Weighted Operator Precedence Languages®

Manfred Droste!, Stefan Diick?, Dino Mandrioli®, and
Matteo Pradella*

1 Institute of Computer Science, Leipzig University, Germany
droste@informatik.uni-leipzig.de

2 Institute of Computer Science, Leipzig University, Germany
dueck@informatik.uni-leipzig.de

3 Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico
di Milano, Italy
dino.mandrioli@polimi.it

4 Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico
di Milano, Italy, and
IEIIT, Consiglio Nazionale delle Ricerche, via Ponzio 34/5, 20133 Milano, Italy
matteo.pradella@polimi.it

—— Abstract

In the last years renewed investigation of operator precedence languages (OPL) led to discover
important properties thereof: OPL are closed with respect to all major operations, are character-
ized, besides the original grammar family, in terms of an automata family (OPA) and an MSO
logic; furthermore they significantly generalize the well-known visibly pushdown languages (VPL).
In another area of research, quantitative models of systems are also greatly in demand. In this
paper, we lay the foundation to marry these two research fields. We introduce weighted operator
precedence automata and show how they are both strict extensions of OPA and weighted visibly
pushdown automata. We prove a Nivat-like result which shows that quantitative OPL can be
described by unweighted OPA and very particular weighted OPA. In a Biichi-like theorem, we
show that weighted OPA are expressively equivalent to a weighted MSO-logic for OPL.

1998 ACM Subject Classification F.1.1 Models of Computation, F.4.1 Mathematical Logic,
F.4.3 Formal Languages

Keywords and phrases Quantitative automata, operator precedence languages, input-driven lan-
guages, visibly pushdown languages, quantitative logic.

Digital Object ldentifier 10.4230/LIPIcs. MFCS.2017.31

1 Introduction

In the long history of formal languages the family of regular languages (RL) has always played
a major role: thanks to its simplicity and naturalness, it enjoys many positive mathematical
properties which have been thoroughly exploited in disparate practical applications; among
them, those of main interest in this paper are the following:
RL have been characterized in terms of various mathematical logics. Originally, Biichi,
Elgot, and Trakhtenbrot [6, 18, 34] independently developed a monadic second order
(MSO) logic defining exactly the RL family. This work has been followed by many further
results; in particular those that exploited weaker but simpler logics such as first-order,

* This work was supported by Deutsche Forschungsgemeinschaft (DFG) Graduiertenkolleg 1763
(QuantLA).

© Manfred Droste, Stefan Diick, Dino Mandrioli, and Matteo Pradella;
37 licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).

Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 31; pp. 31:1-31:15

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.31
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

31:2

Weighted Operator Precedence Languages

propositional, and temporal ones culminated in the breakthrough of model checking to
support automatic verification [28, 19, 7].

Weighted RL have been introduced by Schiitzenberger in [32]: by assigning a weight in a

suitable algebra to each language word, we may specify several attributes of the word, e.g.,

relevance, probability, etc. Much research then followed and extended Schiitzenberger’s

original work in various directions, cf. the books [4, 17, 23, 31, 13].

Unfortunately, all families with greater expressive power than RL — typically context-free
languages (CFL), which are the most widely used family in practical applications — pay a
price in terms of algebraic and logic properties and, consequently, of possible tools supporting
their automatic analysis. For instance, for CFL, the containment problem is undecidable.

What was not possible for general CFL, however, has been possible for important
subclasses of this family, which together we call structured CFL. Informally, by this term we
denote those CFL where the syntactic tree-structure of their words is immediately “visible”
in the words themselves. Two first equivalent examples of such families are parenthesis
languages [27], which are generated by grammars whose right hand sides are enclosed within
pairs of parentheses, and tree-automata [33], which generalize finite state machines (FSM)
from the recognition of linear strings to tree-like structures. Among the many variations
of parenthesis languages the recent family of input-driven languages [29, 35], alias visibly
pushdown languages (VPL) [2], has received much attention in recent literature. For most of
these structured CFL, including VPL, the relevant algebraic properties of RL still hold [2].
One of the most noticeable results has been a characterization of VPL in terms of a MSO
logic that is a natural extension of Biichi’s original one for RL [24, 2].

This fact has suggested to extend the investigation of weighted RL to various cases of
structured languages. The result of such a fertile approach is a rich collection of weighted
logics, first studied by Droste and Gastin [11], associated with weighted tree automata [16]
and weighted extensions of VPA (the automata recognizing VPL) [26].

In an originally unrelated way operator precedence languages (OPL) have been defined
and studied in two phases temporally separated by four decades. In his seminal work [20]
Floyd was inspired by the precedence of multiplicative operations over additive ones in the
execution of arithmetic expressions and extended such a relation to the whole input alphabet
in such a way that it could drive a deterministic parsing algorithm that builds the syntax
tree of any word that reflects the word’s semantics; Fig. 1 and Section 2 give an intuition of
how an OP grammar generates arithmetic expressions and assigns them a natural structure.

OPL do not cover all deterministic CFL, but they enjoy a distinguishing property, not
possessed by general deterministic CFL, which we can intuitively describe as “OPL are input
driven but not visible”. They can be claimed as input-driven since the parsing actions on
their words — whether to push or pop — depend exclusively on the input alphabet and on the
relation defined thereon, but their structure is not visible in their words: e.g, they can include
unparenthesized expressions where the precedence of multiplicative operators over additive
ones is explicit in the syntax trees but hidden in their frontiers (see Fig. 1). Furthermore,
unlike other structured CFL, OPL include deterministic CFL that are not real-time [25].

This recent remark suggested to resume their investigation systematically at the light
of the recent technological advances and related challenges. Such a renewed investigation
led to prove their closure under all major language operations [8] and to characterize them,
besides Floyd’s original grammars, in terms of an appropriate class of pushdown automata
(OPA) and in terms of a MSO logic which is a fairly natural but not trivial extension of the
previous ones defined to characterize RL and VPL [25]. Thus, OPL enjoy the same nice
properties of RL and many structured CFL but considerably extend their applicability by
breaking the barrier of visibility and real-time push-down recognition.

