
Efficient Identity Testing and Polynomial
Factorization in Nonassociative Free Rings
Vikraman Arvind1, Rajit Datta2, Partha Mukhopadhyay3, and
S. Raja4

1 Institute of Mathematical Sciences (HBNI), Chennai, India
arvind@imsc.res.in

2 Chennai Mathematical Institute, Chennai, India
rajit@cmi.ac.in

3 Chennai Mathematical Institute, Chennai, India
partham@cmi.ac.in

4 Chennai Mathematical Institute, Chennai, India
sraja@cmi.ac.in

Abstract
In this paper we study arithmetic computations in the nonassociative, and noncommutative free
polynomial ring F{x1, x2, . . . , xn}. Prior to this work, nonassociative arithmetic computation
was considered by Hrubes, Wigderson, and Yehudayoff [7], and they showed lower bounds and
proved completeness results. We consider Polynomial Identity Testing (PIT) and polynomial
factorization over F{x1, x2, . . . , xn} and show the following results.
1. Given an arithmetic circuit C of size s computing a polynomial f ∈ F{x1, x2, . . . , xn} of

degree d, we give a deterministic poly(n, s, d) algorithm to decide if f is identically zero
polynomial or not. Our result is obtained by a suitable adaptation of the PIT algorithm of
Raz-Shpilka[13] for noncommutative ABPs.

2. Given an arithmetic circuit C of size s computing a polynomial f ∈ F{x1, x2, . . . , xn} of
degree d, we give an efficient deterministic algorithm to compute circuits for the irreducible
factors of f in time poly(n, s, d) when F = Q. Over finite fields of characteristic p, our
algorithm runs in time poly(n, s, d, p).

1998 ACM Subject Classification F.2.1 Computations on Polynomials

Keywords and phrases Circuits, Nonassociative, Noncommutative, Polynomial Identity Testing,
Factorization

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.38

1 Introduction

Noncommutative computation, introduced in complexity theory by Hyafil [8] and Nisan [12],
is an important subfield of algebraic complexity theory. The main algebraic structure of
interest is the free noncommutative ring F〈X〉 over a field F, where X = {x1, x2, · · · , xn}
is a set of free noncommuting variables. A central problem is Polynomial Identity Testing
which may be stated as follows:

Let f ∈ F〈X〉 be a polynomial represented by a noncommutative arithmetic circuit
C. The circuit C can either be given by a black box (using which we can evaluate C on
matrices with entries from F or an extension field), or the circuit may be explicitly given.
The algorithmic problem is to check if the polynomial computed by C is identically zero. We
recall the formal definition of a noncommutative arithmetic circuit.

© Vikraman Arvind, Rajit Datta, Partha Mukhopadhyay, and S. Raja;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 38; pp. 38:1–38:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.38
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

38:2 Efficient Identity Testing and Polynomial Factorization in Nonassociative Free Rings

I Definition 1. An arithmetic circuit C over a field F and indeterminates X =
{x1, x2, · · · , xn} is a directed acyclic graph (DAG) with each node of indegree zero labeled
by a variable or a scalar constant from F: the indegree 0 nodes are the input nodes of
the circuit. Each internal node of the DAG is of indegree two and is labeled by either a
+ or a × (indicating that it is a plus gate or multiply gate, respectively). Furthermore,
the two inputs to each × gate are designated as left and right inputs which prescribes the
order of multiplication at that gate. A gate of C is designated as output. Each internal
gate computes a polynomial (by adding or multiplying its input polynomials), where the
polynomial computed at an input node is just its label. The polynomial computed by the
circuit is the polynomial computed at its output gate.

When the multiplication operation of the circuit in Definition 1 is noncommutative, it
is called a noncommutative arithmetic circuit and it computes a polynomial in the free
noncommutative ring F〈X〉. Since cancellation of terms is restricted by noncommutativity,
intuitively it appears noncommutative polynomial identity testing would be easier than
polynomial identity testing in the commutative case. This intuition is supported by fact
that there is a deterministic polynomial-time white-box PIT algorithm for noncommutative
ABP [13]. In the commutative setting a deterministic polynomial-time PIT for ABPs would
be a major breakthrough.1 However, there is little progress towards obtaining an efficient
deterministic PIT for general noncommutative arithmetic circuits. For example, the problem
is open even for noncommutative skew circuits.

