
)
→ N0 be a weight

function. We show that we can find in time |V (G)|O(t) · logW an injective mapping
ϕ : V (H)→ V (G) such that F = G⊕ϕ H is connected and ω(ϕ) =

∑
xy∈E(H) ω(ϕ(x)ϕ(y))

is minimum if ϕ exists.
Let us remind that without loss of generality, we can assume that |V (H)| ≤ |V (G)| and

H has no isolated vertices.
We start from finding a vertex cover X of size at most t in H. Since we aim for an

algorithm with running time |V (G)|O(t) · logW , vertex cover X can be found by brute-force
checking of all subsets of V (H) of size at most t. If we fail to find X of size at most t, it
means that H 6∈ C, in this case we return the answer NO and stop. Assume that X exists.

Suppose that there is an injective mapping ϕ : V (H)→ V (G) such that F = G⊕ϕ H is
connected and assume that for ϕ, ω(ϕ) is minimum. By Lemma 4, there is a set Y ⊆ V (H)\X
of size at most 2(t−1) such that for H ′ = H[X∪Y ] and ψ = ϕ|X∪Y , the vertices of ψ(X∪Y )
are in the same component of F ′ = G ⊕ψ H ′. Considering all possibilities, we guess Y in
time |V (H)|O(t).

Now we consider all possible injective mapping ψ : X ∪ Y → V (G) such that the vertices
of ψ(X ∪ Y ) are in the same connected component of F ′ = G⊕ψ H ′, where H ′ = H[X ∪ Y ].
Notice that there are at most |V (G)|3t−2 such mappings that can be generated in time
|V (G)|O(t). If we fail to find ψ, we reject the current choice of Y . Otherwise, for every ψ, we
try to extend it to an injection ϕ : V (H)→ V (G) such that F = G⊕ϕ H is connected, and
among all extensions we choose one that provides the minimum weight ω(ϕ).

Let Z = V (H) \ (X ∪ Y ). The vertices of ψ(X ∪ Y ) are in the same component of F ′.
Denote this component by F0 and denote by F1, . . . , Fr the other components of this graphs.
Recall that Z is an independent set of H and each vertex of Z has an incident edge with
one endpoint in X. It follows that for an injection ϕ : V (H)→ V (G) such that ψ = ϕ|X∪Y ,
F = G⊕ϕ H is connected if and only if for every i ∈ {1, . . . , r}, there is v ∈ V (Fi) such that
v ∈ ϕ(Z). Hence, if r > |Z|, we cannot extend ψ. In this case we discard the current choice
of ψ.

Assume from now that Y and ψ are fixed, F ′ = G⊕ψ H ′ is connected and r ≤ |Z|. For
z ∈ Z and v ∈ V (G) \ ψ(X ∪ Y ), we define the weight of mapping z to v as

w(z, v) =
∑

u∈NG(v)∩ψ(NH (z))

ω(uv),

that is, w(z, x) is the weight of edges that is added to the weight of mapping if we decide to
extend ψ by mapping z to v. Let W = max{w(z, v) | z ∈ Z, v ∈ V (G) \ ψ(X ∪ Y )}+ 1. We
construct the weighted auxiliary bipartite graph G with the bipartition (A,B) of its vertex
set and the weight function f : E(G)→ N0 as follows.

Set A = (V (F0) \ ψ(X ∪ Y )) ∪ V (F1) ∪ . . . ∪ V (Fr) = V (G) \ ψ(X ∪ Y ).
Construct a set of vertices S0 of size |V (F0)| − |X ∪ Y | and sets Si of size |V (Fi)| − 1 for
i ∈ {1, . . . , r}.
Set B = Z ∪ S0 ∪ . . . ∪ Sr.
For each z ∈ Z and v ∈ A, construct an edge zv and set f(zv) = w(z, v).
For each u ∈ S0 and v ∈ V (F0) \ ψ(X ∪ Y ), construct an edge uv and set f(uv) = W .
For each ∈ {1, . . . , r}, do the following: for each u ∈ Si and v ∈ V (Fi), construct an edge
uv and set f(uv) = W .

We find a matching M in G that saturates every vertex of A and has the minimum weight
using the Hungarian algorithm [7, 11] in time O(|V (G)|3 · logW ).
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Observe that a matching that saturates every vertex of A exists, because r ≤ Z. We
can construct such a matching by selecting one vertex in V (Fi) for each i ∈ {1, . . . , r}
and matching it with a vertex of Z. Then we complement this set of edges to a matching
saturating A by adding edges incident to S0∪ . . .∪Sr. For the matchingM that has minimum
weight, we can also observe the following.