M. Droste, S. Duck, D. Mandrioli, and M. Pradella

In this paper we join the two research fields above, namely we introduce weighted OPL
and show that they are able to model system behaviors that cannot be specified by means
of less powerful weighted formalisms such as weighted VPL. For instance, one might be
interested in the behavior of a system which handles calls and returns but is subject to some
emergency interrupts. Then it is important to evaluate how critically the occurrences of
interrupts affect the normal system behavior, e.g., by counting the number of pending calls
that have been preempted by an interrupt. As another example we consider a system logging
all hierarchical calls and returns over words where this structural information is hidden.
Depending on changing exterior factors like energy level, such a system could decide to log
the above information in a selective way.

Our main contributions in this paper are the following.
The model of weighted OPA, which have semiring weights at their transitions, significantly
increases the descriptive power of previous weighted extensions of VPA, and has desired
closure and robustness properties.
For arbitrary semirings, there is a relevant difference in the expressive power of the
model depending on whether it permits assigning weights to pop transitions or not. For
commutative semirings, however, weights on pop transitions do not increase the expressive
power of the automata. The difference in descriptive power between weighted OPA with
arbitrary weights and without weights at pop transitions is due to the fact that OPL may
be non-real-time and therefore OPA may execute several pop moves without advancing
their reading heads.

An extension of the classical result of Nivat [30] to weighted OPL. This robustness result

shows that the behaviors of weighted OPA without weights at pop transitions are exactly

those that can be constructed from weighted OPA with only one state, intersected with

OPL, and applying projections which preserve the structural information.

A weighted MSO logic and, for arbitrary semirings, a Biichi-Elgot-Trakhtenbrot-Theorem

proving its expressive equivalence to weighted OPA without weights at pop transitions.

As a corollary, for commutative semirings this weighted logic is equivalent to weighted

OPA including weights at pop transitions.

Various possibilities arise for future research concerning theory and applications of our new
model which will be discussed in the conclusion. The full version of this paper [10] provides
all omitted technicalities and more explanatory comments and examples.

2 Preliminaries

Consider the CFG of Fig. 1 (left) and the syntax tree (center) which makes the structure of its
frontier n+mn x (n+n) visible. To drive a parsing algorithm in the deterministic construction
of the tree associated with the string, Floyd introduced three precedence relations, < (yields
precedence), = (equal in precedence), > (takes precedence), (algorithmically derived from the
grammar) between terminal symbols (Fig. 1 right). They do not satisfy any order axioms
and are used to mark, respectively, the beginning, the internal elements, and the end of a
grammar right hand side in the substitution rules of a shift-reduce parsing algorithm. For a
complete description of Floyd’s parsing algorithms driven by these relations, see, e.g, [21].
In this paper, instead, we exploit the more recent characterization of OPL in terms of

recognizing automata [25], which are defined on a given alphabet and precedence matrix.

We define an OP alphabet as a pair (X, M), where X is an alphabet and M, the operator
precedence matriz (OPM), is a |X U {#}|? array describing for each ordered pair of symbols
at most one (operator precedence) relation, that is, every entry of M is either <, =, >, or

31:3

MFCS 2017

31:4

Weighted Operator Precedence Languages

E
/7 1\
E + T
[V BN
o % F [+ x () n
[A BN + 1> < < > <
E—E+T|T F F (E) x|> » < » <
T—TxF|F “E/‘\T (< < < = <
[o« o« =
Fnl|(E) s)| > > >
A
F n
\
n

Figure 1 A grammar generating arithmetic expressions (left), an example derivation tree (center),
and the precedence matrix (right). E.g. M[1,2] = < means that + yields precedence to x.

empty (no relation). We use the symbol # to mark the beginning and the end of a word and
always let # < a and a > # for all a € X.

Let w = (ay...a,) € X1 be a non-empty word. We say ag = an+1 = # and define
a new chain relation ~ on the set of all positions of #w#, inductively, as follows. Let
0<i<j<n+1. Wewrite ¢ ~ j if there exists a sequence of positions i =k < ... < ky,, = 7,
m > 3, such that ap, <ag, = ... = ax,,_, > ar,, and either ks, + 1 = ksy1 or ks ™~ kgyq for
each s € {1,...,m — 1}. We say that w is compatible with M if for #w+#, we have 0 ~ n + 1.
We denote by (T, M) the set of all non-empty words over 3 which are compatible with M.
For a complete OPM M, i.e. one without empty entries, this is 3+.

The chain relation can be compared with the nesting or matching relation of [2], which is
also originating from additional information on the alphabet. However, instead of partitioning
the alphabet into three disjoint parts (calls, internals, and returns), we add a binary relation
for every pair of symbols denoting their precedence relation. Therefore, in contrast to the
nesting relation, the same symbol can be either call or return depending on its context, and
the same position can be part of multiple chain relations.

» Definition 1. A (nondeterministic) operator precedence automaton (OPA) A over an OP
alphabet (3, M) is a tuple A = (Q, I, F,), where § = (Jshitt, Ipush; Opop), consisting of
a finite set of states @), the set of initial states I C @, the set of final states F' C @, and
the transition relations dghitt, Opush € @ X X X Q, and dpop € @ X Q X Q.
Let I' = ¥ x Q. A configuration of A is a triple C' = (TT, ¢, w#}), where TT € LT'* represents a
stack, ¢ € @ the current state, and w the remaining input to read. A run of A on w = ay...a,
is a finite sequence of configurations Cy F ... = C,,, such that every transition C; - C; 1 has
one of the following forms, where a is the first component of the topmost symbol of the stack
T, or # if the stack is L, and b is the next symbol of the input to read:

push move : (M, q,bz) F (b, q],r,z) ifa<band (g,b,1) € dpush,
Shlft move : <ﬂ[a7p]a q, b$> F <ﬂ[bap]7 T, IL‘> if a =0 and (q7 ba 7”‘) € 5Shift7
pop move: (T[a,pl,q,bx) + (I, r bx) if a> b and (q,p,7) € dpop-

An accepting run of A on w is a run from (L, qr,w#) to (L, qr,#), where q; € I and qr € F.
The language accepted by A, denoted L(A), consists of all words over (X1, M) which have
an accepting run on A. We say L C (X1, M) is an OPL if L is accepted by an OPA over
(X, M). As proven in [25], the deterministic variant of an OPA, using a single initial state
and transition functions instead of relations, is as expressive as nondeterministic OPA.