If associativity is also dropped then it turns out that PIT becomes easy, as we show in
this work. More precisely, we consider the free noncommutative and nonassociative ring of
polynomials F{X}, X = {x1, x2, . . . , xn}, where a polynomial is an F-linear combination
of monomials, and each monomial comes with a bracketing order of multiplication. For
example, in the nonassociative ring F{X} the monomial (x1(x2x1)) is different from monomial
((x1x2)x1), although in the associative ring F〈X〉 they clearly coincide.

When the multiplication operation is both noncommutative and nonassociative, it is
called a nonassociative noncommutative circuit and it computes a polynomial in the free
nonassociative noncommutative ring F{X}. Previously, the nonassociative arithmetic model
of computation was considered by Hrubes, Wigderson, and Yehudayoff [7]. They showed
completeness and explicit lower bound results for this model. We show the following result
about PIT.

Let f(x1, x2, . . . , xn) ∈ F{X} be a degree d polynomial given by an arithmetic circuit
of size s. Then in deterministic poly(s, n, d) time we can test if f is an identically zero
polynomial in F{X}.

I Remark. We note that our algorithm in the above result does not depend on the choice of
the field F. A recent result of Lagarde et al. [11] shows an exponential lower bound, and
a deterministic polynomial-time PIT algorithm over R for noncommutative circuits where
all parse trees in the circuit are isomorphic. We also note that in [4] an exponential lower
bound is shown for set-multilinear arithmetic circuits with the additional semantic constraint
that each monomial has a unique parse tree in the circuit (but different monomials can have
different parse trees).

Next, we consider polynomial factorization in the ring F{X}. Polynomial factorization is
very well-studied in the commutative ring F[X]: Given an arithmetic circuit C computing a
multivariate polynomial f ∈ F[X] of degree d, the problem is to efficiently compute circuits

1 The situation is similar even in the lower bound case where Nisan proved that noncommutative
determinant or permanent polynomial would require exponential-size algebraic branching program [12].

V. Arvind, R. Datta, P. Mukhopadhyay, and S. Raja 38:3

for the irreducible factors of f . A celebrated result of Kaltofen [9] solves the problem in
randomized poly(n, s, d) time. Whether there is a polynomial-time deterministic algorithm is
an outstanding open problem. Recently, it is shown (for fields of small characteristic and
characteristic zero) that the complexity of deterministic polynomial factorization problem
and the PIT problem are polynomially equivalent [10]. A natural question is to determine
the complexity of polynomial factorization in the noncommutative ring F〈X〉. The free
noncommutative ring F〈X〉 is not even a unique factorization domain [6]. However, unique
factorization holds for homogeneous polynomials in F〈X〉, and it is shown in [2] that for
homogeneous polynomials given by noncommutative circuits, the unique factorization into
irreducible factors can be computed in randomized polynomial time (essentially, by reduction
to the noncommutative PIT problem).

In this paper, we note that the ring F{X} is a unique factorization domain, and given a
polynomial in F{X} by a circuit, we show that circuits for all its irreducible factors can be
computed in deterministic polynomial time.

Let f(x1, x2, . . . , xn) ∈ F{X} be a degree d polynomial given by an arithmetic circuit
of size s. Then if F = Q, in deterministic poly(s, n, d) time we can output the circuits
for the irreducible factors of f . If F is a finite field such that char(F) = p, we obtain
a deterministic poly(s, n, d, p) time algorithm for computing circuits for the irreducible
factors of f .

1.1 Outline of the proofs
Identity Testing Result. The main ideas for our algorithm are based on the white-box
Raz-Shpilka PIT algorithm for noncommutative ABPs [13]. As in the Raz-Shpilka algorithm
[13], if the circuit computes a nonzero polynomial f ∈ F{X}, then our algorithm output a
certificate monomial m such that coefficient of m in f is nonzero.

We first sketch the main steps of the Raz-Shpilka algorithm. The Raz-Shpilka algorithm
processes the input ABP (assumed homogeneous) layer by layer. Suppose layer i of the
ABP has w nodes. The algorithm maintains a spanning set Bi of at most w many linearly
independent w-dimensional vectors of monomial coefficients. More precisely, each vector
vm ∈ Bi is the vector of coefficients of monomial m computed at each of the w nodes in layer
i. Furthermore, the coefficient vector at layer i of any monomial is in the span of Bi. The
construction of Bi+1 from Bi can be done efficiently. Clearly the identity testing problem
can be solved by checking if there is a nonzero vector in Bd, where d is the total number of
layers.

Now we sketch our PIT algorithm for polynomials over F{X} given by circuits. Let f be
the input polynomial given by the circuit C.