First, note that

• every vertex of Z is saturated by M. (1)

Indeed, targeting towards a contradiction, assume that z ∈ Z is not saturated. Since
|V (H)| ≤ |V (G)|, there is uv ∈M such that u ∈ S0 ∪ . . . ∪ Sr and v ∈ A. We replace uv by
zv in M . Because f(uv) = W > w(zv), we obtain a matching with a smaller weight. This
contradicts the choice of M .

Next, we claim that

• there is zv ∈M such that z ∈ Z and v ∈ V (Fi). (2)

Indeed, this is because the vertices of V (Fi) are adjacent to |V (Fi)| − 1 vertices of Si and all
other their neighbors are in Z.

Finally, we have that among all matching saturating A, M is a matching satisfying (1)
and (2) such that for M ′ = {zv ∈ M | z ∈ Z}, f(M ′) is minimum. To see it, observe that
f(uv) = W for uv ∈M \M ′. Hence, f(M \M ′) = (|A|−|Z|)W , because |M \M ′| = |A|−|Z|
by (1). Therefore, f(M ′) = f(M)− f(M \M ′) = f(M)− (|A| − |Z|)W .

For every z ∈ Z, we define ϕ(z) = v, where zv ∈ M ′ and ϕ(x) = ψ(x) for x ∈ X ∪ Y .
Clearly, ϕ is an extension of ψ. By (1), ϕ is an injective mapping of V (H) to V (G). By
(2) and the choice of X and Y , we obtain that G ⊕ϕ H is connected. We claim that ϕ is
an extension of ψ such that F = G⊕ϕ H is connected that has the minimum total weight
ω(ϕ) =

∑
xy∈E(H) ω(ϕ(x)ϕ(y)).

Recall that we try all possible choices of Y and for every choice of Y , we consider all
possible choices of ψ. If we fail to find an injection ϕ : V (H) → V (G) such that ϕ is an
extension of ψ and F = G⊕ϕH is connected we return the answer NO. Otherwise, we return
ϕ that provides the minimum weight.

To complete the proof, observe that the total running time of the algorithm is |V (G)|O(t) ·
logW . J

Structured 2-Connectivity Augmentation. As it could be expected, the algorithm for
Structured 2-Connectivity Augmentation is more technical. We start with a lemma,
which is similar to Lemma 4. We show it by making use of Observations 1 and 3.

I Lemma 6. Let G and H be graphs such that G is connected, and let ϕ : V (H) → V (G)
be an injection such that F = G ⊕ϕ H is connected. Suppose that X is a vertex cover of
H and t = |X|. Then there is a set Y ⊆ V (H) \X of size at most 2(t − 1) such that for
H ′ = H[X ∪ Y ] and ψ = ϕ|X∪Y , the vertices of ψ(X ∪ Y ) are in the same biconnected
component of F ′ = G⊕ψ H ′.

I Theorem 7. Let t be a positive integer and C be a graph class of vertex-cover number at
most t. Then for any H ∈ C, Structured 2-Connectivity Augmentation is solvable in
time |V (G)|O(2t) logW .

Sketch of the proof. Let G and H be graphs such that G is connected and H ∈ C. Let
ω :
(
V (G)

2
)
→ N0 be a weight function. Similarly to the proof of Theorem 5 we show that we

can find in time |V (G)|O(2t) · logW the minimum value of ω(ϕ) =
∑
xy∈E(H) ω(ϕ(x)ϕ(y))

MFCS 2017
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for an injective mapping ϕ : V (H) → V (G) such that F = G ⊕ϕ H is connected if such a
mapping ϕ exists.

The first steps of our algorithm are the same as in the proof of Theorem 5. Again, we
remind that |V (H)| ≤ |V (G)| and that H has no isolated vertices.

Next, we find a vertex cover X of minimum size in H of size at most t in time |V (G)|O(t).
If we fail to find X of size at most t, then H 6∈ C. We return NO and stop. From now on we
assume that X exists.

Suppose that there is an injective mapping ϕ : V (H) → V (G) such that F = G ⊕ϕ H
is 2-connected and assume that for ϕ, ω(ϕ) is minimum. By Lemma 6, there is a set
Y ⊆ V (H) \X of size at most 2(t− 1) such that for H ′ = H[X ∪ Y ] and ψ = ϕ|X∪Y , the
vertices of ψ(X ∪ Y ) are in the same biconnected component of F ′ = G⊕ψ H ′. Considering
all possibilities, we guess Y in time |V (H)|O(t).