M. Droste, S. Duck, D. Mandrioli, and M. Pradella

0,1 n ((+, % 0,1,2,3
o—C

+, X

Figure 2 An OPA recognizing the language of the grammar of Fig. 1. The graphical notation is
imported from [25]: pushes are normal arrows, shifts are dashed, pops are double arrows.

An example automaton is depicted in Fig. 2: with the OPM of Fig. 1 (right), it accepts
the same language as the grammar of Fig. 1 (left).

» Definition 2. The logic MSO(X, M), short MSO, and its semantics is defined as in [25]
Bu=Laby(z) |z<yl|lany|lxzeX|-B|BVE|Ixp]|3IXS

where a € X U {#} and z,y, X are first resp. second order variables. The predicate Lab,(x)
asserts that position z is labeled a. The semantics of ~ is defined by the chain relation.

» Theorem 3 ([25]). A language L over (X, M) is an OPL iff it is MSO-definable.

3 Weighted OPL and Their Relation to Weighted VPL

In this section, we introduce a weighted extension of OPA. We show that weighted OPL
include weighted visibly pushdown automata (VPL) and give examples showing how these
weighted automata can express behaviors which were not expressible before.

Let K = (K, +,-,0,1) be a semiring, i.e., (K,+,0) is a commutative monoid, (K,-,1) is a

monoid, (x+y)-z=z-z+y-z,2-(y+z)=z-y+x-z,and 0-x =z-0=0for all z,y,z € K.

K is called commutative if (K,-,1) is commutative. Important examples of commutative
semirings include the Boolean semiring B = ({0,1},V, A, 0,1), the semiring of the natural
numbers N = (N, +,-,0, 1), or the tropical semirings Ryax = (RU{—00}, max, 4+, —o0,0) and
Rumin = (RU {00}, min, +, 00, 0). Significant non-commutative semirings are n x n-matrices
over semirings K with matrix addition and multiplication as usual (n > 2), or the semiring
(P(X*),U,-,0,{c}) of languages over X.

» Definition 4. A weighted OPA (wOPA) A over an OP alphabet (X, M) and a semiring K
is a tuple A = (Q, I, F,d, wt), where wt = (Wtghift, Whpush, Whpop), consisting of

an OPA A" = (Q, I, F,0) over (X, M) and

the weight functions wt,p : dop — K, op € {shift, push, pop}.
We call a wOPA restricted, denoted by rwOPA, if wtpop(g,p,7) = 1 for each (g, p,7) € dpop-

A configuration of a wOPA is a tuple (IT, ¢, w#, k), where (T, ¢, w#) is a configuration of
the OPA A’ and k € K. A run of A is defined as for OPA, where, additionally, the weight %
is updated by multiplying with the weight of the encountered transition, as follows.

(M, q, bz, k) F (TT[b,q],r,z, k- wtpusn(g,b,7)) if a<band (¢,b,7) € dpush,
<n[a'ap]a q, bx) k> '_ <ﬂ[bap]a r,T, k : Wtshift (qa ba T)> lf a = b and (qa b7 T) € 6shift7
(Ma,pl,q,bx, k) + (T1,7r,bx, k- wtpep(q,p, 7)) if a>band (¢,p,7) € dpop-

We call a run p accepting if it goes from (L, qr,w#,1) to (L, qr,#,k), where gqr € I and

gr € F. For such an accepting run, the weight of p is defined as wt(p) = k. Finally, the
behavior of A is a function [A] : (X, M) — K, defined as

A= Y i)

p acc. run of A on w

31:5

MFCS 2017

31:6

Weighted Operator Precedence Languages

$(0), itr(0), call(0) ret(—1) (0), call(0)
call(1) /" itr(0) ' .- ret(0) call ret itr $
. ’ call | <« = > <
itr(0) ret | > > > <
itr > < <
81> > >

Figure 3 The weighted OPA Aji, penalizing unmatched calls nondeterministically, and its
precedence matrix (right). Weights are given in parentheses at transitions. The weight semiring is
Zmax = (Z U {—00}, max, +, —0, 0).

Every function S : (X7, M) — K is called an OP-series (short: series, also weighted language).
A wOPA A accepts a series S if [A]] = S. A series S is called recognizable or a wOPL if there
exists an wOPA A accepting it. S is strictly recognizable or an rwOPL if there exists an
rwOPA A accepting it.

» Example 5. Consider a system that manages calls and returns (in VPL terminology) in
a traditional LIFO policy but discards all pending calls if an interrupt (itr) occurs. Such
a system can be naturally modeled by suitable OPA that can formalize various types of
policies to manage interrupts [25]1. We can use weights to , for instance, count the number
of interrupted calls. A first simple wOPA could attach a negative weight to calls and a
compensating one to corresponding returns so that the final weight assigned to the string
would be “neutral” only if no call is discarded.

Consider now a more complex system where the penalties for unmatched calls may change
nondeterministically. Here, we assume words to be separated into different intervals by the
symbol $, of which one nondeterministically chosen represents, e.g., a critical operating time,
during which unmatched calls are penalized. The wOPA Aj;;, given in Fig. 3 formalizes such
a system by assigning to an input sequence a global weight that is the maximal number of
unmatched calls in one interval.

Aiir can be easily modified to formalize several variations of its policy: e.g., different
policies could be associated with different intervals, different weights could be assigned to
different types of calls and/or interrupts, different policies could also be defined by choosing
different semirings, etc. Note that A;, is restricted.