We encode monomials in the free nonassociative noncommutative ring F{X} as monomials
in the free noncommutative ring F〈X, (,)〉, such that the encoding preserves the multiplication
structure of F{X} (Observation 2). For 1 ≤ j ≤ d, we can efficiently find from C a
homogeneous circuit Cj that computes the degree j homogeneous part of C. Thus, it suffices
to test if Cj ≡ 0 for each j. Hence, it suffices to consider the case when f ∈ F{X} is
homogeneous and C is a homogeneous circuit computing f .

For j ≤ d let Gj denote the set of degree j gates of C. The algorithm maintains a set Bj
of |Gj-dimensional linearly independent vectors of monomial coefficients such that any degree
j monomial’s coefficient vector is in the linear span of Bj . Clearly, |Bj | ≤ |Gj |. We compute
Bj+1 from the sets {Bi : 1 ≤ i ≤ j}. For each vector in Bj we also keep the corresponding
monomial. In the nonassociative model a degree d monomial m = (m1m2) is generated in a
unique way. To check if the coefficient vector of m is in the span of Bd it suffices to consider

MFCS 2017

38:4 Efficient Identity Testing and Polynomial Factorization in Nonassociative Free Rings

vectors in the spans of Bd1 and Bd2 , where d1 = deg(m1) and d2 = deg(m2). This is a crucial
difference from a general noncommutative circuit and using this property we can compute
Bj+1.

Polynomial Factorization in F{X}. For a polynomial f ∈ F{X}, let fj denote the homo-
geneous degree j part of f . For a monomial m, let cm(f) denote the coefficient of m in f .
We will use the PIT algorithm as subroutine for the factoring algorithm. Arvind et al. [2]
have shown that given a monomial m and a homogeneous noncommutative circuit C, in
deterministic polynomial time circuits for the formal left and right derivatives of C with
respect to m can be efficiently computed. This result is another ingredient in our algorithm.

We sketch the easy case, when the given polynomial f of degree d has no constant term.
Applying our PIT algorithm to the homogeneous circuit Cd (computing fd) we find a nonzero
monomial m = (m1 m2) of degree d in fd along with its coefficient cm(f). Notice that for
any nontrivial factorization f = gh, m1 is a nonzero monomial in g and m2 is a nonzero
monomial in h. Suppose |m1| = d1 and |m2| = d2. Then the left derivative of Cd with respect
to m1 gives cm1(g) hd2 and the right derivative of Cd with respect to m2 gives cm2(h) gd1 .
We now use the circuits for these derivatives and the nonassociative structure, to find circuits
for different homogeneous parts of g and h. The details, including the general case when f
has a nonzero constant term, is in Section 4.

1.2 Organization
In Section 2 we describe some useful properties of nonassociative and noncommutative
polynomials. In Section 3 we give the PIT algorithm for F{X}. In Section 4 we describe the
factorization algorithm for F{X}. Finally, we list some open problems in Section 5.

2 Preliminaries

For an arithmetic circuit C, a parse tree for a monomial m is a multiplicative sub-circuit of
C rooted at the output gate defined by the following process starting from the output gate:

At each + gate retain exactly one of its input gates.
At each × gate retain both its input gates.
Retain all inputs that are reached by this process.
The resulting subcircuit is multiplicative and computes a monomial m (with some
coefficient).

For arithmetic circuits C computing polynomials in the free nonassociative noncommut-
ative ring F{X}, the same definition for the parse tree of a monomial applies. As explained
in the introduction, in this case each parse tree (generating some monomial) comes with
a bracketed structure for the multiplication. It is convenient to consider a polynomial in
F{x1, . . . , xn} as an element in the noncommutative ring F〈x1, . . . , xn, (,)〉 where we intro-
duce two auxiliary variables (and) (for left and right bracketing) to encode the parse tree
structure of any monomial. We illustrate the encoding by the following example.

Consider the monomial (which is essentially a binary tree with leaves labeled by variables)
in the nonassociative ring F{x, y} shown in Figure 1a. Its encoding as a bracketed string in
the free noncommutative ring F〈x, y, (,)〉 is ((x y) y) and its parse tree shown in Figure 1b.

Consider an arithmetic circuit C computing a polynomial f ∈ F{X}. The circuit C
can be efficiently transformed to a circuit C̃ that computes the corresponding polynomial
f̃ ∈ F〈X, (,)〉 by simply introducing the bracketing structure for each multiplication gate

V. Arvind, R. Datta, P. Mukhopadhyay, and S. Raja 38:5

×

×

x y

y

(a) A nonassociative and noncommutative
monomial xyy.