Now we consider all possible injective mapping ψ : X ∪ Y → V (G) such that the vertices
of ψ(X ∪Y ) are in the same biconnected component of F ′ = G⊕ψH ′ where H ′ = H[X ∪Y ].
Notice that there at most |V (G)|3t−2 such mappings that can be generated in time |V (G)|O(t).
If we fail to find ψ, we reject the current choice of Y . Otherwise, for every ψ, we try to
extend it to an injection ϕ : V (H)→ V (G) such that F = G⊕ϕH is 2-connected, and among
all extensions we choose one that provides the minimum weight ω(ϕ).

Let Z = V (H)\(X∪Y ). The vertices of ψ(X∪Y ) are in the same biconnected component
of F ′. Denote this biconnected component by F0 and denote by F1, . . . , Fr the pendant
biconnected components of F ′ that are distinct from F0. Recall that Z is an independent set
of H and each vertex of Z has an incident edge with one endpoint in X. By Observation 1,
we obtain the following crucial property.

For an injection ϕ : V (H)→ V (G) such that ψ = ϕ|X∪Y , F = G⊕ϕ H is 2-connected if
and only if
(i) for every i ∈ {1, . . . , r}, there is v ∈ V (Fi) such that v ∈ ϕ(Z), and
(ii) if v is the unique element of V (Fi) ∩ ϕ(Z) and v is incident to a bridge vu of G, then

there is x ∈ X such that ϕ(x) 6= u and x is adjacent to ϕ−1(v) in H.
Similarly to the proof of Theorem 5, we solve auxiliary matching problems to find

the minimum weight of ϕ but now, due the condition (ii), the algorithm becomes more
complicated and we are using dynamic programming.

For z ∈ Z and v ∈ V (G) \ ψ(X ∪ Y ), we define the weight of mapping z to v as

w(z, v) =
∑

u∈NG(v)∩ψ(NH (z))

ω(uv), (3)

that is, w(z, x) is the weight of edges that is added to the weight of mapping if we decide to
extend ψ by mapping z to v. Our aim is to find the extension ϕ of ψ that satisfies (i) and (ii)
such that the total weight of the mapping of the vertices of Z to verices of V (G) \ ψ(X ∪ Y )
by ϕ is minimum.

Since X is a vertex cover of H of size t, the set Z can be partitioned into s ≤ 2t classes
of false twins Z1, . . . , Zs. Let pi = |Zi| for i ∈ {1, . . . , s}. We exploit the following property
of false twins in Z: if x, y ∈ Zi, then w(x, v) = w(y, v) for v ∈ V (G) \ ψ(X ∪ Y ).

For each s-tuple of integers (q1, . . . , qs) such that 0 ≤ qi ≤ pi, for i ∈ {1, . . . , s} and each
h ∈ {0, . . . , r}, we define

αh(q1, . . . , qs) = min
ξ

∑
z∈Z′

w(z, ξ(z)), (4)

where Z ′ ⊆ Z such that |Z ′ ∩ Zi| = qi for i ∈ {1, . . . , s} and the minimum is taken over all
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injective mappings ξ : Z ′ → (V (F0)\ψ(X ∪Y ))∪V (F1)∪ . . .∪V (Fh) such that the following
conditions are satisfied:
(a) for every i ∈ {1, . . . , h}, there is v ∈ V (Fi) such that v ∈ ξ(Z ′), and
(b) if v is a unique element of V (Fi) ∩ ξ(Z ′) for some i ∈ {1, . . . , h} and v is incident to a

bridge vu of G, then there is x ∈ X such that ψ(x) 6= u and x is adjacent to ξ−1(v) in
H.

If such a mapping ξ does not exist, then we assume that αh(q1, . . . , qs) = +∞. Recall that
if x, y ∈ Zi, then w(x, v) = w(y, v) for v ∈ V (G) \ ψ(X ∪ Y ). It implies that the function
αh(q1, . . . , qs) depends only on the values of q1, . . . , qs.

We claim that computing αr(p1, . . . , ps) is equivalent to finding an extension ϕ of ψ of
minimum weight such that F = G⊕ϕ H is 2-connected.