» Example 6. The automaton Aj.g, depicted in Fig. 4, chooses non-deterministically between
logging everything and logging only ‘important’ information, e.g., only interrupts (this could
be a system dependent on energy, WiFi, etc.). Notice that in this case assigning nontrivial
weights to pop transitions is crucial. Let ¥ = {call, ret, itr}, and define M as the obvious
projection of Aj,’s OPM. We employ the semiring (Finy/, U, 0,0, {¢}) of all finite languages
over X' = {¢,r,p,i}. Then, [Aig](w) yields all possible logs on w.

The above example can be exploited to show by a pumping-like argument that wOPA are
more expressive than rwOPA. This is due to the fact that a number of consecutive pops can
attach to one position a product of size only bounded by the word-length and it is impossible
to attach these weights at other positions without destroying their sequential order.

» Proposition 7. There exist an OP alphabet (X, M), a semiring K, and a weighted language
S (XF, M) — K such that S is recognizable but not strictly recognizable.

1 A similar motivation inspired the recent extension of VPL as colored nested words by [1].

M. Droste, S. Duck, D. Mandrioli, and M. Pradella

call(c), itr() - ret(r) ret(e) ;- call(e), itr(i)

call(e)

qo(e), q1(¢)

Figure 4 The wOPA Ao, nondeterministically writes logs at different levels of detail.

Yeanl | Yret | Nint E.g. w = a{car), over Yiny = {a}, Zcan = {{c}, Zret = {r)}
Yea < = < c r
1 NWA: qo - q1 <—> q2 “ qs) q4
Yiret > > >)
c T
Yint > > > OPA: q > ¢l =aq N @ -5 qs=q3 - ¢h = qu

Figure 5 The OPM M for VPL and an example of the translation of runs from NWA to OPA.

On the other hand, for commutative semirings rwOPA and wOPA are equally expressive.

» Theorem 8. Let A be a wOPA over an OP alphabet (3, M) and a commutative semiring
K. Then, there exists an rwOPA B over (X, M) and K with [A] = [B].

Proof (Sketch). Let A= (Q, I, F,0,wt) be a wOPA over (X, M) and K. We construct an
rwOPA B over (3, M) and K with the state set Q' = @ x @ x @ and with the same behavior
as A as follows. In the first state component B simulates A. In the second and third state
component of @' the automaton B guesses the states ¢ and r of the pop transition (g, p,r)
of A which corresponds to the next push transition following after this configuration. This
enables us to transfer the weight from the pop transition to the correct push transition. <«

In the following, we show that rwOPL strictly include weighted visibly pushdown languages
(wVPL). VPL is the class of languages corresponding to nested words [2] and recognized
by wvisibly pushdown automata (VPA) or the expressively equivalent nested word automata
(NWA). Let X be a visibly pushdown alphabet consisting of calls, internals, and returns. In
[8], it was shown that for every VPA over X, there exists an equivalent OPA [25] over (X, M),
where M is the OPM defined in Fig. 5.

In [26, 15], weighted nested word automata (WNWA) were introduced. These add semiring
weights at every transition again depending on the information which symbols are calls,
internals, or returns. Since every nested word has a unique representation over a visibly
pushdown alphabet X, it can be interpreted as a compatible word of (X1, M). In particular,
we can interpret a wVPL, i.e., the language of a wWNWA, as an OP-series (X7, M) — K.

» Theorem 9. Let K be a semiring and M be the OPM of Fig. 5. Then for every wNWA A
as defined in [15], there exists an rwOPA B with [A](w) = [B](w) for all w € (X, M).

We give an intuition for this result as follows. Note that pushes, shifts, and pops significantly
differ from calls, internals, and returns. Indeed, a return of a NWA reads and ‘consumes’ a

symbol, while a pop of an OPA just pops the stack and leaves the next symbol untouched.

Studying the OPM M and the example runs of Fig. 5, we see that every symbol of ¥,
forces a shift transition of an OPA immediately followed by a pop. This suggests a fairly
natural construction where we can simulate every weighted call by a weighted push, every

31:7

MFCS 2017

31:8

Weighted Operator Precedence Languages

weighted internal by a weighted push together with a pop and every weighted return by a
weighted shift together with a pop. Hence, we may omit weights at pop transitions.

Since OPA are strictly more expressive than VPA [8], this gives, together with Propo-
sition 7, a complete picture of the expressive power of these three classes of weighted
languages:

wVPL C rwOPL C wOPL .

Note that in the context of formal power series, wVPL strictly contain recognizable power
series and wOPL form a proper subset of the class of algebraic power series, i.e., series
recognized by weighted pushdown automata [23].

4 A Nivat Theorem

In this section, we show that strictly recognizable series are exactly those series which can be
derived from a restricted weighted OPA with only one state, intersected with an unweighted
OPL, and using an OPM-preserving projection of the alphabet.

In the following, we study closure properties of wOPL and rwOPL. As usual, we extend
the operations + and - to series by means of pointwise definitions.

» Proposition 10. Let S : (X1, M) — K be a recognizable (resp. strictly recognizable)
series and L C (X7, M) an OPL. Then, the series (SN L)(w) = { Sw) -, fwe L } is
0 , otherwise
recognizable (resp. strictly recognizable).
Furthermore, if K is commutative, then the product of two recognizable (resp. strictly
recognizable) series over (X, M) is again recognizable (resp. strictly recognizable).

Next, we show that recognizable series are closed under projections which preserve the
OPM. For two OP alphabets (X%, M), (T', M'), we write h : (X, M) — (I', M) for a mapping
h : ¥ — T such that for all e € {<,=, >}, we have a e if and only if h(a) h(b). We can
extend h to a function h : (X7, M) — (I'T, M’) by setting h(ajaz...an) = h(ai)h(az)...h(ay).
Let S: (X7, M) — K be a series. We define h(S) : (I't, M’) — K for each v € (I'", M’) by

h(S)(v) = > S(w) - (1)

we(X+,M),h(w)=v

» Proposition 11. Let K be a semiring, S : (X7, M) — K recognizable (resp. strictly
recognizable), and h: (X, M) — (T, M’). Then, h(S) : (T't, M’) — K is recognizable (resp.
strictly recognizable).