×

×

(×

×

(x

×

y)

×

y)

(b) Corresponding monomial ((xy) y) ∈ F〈X〉.

Figure 1 Nonassociative & noncommutative monomial and its corresponding noncommutative
bracketed monomial.

+

×

f1 f2

×

g1 g2

×

h1 h2

(a) C computing a nonassociative,
noncommutative polynomial.

+

×

×

(f1

×

f2)

×

×

(g1

×

g2)

×

×

(h1

×

h2)

(b) C̃ that computes the corresponding noncommutative
polynomial.

Figure 2 Nonassociative circuit and its corresponding noncommutative bracketed circuit.

of C in a bottom-up manner as indicated in the following example figures. Consider the
circuits described in Figures 2a and 2b where fi, gi, hi’s are polynomials computed by
subcircuits. Clearly the bracket variables preserve the parse tree structure. The following
fact is immediate.

IObservation 2. A nonassociative noncommutative circuit C computes a nonzero polynomial
f ∈ F{X} if and only if the corresponding noncommutative circuit C̃ computes a nonzero
polynomial f̃ ∈ F〈X, (,)〉.

We recall that the free noncommutative ring F〈X〉 is not a unique factorization domain
(UFD) [6] as shown by the following standard example : xyx+ x = x(yx+ 1) = (xy + 1)x.
In contrast, the nonassociative free ring F{X} is a UFD.

I Proposition 3. Over any field F, the ring F{X} is a unique factorization domain. More
precisely, any polynomial f ∈ F{X} can be expressed a product f = g1g2 · · · gr of irreducible
polynomials gi ∈ F{X}. The factorization is unique upto constant factors and reordering.

I Remark. Usually, even the ordering of the irreducible factors in the factorization is unique.

MFCS 2017

38:6 Efficient Identity Testing and Polynomial Factorization in Nonassociative Free Rings

Exceptions arise because of the equality (g + α)(g + β) = (g + β)(g + α) for any polynomial
g ∈ F{X} and α, β ∈ F.

We shall indirectly see a proof of this proposition in Section 4 where we describe the
algorithm for computing all irreducible factors.

Given a noncommutative circuit C computing a homogeneous polynomial in F〈X〉 and
a monomial m over X, one can talk of the left and right derivatives of C w.r.t m [2]. Let
f =

∑
m′ cm′(f)m′ for some f ∈ F〈X〉 and A be the subset of monomials m′ of f that have

m as prefix. Then the left derivative of f w.r.t. m is

∂`f

∂m
=

∑
m′∈A

cm′(f)m′′,

where m′ = m ·m′′ for m′ ∈ A. Similarly we can define the right derivative ∂rf
∂m . As shown

in [2], if f is given by a circuit C then in deterministic polynomial time we can compute
circuits for ∂`f

∂m and ∂rf
∂m . We briefly discuss this in the following lemma.

I Lemma 4. [2] Given a noncommutative circuit C of size s computing a homogeneous
polynomial f of degree d in F〈X〉 and monomial m, there is a deterministic poly(n, d, s) time
algorithm that computes circuits Cm,` and Cm,r for the left and right derivatives ∂`C

∂m and
∂rC
∂m , respectively.

Proof. We explain only the left partial derivative case. Let m be a degree d′ monomial and
f ∈ F〈X〉 be a homogeneous degree d polynomial f computed by circuit C. In [2],a small
substitution deterministic finite automaton A with d′+2 states is constructed that recognizes
all length d strings with prefix m and substitutes 1 for prefix m. The transition matrices
of this automaton can be represented by (d′ + 2)× (d′ + 2) matrices. From the evaluation
of circuit C on these transition matrices will recover the circuit for ∂`C

∂m in the (1, d′ + 1)th
entry of the output matrix. J

The left and right partial derivatives of inhomogeneous polynomials are similarly defined.
The same matrix substitution works for non-homogeneous polynomials as well [2]. As
discussed above, given a nonassociative arithmetic circuit C computing a polynomial f ∈
F{X}, we can transform C into a noncommutative circuit C̃ that computes a polynomial
f̃ ∈ F〈X, (,)〉. Suppose we want to compute the left partial derivative of f w.r.t. a monomial
m ∈ F{X}. Using the tree structure of m we transform it into a monomial m̃ ∈ F〈X, (,)〉
and then we can apply Lemma 4 to C̃ and m̃ to compute the required left partial derivative.
We can similarly compute the right partial derivative. We use this in Section 4.