Assume that αr(p1, . . . , ps) < +∞. Notice that Z ′ = Z if qi = pi for i ∈ {1, . . . , s}.
Let ξ : Z → (V (F0) \ ψ(X ∪ Y )) ∪ V (F1) ∪ . . . ∪ V (Fh) be an injection that provides the
minimum in (4), that is, αr(p1, . . . , ps) =

∑
z∈Z w(zξ(z)). We define ϕ(z) = ξ(z) for z ∈ Z

and ϕ(x) = ψ(x) for x ∈ X ∪Y . Clearly, ϕ is an extension of ψ. Because ξ is an injection, we
have that ϕ is an injective mapping. Since ξ satisfies (a) and (b), we obtain that ϕ satisfies (i)
and (ii) and, therefore, F = G⊕ϕH is 2-connected. Let R =

∑
xy∈E(H), x,y∈X∪Y ω(ψ(x)ψ(y)).

Then using (3), we have that

ω(ϕ) =
∑

xy∈E(H)

ω(ϕ(x)ϕ(y))

=
∑

xy∈E(H), x,y∈X∪Y

ω(ϕ(x)ϕ(y)) +
∑

xz∈E(H), x∈X,z∈Z

ω(ϕ(x)ϕ(y))

=R+
∑
z∈Z

w(z, ϕ(z)) = R+
∑
z∈Z

w(z, ξ(z)) = R+ αr(p1, . . . , ps). (5)

Let ϕ′ : V (H)→ V (G) be an injection that extends ψ such that F ′ = G⊕ϕ′ H is 2-connected.
We define ξ′ : Z → (V (F0)\ψ(X∪Y ))∪V (F1)∪ . . .∪V (Fh) by setting ξ′(z) = ϕ′(z) for z ∈ Z.
Since ϕ′ is an injection, ξ′ is also an injection. Because F ′ is 2-connected, ϕ satisfies (i) and
(ii). This implies that ξ′ satisfies (a) and (b). Therefore,

∑
z∈Z w(z, ξ′(z)) ≥ αr(p1, . . . , ps).

Similarly to (5), we have that ω(ϕ′) = R +
∑
z∈Z w(z, ξ′(z)) ≥ R + αr(p1, . . . , ps). We

conclude that ϕ is an extension ϕ of ψ of minimum weight such that F = G ⊕ϕ H is
2-connected.

Suppose that αr(p1, . . . , ps) = +∞. It implies that there is no injection ξ : Z → (V (F0) \
ψ(X ∪ Y )) ∪ V (F1) ∪ . . . ∪ V (Fh) satisfying (a) and (b). But this immediately implies that
there is no injective extension ϕ of ψ satisfying (i) and (ii). This completes the proof of the
claim.

We use dynamic programming to compute αh consequently for h = 0, 1, . . . , r.
We start with computing α0(q1, . . . , qs) for each s-tuple (q1, . . . , qs). Notice that the

conditions (a) and (b) are irrelevant in this case, because they concern only h ≥ 1. We
construct the auxiliary complete bipartite graph G0 with the bipartition (V (F0)\ψ(X∪Y ), Z ′)
of its vertex set and define the weight of each edge zv for z ∈ Z ′ and v ∈ V (F0)\ψ(X ∪Y ) as
w(z, v). We find a matching M in G0 that saturates every vertex of Z ′ and has the minimum
weight using the Hungarian algorithm [7, 11] in time O(|V (G)|3 · logW ). If there is no
matching saturating Z ′, we set α0(q1, . . . , qs) = +∞. Otherwise, α0(q1, . . . , qs) = w(M). It
is straightforward to verify the correctness of computing α0(q1, . . . , qs) by the definition of
this function.

Assume that h ≥ 1 and we already computed the table of values of αh−1(q1, . . . , qs). We ex-
plain how to construct the table of values of αh−1(q1, . . . , qs). The the computation is based on
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the observation that we can see an injective mapping
ξ : Z ′ → (V (F0) \ ψ(X ∪ Y )) ∪ V (F1) ∪ . . . ∪ V (Fh) as the union of two injections
ξ′ : Z ′′ → (V (F0)\ψ(X∪Y ))∪V (F1)∪. . .∪V (Fh−1) and λ : Z ′′′ → V (Fh) for the appropriate
partition (Z ′′, Z ′′′) of Z ′.

For each s-tuple of integers (q1, . . . , qs) such that 0 ≤ qi ≤ pi for i ∈ {1, . . . , s}, we define

α′h(q1, . . . , qs) = min
λ

∑
z∈Z′

w(z, ξ(z)), (6)

where Z ′ ⊆ Z such that |Z ′ ∩ Zi| = qi for i ∈ {1, . . . , s} and the minimum is taken over all
injective mappings λ : Z ′ → V (Fh) such that the following conditions are fulfilled:

(a∗) there is v ∈ V (Fh) such that v ∈ λ(Z ′), and
(b∗) if v is the unique element of V (Fh) ∩ λ(Z ′) and v is incident to a bridge vu of G, then

there is x ∈ X such that ψ(x) 6= u and x is adjacent to λ−1(v) in H.