Let h be a map between two alphabets. Given h: I' — ¥ and an OP alphabet (3, M), we
define h=1(M) by setting h = (M) gy = My (ayn@y for all ', " € T. As h is OPM-preserving,
for every series S : (X1, M) — K, we get a series h(S) : (['T,h~1(M)) — K, using the sum
over all pre-images as in formula (1).

Let N (2, M,K) comprise all series S : (X%, M) — K for which there exist an alphabet
T, over (I', h=1(M)) such that S = h([B] N L).

Then, we can show that every rwOPL can be decomposed into the above introduced
fragments. Using this decomposition and the closure properties of Prop. 10 and Prop. 11, we
get the following Nivat-Theorem for weighted operator precedence automata.

» Theorem 12. Let K be a semiring and S : (X7, M) — K be a series. Then S is strictly
recognizable if and only if S € N (2, M,K).

M. Droste, S. Duck, D. Mandrioli, and M. Pradella

Bly(wo) = {1’ o) =8 @ elowo) = 5 lelvore (w olz — i)

0, otherwise i€l

HkHV(wv U) =k for all k € K [[@X SDHV(UU U) = Iczl: I[[SD]]VU{X}(wv U[X — I])

[v @ ¢lv(w,0) = [¢lv(w,0) + [¢lv(w,0) [IL ¢lv(w,0) = _elTll[[w]]vu{z}(w,U[I%i])
[v @ ¢lv(w, o) = [plv(w,0) - []v(w, o)

Figure 6 Semantics of weighted MSO logic for OPL.

5 Weighted MSO-Logic for OPL

We use modified ideas from Droste and Gastin [11], also incorporating the distinction into
boolean formulas 8 and weighted formulas ¢ as in [5]. The boolean formulas model classical
unweighted features, whereas weighted formulas may deal with quantitative aspects.

» Definition 13. We define the weighted logic MSO(K, (3, M)), short MSO(K), as

Bu=Labg(z) |z<y|lany|lzeX|-B|LVE|Ixp]|IXS
pi=pBlklvoplvee| @,e|l Oxel Iy

where a € XU {#}, k € K; x,y are first order variables; and X is a second order variable.

Let w € (X7, M) and ¢ € MSO(K). As usual, let [w] = {1,...,|w|} and V be a finite set
of variables containing free(y), all free variables of p. A (V,w)-assignment o is a function
assigning to every first order variable of V an element of [w] and to every second order variable
a subset of [w]. We define o[z — 4] (and analogously o[X — I]) as the (VU{z}, w)-assignment
mapping x to ¢ and coinciding with ¢ on all variables different from z.

By following classical approaches, we consider the extended alphabet ¥y, = A x {0,1}V
together with its natural OPM My defined such that for all (a,s),(b,t) € ¥y and all
o € {<,=,>}, we have (a,s) e (b,t) if and only if a @ b. We represent the word w together
with the assignment o as a word (w, o) over (Xy, My,) such that 1 denotes every position
where x resp. X holds. A word over Xy, is called valid, if every first order variable is assigned
to exactly one position. Being valid is a property which can be checked by an OPA.

We define the semantics of ¢ € MSO(K) as a function [p]y : (X5, My) — K inductively
for all valid (w,0) € (X}, My) in Fig. 6. For not valid (w, o), we set [¢]y(w,0) = 0. We
write [o] for [¢]tree(y)-

We can show that semantics ¢y for different V are consistent with each other as long

as V contains all free variables of ¢. If ¢ contains no free variables, ¢ is a sentence and
[e] : (&1, M) = K.

» Example 14. Let us go back to the automaton Aj;t, depicted in Fig. 3. The following boolean
formula 8 defines three subsets of string positions, Xq, X1, Xs, representing, respectively, the
string portions where unmatched calls are not penalized, namely Xg, X5, and the portion
where they are, namely X;:

B= x€ X< yIz(y >z Az>xALabg(y) A Labg(z))
ANz € Xy < Fy3z(y <z < z ALabg(y) A Labg(2) A (z # y A x # z — - Labg(z)))
ANz € Xo ¢ FyIz(y <z Az <z ALabg(y) A Labg(z)) .

319

MFCS 2017

31:10

Weighted Operator Precedence Languages

Weight assignment is formalized by the formula ¢ which assigns weight 0 to calls, returns,
and interrupts outside portion X;i; and weights 1, —1,0 to calls, returns, and interrupts,
respectively, within portion X7j:

p= (=((z € XogVaxe Xs)A (Labean(x) V Labyet(z) V Labi, (x))) @ 0)
® (ﬁ(ﬂﬁ e X1 A Labcan(l‘)) S 1) & (ﬁ(l' e X1 A Labret(x)) ©® —1)
® (=(x € X; A Labj(z)) ©0) ® (= Labg(z) ©0) .

Then, the formula ¢ = [] (8 ® ¢) defines the weight assigned by Aj, to an input string
through a single nondeterministic run and finally x = @y, @, Dx, ¥ defines the global
weight of every string in an equivalent way as the one defined by Ajt,.

As shown by [11] in the case of words, the full weighted logic is strictly more powerful than
weighted automata. A similar example also applies here. Therefore, in the following, we
restrict our logic in an appropriate way.

» Definition 15. The set of almost boolean formulas is the smallest set of all formulas of
MSO(K) containing all & € K and all boolean formulas which is closed under & and ®.

Adapting ideas from [14], we can show by structural induction that almost boolean formulas
describe precisely a certain form of wOPA’s behaviors, called OPL step functions, which are
all series S that can be written as S = >""" | k;1r,, where L; are OPL forming a partition of
(XF, M) and k; € K for each i € {1,...,n}. Furthermore, OPL step functions are recognizable
by rwOPA and are closed under the natural extension of the semiring’s + and - to series.