We also note the following simple fact that the homogeneous parts of a polynomial
f ∈ F{X} given by a circuit C can be computed efficiently. We can apply the above
transformation to obtain circuit C̃ and use a standard lemma (see e.g., [14]) to compute the
homogeneous parts of C̃.

I Lemma 5. Given a noncommutative circuit C of size s computing a noncommutative
polynomial f of degree d in F〈X, (,)〉, one can compute homogeneous circuits Cj (where each
gate computes a homogeneous polynomial) for jth homogeneous part fj of f , where 0 ≤ j ≤ d,
deterministically in time poly(n, d, s).

V. Arvind, R. Datta, P. Mukhopadhyay, and S. Raja 38:7

3 Identity Testing in F{X}

In this section we describe our identity testing algorithm.

I Theorem 6. Let f(x1, x2, . . . , xn) ∈ F{X} be a degree d polynomial given by an arithmetic
circuit of size s. Then in deterministic poly(s, n, d) time we can test if f is an identically
zero polynomial in F{X}.

Proof. By Lemma 5 we can assume that the input is a homogeneous nonassociative circuit
C computing some homogeneous degree d polynomial in F{X} (i.e. every gate in C computes
a homogeneous polynomial). Also, all the × gates in C have fanin 2 and + gates have
unbounded fanin. We can assume the output gate is a + gate. We can also assume w.l.o.g.
that the + and × gates alternate in each input gate to output gate path in the circuit
(otherwise we introduce sum gates with fan-in 1).

The jth-layer of circuit C to be the set of all + gates in computing degree j homogeneous
polynomials. Let s+ be the total number of + gates in C. To each monomial m we can
associate a vector vm ∈ Fs+ of coefficients, where vm is indexed by the + gates in C, and
vm[g] is the coefficient of monomial m in the polynomial computed at the + gate g. We can
also write

vm[g] = cm(pg),

where pg is the polynomial computed at the sum gate g.
For the jth layer of + gates, we will maintain a maximal linearly independent set Bj

of vectors vm of monomials. These vectors correspond to degree j monomials. Although
vm ∈ Fs+ , notice that vm[g] = 0 at all + gates that do not compute a degree j polynomial.
Thus, |Bג| is bounded by the number of + gates in the jth layer. Hence, |Bג| ≤ s.

The sets Bj are computed inductively for increasing values of j. For the base case,
the set B1 can be easily constructed by direct computation. Inductively, suppose the sets
Bi : 1 ≤ i ≤ j − 1 are already constructed. We describe the construction of Bj . Computing
Bd and checking if there is a nonzero vector in it yields the identity testing algorithm.

We now describe the construction for the jth layer assuming we have basis Bj′ for every
j′ < j. Consider a × gate with its children computing homogeneous polynomials of degree d1
and d2 respectively. Notice that j = d1 + d2 and 0 < d1, d2 < j. Consider the monomial2 set

M = {m1m2 | vm1 ∈ Bd1 and vm2 ∈ Bd2}.

We construct vectors {vm | m ∈M} as follows.

vm1m2 [g] =
∑

(gd1 ,gd2)

vm1 [gd1]vm2 [gd2],

where g is a + gate in the jth layer, gd1 is a + gate in the dth1 layer, gd2 is a + gate in the
dth2 layer, and there is a × gate which is input to g and computes the product of gd1 and gd2 .

Let Bd1,d2 denote a maximal linearly independent subset of {vm | m ∈M}. Then we let
Bd be a maximal linearly independent subset of⋃

d1+d2=d
Bd1,d2 .

2 We note that the nonassociative monomial m1m2 is a binary tree with the root having two children: the
left child is the root of the binary tree for m1 and the right child is the root of the binary tree for m2.

MFCS 2017

38:8 Efficient Identity Testing and Polynomial Factorization in Nonassociative Free Rings

I Claim 7. For every monomial m of degree j, vm is in the span of Bj.

Proof of Claim. Let m = m1m2 and the degree of m1 is d1 and the degree of m2 is d2
3.

By Induction Hypothesis vectors vm1 and vm2 are in the span of Bd1 and Bd2 respectively.
Hence, we can write

vm1 =
D1∑
i=1

αivmi
vmi
∈ Bd1 and vm2 =

D2∑
j=1

βjvm′j vm′j ∈ Bd2 ,

where |Bdj
| = Dj . Now, for a gate g in the jth layer, By Induction Hypothesis and by

construction we have

vm[g] =
∑

(gd1 ,gd2)

vm1 [gd1]vm2 [gd2] =
∑

gd1 ,gd2

(
D1∑
i=1

αivmi [gd1])(
D2∑
j=1

βjvm′j [gd2])

=
D1∑
i=1

D2∑
j=1

αiβj
∑

gd1 ,gd2

vmi
[gd1]vm′j [gd2] =

D1∑
i=1

D2∑
j=1

αiβjvmim′j [g].