If such a mapping λ does not exist, then we assume that α′h(q1, . . . , qs) = +∞. As for
αh(q1, . . . , qs), α′h(q1, . . . , qs) depends only on the values of q1, . . . , qs, because if x, y ∈ Zi,
then w(x, v) = w(y, v) for v ∈ V (G) \ ψ(X ∪ Y ).

Let uv be the unique bridge of G with v ∈ V (Fh). Suppose that for an s-tuple (q1, . . . , qs),
we obtain that |Z ′| = 1 and for the unique vertex z ∈ Z ′, z has a unique neighbor x ∈ X
in H and ψ(x) = u. Then we set α′h(q1, . . . , qs) = +∞ if |V (Fh)| = 1 and α′h(q1, . . . , qs) =
min{w(zv′) | v′ ∈ V (Fh) \ {v}} otherwise. For other s-tuples (q1, . . . , qs), we compute
α′h(q1, . . . , qs) as follows. We construct the auxiliary complete bipartite graph Gh with the
bipartition (V (Fh), Z ′) of its vertex set and define the weigh of each edge zv for z ∈ Z ′
and v ∈ V (F0) \ ψ(X ∪ Y ) as w(zv). We find a matching M in Gh that saturates every
vertex of Z ′ and has the minimum weight using the Hungarian algorithm [7, 11] in time
O(|V (G)|3 · logW ). If there is no matching saturating Z ′, we set α′h(q1, . . . , qs) = +∞.
Otherwise, α′h(q1, . . . , qs) = w(M). It is again straightforward to verify the correctness of
computing α′h(q1, . . . , qs) using the definition of this function.

Now, to compute αh(q1, . . . , qs), we use the equation:

αh(q1, . . . , qs) = min{αh−1(q′1, . . . , q′s) + α′h(q′′1 , . . . , q′′s )}, (7)

where the minimum is taken over all s-tuples (q′1, . . . , q′s) and (q′′1 , . . . , q′′s ) such that qi = q′i+q′′i
for i ∈ {1, . . . , s}.

To evaluate the running time, observe that there are at most |V (G)|s s-tuples (q1, . . . , qs).
Since s ≤ 2t, it implies that the table of values of α0(q1, . . . , qs) can be computed in time
|V (G)|O(2t) · logW . Similarly, the table of values of α′h(q1, . . . , qs) for each h ∈ {1, . . . , r} can
be computed in the same time. To compute αh(q1, . . . , qs) for a given s-tuple (q1, . . . , qs) using
(7), we have to consider at most |V (G)|s pairs of s-tuples (q′1, . . . , q′s) and (q′′1 , . . . , q′′s ). Hence,
we can compute the table of values αh(q1, . . . , qs) from the tables of values of αh−1(q1, . . . , qs)
and α′h(q1, . . . , qs) in time |V (G)|O(2t) · logW for each h ∈ {1, . . . , r}. We conclude that the
total running time is |V (G)|O(2t) · logW . J

3.2 Hardness of structured augmentation
In this section we show that Theorems 5 and 7 are tight in the sense that if the vertex-
cover number of graphs in a hereditary graph class C is unbounded, then both structured
augmentation problems are NP-complete. Our hardness proof actually holds for for any
k-edge connectivity augmentation. For a positive integer k, we define the following problem:
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Input: Graphs G and H such that G is edge (k − 1)-connected, a weight function
ω :
(

V (G)
2

)
→ N0 and a nonnegative integer W .

Task: Decide whether there is an injective ϕ : V (H) → V (G) such that F =
G ⊕ϕ H is edge k-connected and the weight of the mapping ω(ϕ) =∑

xy∈E(H) ω(ϕ(x)ϕ(y)) ≤W .

Structured k-Connectivity Augmentation

Let us note that for k = 1 this is Structured Connectivity Augmentation and for
k = 2 this is Structured 2-Connectivity Augmentation.

I Theorem 8. Let k be a positive integer. Let also C be a hereditary graph class. Then if the
vertex-cover number of C is unbounded, then Structured k-Connectivity Augmentation
is NP-complete for H ∈ C in the strong sense.