» Definition 16. We call ¢ € MSO(K) restricted if for all subformulas 1) ® 6 of ¢ either 1)
is almost boolean or all semiring weights occurring in 1 and 6 commute elementwise, and
additionally, for all subformulas [], ¢ of ¢, ¢ is almost boolean.

In Example 14, the formula /3 is boolean, the formula ¢ is almost boolean, and ¥ and y are
restricted. Notice that 1 and y would be restricted even if K were not commutative.

» Proposition 17. Let ¢ and ¢ be two formulas of MSO(K) such that [¢] and [¢] are
recognizable (resp. strictly recognizable). Then we have

le @], [>°, ¢l and [>-] are recognizable (resp. strictly recognizable).
[®] is (resp. strictly) recognizable if ¢ @ v is a subformula of a restricted formula.
[I1, ¢l is strictly recognizable if is an almost boolean formula of MSO(K).

Proof (Sketch). Closure under @ is dealt with by an usual disjoint union of two wOPA
(resp. rtwOPA). Closure under restricted ® is dealt with by Proposition 10. For the sum quan-
tification, we utilize Proposition 11. The closure under the restricted product quantification
is non-trivial, but can be proved by adapting previous techniques to OPL step functions. <«

Then, by induction on the structure of a weighted formula and using Proposition 17, we get

» Proposition 18. For every restricted MSO(K)-sentence @, there exists an rwOPA A with

[A] = [l
Now, we show that the converse of Proposition 18 holds as well.

» Proposition 19. For every rwOPA A, there exists a restricted MSO(K)-sentence ¢ with
[A] = [¢]- If K is commutative, then for every wOPA A, there exists a restricted MSO(K)-
sentence ¢ with [A] = [¢].

M. Droste, S. Duck, D. Mandrioli, and M. Pradella

/\ /\
pop pop
o X313 o X333
~— ypop ~— ypop ~— ypop ~— ypop
© X14,0,1 © X1,0,1 © X3,2‘3 o X3,24,3
push push push push push push push push shift
Xom1 Xigo Xomt Xixo Xoz Xoms Xy Xons X5)s
n + n X (n + n)
0 1 2 3 4 5 6 7 8 9 10

Figure 7 The string of Fig. 1 with the 2nd order variables evidenced for the automaton of Fig. 2.

Proof. The rationale adopted to build formula ¢ from A integrates the approach followed
in [11, 15] with the one of [25]. On the one hand we need second order variables suitable
to “carry” weights; on the other hand, unlike previous non-OP cases which are managed
through real-time automata, an OPA can perform several transitions while remaining in the
same position. Thus, we introduce the following second order variables: X;‘;ﬁg represents the
set of positions where A performs a push move from state p, reading symbol a and reaching
state ¢; X;h;fg has the same meaning as X})”‘ﬁg for a shift operation; and XPOP represents the
set of positions of the symbol that is on top of the stack when A performs a pop transition

from state p, with ¢ on top of the stack, reaching 7.

Let V consist of all XPuh Xshift “and XPoP such that a € ¥, p,q,7 € Q and (p,a,q) €
Opush, IeSP. Oshitt, resp. (P, ¢,) € dpop- We denote by Xpush - xshift and XPOP enumerations
over the respective set of second order variables. Using usual abbreviations for MSO-formulas
and some adapted shortcuts from [25] and [11], we define the following unweighted formula

1 to characterize all accepted runs of A
¢ = Part(XPUh XNy A Unique(XPOP) A InitFinal A Troush A Trsniee A Trpop -

Here, the subformula Part will enforce the push and shift sets to be (together) a partition of
all positions, while the Unique will make sure that we mark every position with at most one
XPOP_ InitFinal controls the initial and the acceptance condition and Trpush, Trenite, and
Trpop the respective transitions of the run according to their labels as follows.

Trpush = V. /\p,qu,aez (ac € X},’,‘;sz — [Laba(x) A 3Jz.(z <z A (Nexty(z,z) V Succp(z,;t)))])
Trenite = V. N\, 1co.aes (:E € Xshitt [Laba(x) A3Jz.(z =z A (Nextp(z,x) V Sucey(z, :c)))])

Trpop = V. /\p,qu ([VTGQ v E X{fffl‘?r] VRS [Hwﬂyﬂz.(Treep,q(:c, Z,v, y))]) .

The main idea is that for every & ~ y, we encode in Tree(z, z, v, y) the two other ‘critical’
positions for this chain, namely z, which is the (either direct or hierarchical) successor of x
in this chain and which is the position where we execute the push resulting from x < z; and
v, which is the ‘chain-predecessor’ of y and the position we mark with the respective XP°P
resulting from v > y. E.g., with reference to Fig. 1 and Fig. 7, we have Tree(4, 5,9, 10).

Furthermore, Succy(x,y) holds for two successive positions where the OPA reaches state
¢ through a push or shift at position y, while Next,(x,y) holds when a pop move reaches
state ¢ while completing a chain x ~ y. Then Tree, , explicitly controls the current state
and the state on top of the stack when the pop move is executed as follows.

31:11

MFCS 2017

31:12

Weighted Operator Precedence Languages

1= —dt t t
Tree(x,z7y’y)::mmy/\((l'+ zV xrnz)A (z < <y/\me)

(v+l=y VonyA-FHz<t<vAtny)
Nextr(z,y) := JzJv. (Tree(;c, 2,0,Y) A \/p oV € Xpr
Tree; j(z, z,v,y) := Tree(z, z,v,y) A (Succi (v, y) V Next; (v,y)) A (Succ;(z, z) V Next;(z, 2))

Notice that in the transition formulas, the partition (resp. uniqueness) axioms guarantee
that in every run, the left side of the implication (resp. equivalence) is satisfied for only one
triple (p, a, q), resp. (p,q,r). Thus, with arguments similar to [25], it can be shown that the
sentences satisfying 1 are exactly those accepted by the unweighted OPA subjacent to A.