Thus vm is in the span of Bd1,d2 and hence in the span of Bj . This proves the claim.
The PIT algorithm only has to check if Bd has a nonzero vector. This proves the claim. J

Suppose the input nonassociative circuit C computing some degree d polynomial f ∈
F{X} is inhomogeneous. Then, using Lemma 5 we can first compute in polynomial time
homogeneous circuits Cj : 0 ≤ j ≤ d, where Cj computes the degree-j homogeneous part
fj . Then we run the above algorithm on each Cj to check whether f is identically zero. This
completes the proof of the theorem. J

4 Polynomial Factorization in F{X}

In this section we describe our polynomial-time white-box factorization algorithm for poly-
nomials in F{X}. More precisely, given as input a nonassociative circuit C computing
a polynomial f ∈ F{X}, the algorithm outputs circuits for all irreducible factors of f .
The algorithm uses as subroutine the PIT algorithm for polynomial in F{X} described in
Section 3.

To facilitate exposition, we completely describe a deterministic polynomial-time algorithm
that computes a nontrivial factorization f = g · h of f , by giving circuits for g and h, unless
f is irreducible. We will briefly outline how this extends to finding all irreducible factors
efficiently.

We start with a special case.

I Lemma 8. Let f ∈ F{X} be a degree d polynomial given by a circuit C of size s such that
the constant term in f is zero. Furthermore, suppose there is a factorization f = g · h such
that the constant terms in g and h are also zero. Then in deterministic poly(n, d, s) time we
can compute the circuits for polynomials g and h.

Proof. We first consider the even more restricted case when C computes a homogeneous
degree d polynomial f ∈ F{X}. For the purpose of computing partial derivatives, it is
convenient to transform C into the noncommutative circuit C̃, as explained in Section 2,

3 Here a crucial point is that for a nonassociative monomial of degree d, such a choice for d1 and d2 is
unique. This is a place where a general noncommutative circuit behaves very differently.

V. Arvind, R. Datta, P. Mukhopadhyay, and S. Raja 38:9

+

×

i d2

×

k l

×

i d2

Figure 3 Circuit Ci+d2 for fi+d2 .

which computes the fully bracketed polynomial f̃ ∈ F〈X, (,)〉. Using Theorem 6 we compute
a monomial m = (m1m2) where m1 and m2 are also fully bracketed. We can transform C̃ to
drop the outermost opening and closing brackets. Now, using Lemma 4, we compute the
resulting circuits left partial derivative w.r.t. m1 and right partial derivative w.r.t. m2. Call
these f̃1 and f̃2. We can check if f̃ = (f̃1f̃2): we first recover the corresponding nonassociative
circuits for f1 and f2 from the circuits for f̃1 and f̃2. Then we can apply the PIT algorithm
of Theorem 6 to check if f = f1f2. Clearly, f is irreducible iff f 6= f1f2. Continuing thus, we
can fully factorize f into its irreducible factors.

Now we prove the actual statement. Applying Lemma 5, we compute homogeneous
circuits Cj : 1 ≤ j ≤ d for the homogeneous degree j component fj of the polynomial f .
Clearly fd = gd1hd2 . We run the PIT algorithm of Theorem 6 on the circuit Cd to extract a
monomial m of degree d along with its coefficient cm(fd) in fd. Notice that the monomial
m is of the form m = (m1 m2). If g and h are nontrivial factors of f then m1 and m2 are
monomials in g and h respectively. Compute the circuits for the left and right derivatives
with respect to m1 and m2.

∂`Cd
∂m1

= cm1(gd1) · hd2 and ∂rCd
∂m2

= cm2(hd2) · gd1 .

In general the (i+ d2)th : i ≤ d− d2 homogeneous part of f can be expressed as

fi+d2 = gihd2 +
i+d2−1∑
t=i+1

gthd2 − (t−i).

We depict the circuit Ci+d2 for the polynomial fi+d2 in Figure 3. The top gate of the circuit
is a + gate. From Ci+d2 , we construct another circuit C ′i+d2

keeping only those × gates as
children whose left degree is i and right degree is d2. The resulting circuit is shown in Figure
4. The circuit C ′i+d2

must compute gihd2 . By taking the right partial of C ′i+d2
with respect

to m2, we obtain the circuit for cm2(hd2) gi.
We repeat the above construction for each i ∈ [d1] to obtain circuits for cm2(hd2)gi for

1 ≤ i ≤ d1. Similarly we can get the circuits for cm1(gd1)hi for each i ∈ [d2] using the left
derivatives with respect to the monomial m1.