Also we observe that it is unlikely that we can avoid the dependency on t in the exponents
of polynomial bounding the running time when solving Structured k-Connectivity
Augmentation for H with β(H) ≤ t.

I Proposition 9. For every positive integer k, Structured k-Connectivity Augmenta-
tion is W[1]-hard when parameterized by β(H) even if the weight of every pair of vertices of
G is restricted to be ether 0 or 1.

This proposition implies that unless FPT =W[1], we cannot solve Structured k-
Connectivity Augmentation for k = 1, 2 in time f(β(H)) · |V (G)|O(1). Hence the
running time of the form |V (G)|f(t) of algorithms solving Structured k-Connectivity
Augmentation for graphs H with β(H) ≤ t is probably unavoidable.

4 Augmenting unweighted graphs

In this section we investigate unweighted Structured Connectivity Augmentation
and Structured 2-Connectivity Augmentation. Let us remind that in the unweighted
cases of the structured augmentation problems the task is to identify whether there is a
superposition of graphs G and H of edge connectivity 1 or 2, correspondingly. In other
words, we have the weight ω(uv) = 0 for every pair of vertices of G and W = 0. We obtain
structural characterizations of yes-instances for both problems.

For Structured Connectivity Augmentation, we show the following theorem.

I Theorem 10. Let G and H be graphs such that H has no isolated vertices and |V (H)| ≤
|V (G)|. Then there is an injective mapping ϕ : V (H) → V (G) such that F = G ⊕ϕ H is
connected if and only if c(G) ≤ |V (H)| − c(H) + 1 and one of the following holds:
(i) H is connected,
(ii) H is disconnected graph and i(G) ≤ |V (H)| − c(H).

Now we consider the case Structured 2-Connectivity Augmentation.

I Theorem 11. Let G and H be graphs such that G is connected, H has no isolated vertices
and |V (H)| ≤ |V (G)|. Then there is an injective mapping ϕ : V (H) → V (G) such that
F = G⊕ϕ H is 2-connected if and only if one of the following holds:
(i) G is 2-connected,
(ii) G is not 2-connected and p(G) ≤ |V (H)|,
unless G is a star K1,n where n is odd and H is a matching graph.
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Theorems 10 and 11 immediately imply the next corollary.

I Corollary 12. Unweighted Structured 1-Connectivity Augmentation and Struc-
tured 2-Connectivity Augmentation are solvable in time O(|V (G)|+ |E(G)|+ |E(H)|).

5 Conclusion

We initiated the investigation of the structured connectivity augmentation problems where
the aim is to increase the edge connectivity of the input graphs by adding edges when
the added edges compose a given graph. In particular, we proved that Structured
Connectivity Augmentation and Structured 2-Connectivity Augmentation are
solvable in polynomial time when H is from a graph class C with bounded vertex-cover
number. It is natural to ask about increasing connectivity of a (k − 1)-connected graph to
a k-connected graph for every positive integer k. For the “traditional” edge connectivity
augmentation problem (see [6, 12]), the augmentation algorithms are based on the classic
work of Dinits, Karzanov, and Lomonosov [1] about the structure of minimum edge separators.
However, for the structural augmentation, the structure of the graph H is an obstacle for
implementing this approach directly. Due to this, we could not push further our approach to
establish the complexity of Structured k-Connectivity Augmentation for k > 2 when
H is of bounded vertex cover. This remains a natural open question. Recall that our hardness
results showing that it is NP-hard to increase the connectivity of a (k − 1)-connected graph
to a k-connected graph when H belongs to a class with unbounded vertex cover number are
proved for every k.

As the first step, it could be interesting to consider the variant of the problem for
multigraphs. In this case, we allow parallel edges and assume that for a mapping φ : V (H)→
V (G), the multiplicity of φ(x)φ(y) in G⊕φ H is the sum of the multiplicities of φ(x)φ(y) in
G and xy in H. Notice that all our algorithmic and hardness results can be restated for this
variant of the problem. Actually, some of the proofs for this variant of the problem become
even simpler.

The question of obtaining a k-connected graph for k ≥ 3 is also open for the unweighted
problem. Here we ask whether it is possible to derive structural necessary and sufficient
conditions for a (k− 1)-connected graph G and a graph H such that there exists an injective
mapping φ : V (H)→ V (G) such that G⊕φ H is k-connected.

Another direction of the research is to consider vertex connectivity. As it is indicated by
the existing results about vertex connectivity augmentation (see, e.g., [8, 9]), this variant of
the problem could be more complicated.
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