Now, we add weights to ¥ by defining the following restricted weighted formula

0=voll ® (8 (@eXPh e vim(p o) (e e Xp) o)

® ® (.T c Xshift ® thush(p7a’q)) @ (—\(.T c Xshift) ® 1)

wES p,a,q p,a,q

® © (@€ XPP O wipun(p,q,7) @ (-(z € PP) @1)
T

Here, the second part of § multiplies up all weights of the encountered transitions. This is
the crucial part where we either need that K is commutative or all pop weights are trivial
because the product quantifier of 6 assigns the pop weight at a different position than
the occurrence of the respective pop transition in the automaton. Using only one product
quantifier (weighted universal quantifier) this is unavoidable, since the number of pops at a
given position is only bounded by the word length.

Since the subformulas z € X (()) ® wt(...) of are almost boolean, the subformula [, (...)
of 6 is [[-restricted. Also, ¢ is boolean and so 0 is ®-restricted. Thus, 6 is a restricted
formula. Finally, we define o = @y Dy, - Dx, 0 - This implies [¢](w) = [A](w), for all
w € (X, M). Therefore, ¢ is our required restricted sentence with [A] = [¢]. <

By Proposition 18 and Proposition 19, we obtain the main result of this section.

» Theorem 20. Let K be a semiring and S : (X1, M) — K a series.
1. The following are equivalent:

(a) S =[A] for some rwOPA.

(b) S = [¢] for some restricted sentence ¢ of MSO(K).
2. Let K be commutative. Then, the following are equivalent:

(a) S =[A] for some wOPA.

(b) S = [¢] for some restricted sentence ¢ of MSO(K).

Theorem 20 shows that the typical logical characterization of weighted languages does not
generalize in the same way to the whole class wOPL: for non-rwOPL we need the extra
hypothesis that K be commutative. Notice, however, that rwOPL may execute unbounded
pop sequences; thus, they are powerful enough to include languages that are neither real-time
nor visible. This remark naturally raises new intriguing questions which we will briefly
address in the conclusion.

6 Conclusion

This paper moves a further step in the path of generalizing a series of results beyond the
barrier of regular and structured — or visible — CFL [27, 33, 2, 25]. We introduced and

M. Droste, S. Duck, D. Mandrioli, and M. Pradella

investigated weighted operator precedence automata and a corresponding weighted MSO
logic. In our main results we show, for any semiring, that wOPA without pop weights and a
restricted weighted MSO logic have the same expressive power. Furthermore, these behaviors
can also be described as homomorphic images of the behaviors of particularly simple wOPA
reduced to arbitrary unweighted OPA. If the semiring is commutative, these results apply
also to wOPA with arbitrary pop weights.

Theorem 20 also raises the problems to find, for arbitrary semirings and for wOPA with
pop weights, both an expressively equivalent weighted MSO logic and a Nivat-type result. In
[16], very similar problems arose for weighted automata on unranked trees and weighted MSO
logic. In [12], the authors showed that with another definition of the behavior of weighted
unranked tree automata, an equivalence result for the restricted weighted MSO logic could
be derived. Is there another definition of the behavior of wOPA (with pop weights) making
them expressively equivalent to our restricted weighted MSO logic?

In [25], OPL of infinite words were investigated and shown to be practically important,
so the problem arises to develop a theory of wOPA on infinite words. In order to define their
quantitative behaviors, one could try to use valuation monoids as in [14, 9].

Finally, a new investigation field can be opened by exploiting the natural suitability of
OPL towards parallel elaboration [3]. Computing weights, in fact, can be seen as a special
case of semantic elaboration which can be performed hand-in-hand with parsing. In this
case too, we can expect different challenges depending on whether the weight semiring is
commutative or not and/or weights are attached to pop transitions too, which would be the
natural way to follow the traditional semantic evaluation through synthesized attributes [22].

—— References

1 Rajeev Alur and Dana Fisman. Colored nested words. In Adrian Horia Dediu, Jan Janousek,
Carlos Martin-Vide, and Bianca Truthe, editors, Language and Automata Theory and Ap-
plications, LATA 2016, volume 9618 of LNCS, pages 143-155. Springer, 2016.

2 Rajeev Alur and Parthasarathy Madhusudan. Adding nesting structure to words. J. ACM,
56(3):16:1-16:43, 2009.

3 Alessandro Barenghi, Stefano Crespi Reghizzi, Dino Mandrioli, Federica Panella, and Mat-
teo Pradella. Parallel parsing made practical. Sci. Comput. Program., 112(3):195-226, 2015.
doi:10.1016/j.scico0.2015.09.002.

4 Jean Berstel and Christophe Reutenauer. Rational Series and Their Languages, volume 12
of EATCS Monographs in Theoretical Computer Science. Springer, 1988.

5 Benedikt Bollig and Paul Gastin. Weighted versus probabilistic logics. In Volker Diekert
and Dirk Nowotka, editors, Developments in Language Theory, DLT 2009, volume 5583 of
LNCS, pages 18-38. Springer, 2009. doi:10.1007/978-3-642-02737-6_2.

6 J. Richard Biichi. Weak second-order arithmetic and finite automata. Z. Math. Logik und
Grundlagen Math., 6:66-92, 1960.

7 Christian Choffrut, Andreas Malcher, Carlo Mereghetti, and Beatrice Palano. First-order
logics: some characterizations and closure properties. Acta Inf., 49(4):225-248, 2012.

8 Stefano Crespi Reghizzi and Dino Mandrioli. Operator precedence and the visibly pushdown
property. J. Comput. Syst. Sci., 78(6):1837-1867, 2012.

9 Manfred Droste and Stefan Diick. Weighted automata and logics for infinite nested words.
Inf. Comput., 253:448-466, 2017. doi:10.1016/j.ic.2016.06.010.