By adding the above circuits we get the circuits Cg and Ch for cm2(hd2)g and cm1(gd1)h
respectively. We set Cg = cm2 (hd2)

cm(f) g so that CgCh = f . Using PIT algorithm one can easily
check whether g and h are nontrivial factors. In that case we further recurse on g and h to
obtain their irreducible factors. J

Now we consider the general case when f and its factors g, h have arbitrary constant terms.
In the subsequent proofs we assume, for convenience, that deg(g) ≥ deg(h). The case when
deg(g) < deg(h) can be handled analogously. We first consider the case deg(g) = deg(h).

MFCS 2017

38:10 Efficient Identity Testing and Polynomial Factorization in Nonassociative Free Rings

+

×

i d2

×

i d2

Figure 4 C′
i+d2 keeps only degree (i, d2) type × gates.

I Lemma 9. For a degree d polynomial f ∈ F{X} given by a circuit C suppose f =
(g + α)(h + β), where g, h ∈ F{X} such that deg(g) = deg(h), and α, β ∈ F. Suppose
m = (m1m2) is a nonzero degree d monomial. Then, in deterministic polynomial time we
can compute circuits for the polynomials cm1(g) · h and cm2(h) · g, where cm1(g) and cm2(h)
are coefficient of m1 and m2 in g and h respectively.

Proof. We can write f = (g + α)(h + β) = g · h + β · g + α · h + α · β. Applying the PIT
algorithm of Theorem 6 on f , we compute a maximum degree monomial m = (m1m2).
Computing the left derivative of circuit C w.r.t. monomial m1, after removing the outermost
brackets, we obtain a circuit computing cm1(g)h+βcm1(g)+αcm1(h). Dropping the constant
term, we obtain a circuit computing polynomial cm1(g)h. Similarly, computing the right
derivative w.r.t m2 yields a circuit for cm2(h)g+ βcm2(g) +αcm2(h). Removing the constant
term we get a circuit for cm2(h)g. J

When deg(g) > deg(h) we can recover h+ β entirely (upto a scalar factor) and we need
to obtain the homogeneous parts of g separately.

I Lemma 10. Let f = (g + α) · (h + β) be a polynomial of degree d in F{X} given by a
circuit C. Suppose deg(g) > deg(h). Then, in deterministic polynomial time we can compute
the circuit C ′ for cm1(g)(h+ β).

Proof. Again, applying the PIT algorithm to f we obtain a nonzero degree d monomial
m = (m1 m2) of f . If f = (g+α)(h+β) then f = g ·h+αh+βg+αβ. As deg(g) > deg(h),
the left partial derivative of C with respect to m1 yields a circuit C ′ for cm1(g) (h+ β). J

Extracting the homogeneous components from the circuit C ′ given by Lemma 10, yields
circuits for {cm1(g)hi : i ∈ [d2]}. We also get the constant term cm1(g)β. Now we obtain
the homogeneous components of g as follows.

I Lemma 11. Suppose circuit C computes f , where f = (g+α) (h+β) of degree d, α, β ∈ F,
deg(g) = d1 and deg(h) = d2 such that d1 > d2.

Let m be a nonzero degree d monomial of f such that m = (m1 m2). Then circuits for
{cm2(h)gi : i ∈ [d1 − d2 + 1, d1]} can be computed in deterministic polynomial time.
The (d2 + i)th homogeneous part of f is given by fd2+i =

∑d2−1
j=0 gd2+i−j hj + gi hd2 for

1 ≤ i ≤ d1 − d2. From the circuit Cd2+i of fd2+i, we can efficiently compute circuits for
{cm2(hd2)gi : 1 ≤ i ≤ d1 − d2}.

Proof. For the first part, fix any i ∈ [d1−d2 +1, d1], and compute the homogeneous (i+d2)th
part fi+d2 of f by a circuit Ci+d2 . Similar to Lemma 8, we focus on the sub-circuits of Ci+d2

formed by × gate of the degree type (i, d2). Since i is at least d1 − d2 + 1, such gates can

V. Arvind, R. Datta, P. Mukhopadhyay, and S. Raja 38:11

compute the multiplication of a degree i polynomial with a degree d2 polynomial. Then, by
taking the right partial derivative with respect to m2 we recover the circuits for cm2(hd2) gi
for any i ∈ [d1 − d2 + 1, d1].