10 Manfred Droste, Stefan Diick, Dino Mandrioli, and Matteo Pradella. Weighted operator
precedence languages. CoRR, abs/1702.04597, 2017. URL: http://arXiv.org/abs/1702.
04597.

31:13

MFCS 2017

http://dx.doi.org/10.1016/j.scico.2015.09.002
http://dx.doi.org/10.1007/978-3-642-02737-6_2
http://dx.doi.org/10.1016/j.ic.2016.06.010
http://arXiv.org/abs/1702.04597
http://arXiv.org/abs/1702.04597

31:14

Weighted Operator Precedence Languages

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27
28

29

30

31

Manfred Droste and Paul Gastin. Weighted automata and weighted logics. Theor. Comput.
Sei., 380(1-2):69-86, 2007. extended abstract in ICALP 2005. doi:10.1016/j.tcs.2007.
02.055.

Manfred Droste, Doreen Heusel, and Heiko Vogler. Weighted unranked tree automata over
tree valuation monoids and their characterization by weighted logics. In Andreas Maletti,
editor, Conference Algebraic Informatics CAI 2015, volume 9270 of LNCS, pages 90-102.
Springer, 2015. doi:10.1007/978-3-319-23021-4_9.

Manfred Droste, Werner Kuich, and Heiko Vogler, editors. Handbook of Weighted Automata.
EATCS Monographs in Theoretical Computer Science. Springer, 2009.

Manfred Droste and Ingmar Meinecke. Weighted automata and weighted MSO logics for
average and long-time behaviors. Inf. Comput., 220:44-59, 2012. doi:10.1016/j.1ic.2012.
10.001.

Manfred Droste and Bundit Pibaljommee. Weighted nested word automata and logics
over strong bimonoids. Int. J. Found. Comput. Sci., 25(5):641-666, 2014. doi:10.1142/
S0129054114500269.

Manfred Droste and Heiko Vogler. Weighted tree automata and weighted logics. Theor.
Comput. Sci., 366(3):228-247, 2006. doi:10.1016/j.tcs.2006.08.025.

Samuel Eilenberg. Automata, Languages, and Machines, volume 59-A of Pure and Applied
Mathematics. Academic Press, 1974.

Calvin C. Elgot. Decision problems of finite automata design and related arithmetics. Trans.
Am. Math. Soc., 98(1):21-52, 1961.

E. Allen Emerson. Temporal and modal logic. In Handbook of Theoretical Computer
Science, Volume B, pages 995-1072. MIT Press, 1990.

Robert W. Floyd. Syntactic analysis and operator precedence. J. ACM, 10(3):316-333,
1963.

D. Grune and C. J. Jacobs. Parsing techniques: a practical guide. Springer, New York,
2008.

Donald E. Knuth. Semantics of context-free languages. Mathematical Systems Theory,
2(2):127-145, 1968.

Werner Kuich and Arto Salomaa. Semirings, Automata, Languages, volume 6 of EATCS
Monographs in Theoretical Computer Science. Springer, 1986.

Clemens Lautemann, Thomas Schwentick, and Denis Thérien. Logics for context-free lan-
guages. In Leszek Pacholski and Jerzy Tiuryn, editors, Computer Science Logic, Selected
Papers, volume 933 of LNCS, pages 205-216. Springer, 1994.

Violetta Lonati, Dino Mandrioli, Federica Panella, and Matteo Pradella. Operator prece-
dence languages: Their automata-theoretic and logic characterization. SIAM J. Comput.,
44(4):1026-1088, 2015. doi:10.1137/140978818.

Christian Mathissen. Weighted logics for nested words and algebraic formal power series.
Logical Methods in Computer Science, 6(1), 2010. Selected papers of ICALP 2008.

Robert McNaughton. Parenthesis grammars. J. ACM, 14(3):490-500, 1967.

Robert McNaughton and Seymour Papert. Counter-free Automata. MIT Press, Cambridge,
USA, 1971.

Kurt Mehlhorn. Pebbling mountain ranges and its application of DCFL-recognition. In
Automata, Languages and Programming, ICALP 1980, volume 85 of LNCS, pages 422-435,
1980.

Maurice Nivat. Transductions des langages de Chomsky. Ann. de ’Inst. Fourier, 18:339—
455, 1968.

Arto Salomaa and Matti Soittola. Automata-Theoretic Aspects of Formal Power Series.
Texts and Monographs in Computer Science. Springer, 1978.

http://dx.doi.org/10.1016/j.tcs.2007.02.055
http://dx.doi.org/10.1016/j.tcs.2007.02.055
http://dx.doi.org/10.1007/978-3-319-23021-4_9
http://dx.doi.org/10.1016/j.ic.2012.10.001
http://dx.doi.org/10.1016/j.ic.2012.10.001
http://dx.doi.org/10.1142/S0129054114500269
http://dx.doi.org/10.1142/S0129054114500269
http://dx.doi.org/10.1016/j.tcs.2006.08.025
http://dx.doi.org/10.1137/140978818

M

32

33

34

35

. Droste, S. Diick, D. Mandrioli, and M. Pradella

Marcel Paul Schiitzenberger. On the definition of a family of automata. Inf. Control,
4(2-3):245-270, 1961.

James Thatcher. Characterizing derivation trees of context-free grammars through a gen-
eralization of finite automata theory. Journ. of Comp. and Syst.Sc., 1:317-322, 1967.
Boris A. Trakhtenbrot. Finite automata and logic of monadic predicates (in Russian).
Doklady Akademii Nauk SSR, 140:326-329, 1961.

Burchard von Braunmiihl and Rutger Verbeek. Input-driven languages are recognized in
log n space. In Proceedings of the Symposium on Fundamentals of Computation Theory,
volume 158 of LNCS, pages 40-51. Springer, 1983.

31:15

MFCS 2017

	Introduction
	Preliminaries
	Weighted OPL and Their Relation to Weighted VPL
	A Nivat Theorem
	Weighted MSO-Logic for OPL
	Conclusion