Next, the goal is to recover the circuits for gi (upto a scalar multiple), where 1 ≤ i ≤ d1−d2,
and also recover the constant terms α and β. When i ≤ d1− d2 a product gate of type (i, d2)
can entirely come from g which requires a different handling.

We explain only the case when i = d1 − d2 (the others are similar). For i = d1 − d2,
we have fd1 = βgd1 +

∑d2−1
j=1 gd1−j hj + gd1−d2 hd2 . By Lemma 10, we can compute a

circuit C ′ for cm1(g)(h+ β). Extracting the constant term yields cm1(g)β. From Lemma 11
we have a circuit C ′′ for cm2(h)gd1 . Multiplying these circuits, we obtain a circuit C∗ for
cm2(h)cm1(g)βgd1 . Since cm2(h)cm1(g) = cm(f), dividing C∗ by cm(f) yields a circuit for
βgd1 . Note that, by the first part of this lemma, we already have circuits for every term
gd1−j appearing in the above sum. Subtracting βgd1 +

∑d2−1
j=1 gd1−j hj from the circuit Cd1

for fd1 , yields a circuit for polynomial gd1−d2hd2 . Computing the right derivative of the
resulting circuit w.r.t m2 (Lemma 4) yields a circuit for cm2(h)gd1−d2 .

For general i ≤ d1−d2, when we need to compute gi, again we will have already computed
circuits for all gj , j > i. A suitable right derivative computation will yield a circuit for
cm2(h)gi. J

Lemmas 8, 9, 10, and 11 yield an efficient algorithm for computing circuits for the
two factors cm2(h)(

∑d1
i=1 gi) and cm1(g)(

∑d2
i=1 hi) when deg(g) ≥ deg(h). The case when

deg(g) < deg(h) is similarly handled using left partial derivatives in the above lemmas.
Now we explain how to compute the constant terms of the individual factors. We discuss

the case when α 6= 0. The other case is similar.
First we recall that given a monomial m and a noncommutative circuit C, the coefficient

of m in C can be computed in deterministic polynomial time [3]. We know that f0 = α ·β. We
compute the coefficient of the monomial m1 in the circuits for polynomials cm2(h)cm1(g)gh,
cm2(h)g, and cm1(g)h. Let these coefficients be a, b and c, respectively. Moreover, we know
that cm2(h)cm1(g) is the coefficient of monomial m = (m1 m2) in f . Let the coefficient of
m1 in f be γ. Let γ1 = cm1(g) and γ2 = cm2(h) and δ = cm1(g)cm2(h).

Now equating the coefficient of m1 from both side of the equation f = (g + α)(h + β)
and substituting β = f0

α , we get

γ = a

γ1γ2
+ αc

γ1
+ f0b

αγ2
= a

δ
+ αc

γ1
+ f0b

αγ2
.

Letting ξ = αγ2, this gives a quadratic equation in the unknown ξ.

cξ2 + (a− γδ)ξ + f0bδ = 0.

By solving the above quadratic equation we get two solutions A1 and A2 for ξ = αγ2.
Notice that βγ1 = δf0

ξ . As we have circuits for cm2(h)g = γ2g and for cm1(g)h = γ1h, we
obtain circuits for γ2(g + α) and γ1(h+ β) (two solutions, corresponding to A1 and A2). To
pick the right solution, we can run the PIT algorithm to check if γ1γ2f equals the product of
these two circuits that purportedly compute γ2(g + α) and γ1(h+ β).

Over Q we can just solve the quadratic equation in deterministic polynomial time
using standard method. If F = Fq for q = pr, we can factorize the quadratic equation in
deterministic time poly(p, r) [15]. Using randomness, one can solve this problem in time
poly(log p, r) using Berlekamp’s factoring algorithm [5]. This also completes the proof of the
following.

MFCS 2017

38:12 Efficient Identity Testing and Polynomial Factorization in Nonassociative Free Rings

I Theorem 12. Let f ∈ F{X} be a degree d polynomial given by a circuit of size s. If
F = Q, in deterministic poly(s, n, d) time we can compute a nontrivial factorization of f or
reports f is irreducible. If F is a finite field such that char(F) = p, we obtain a deterministic
poly(s, n, d, p) time algorithm that computes a nontrivial factorization of f or reports f is
irreducible.

Finally, we state the main result of this paper.

I Theorem 13. Let f ∈ F{X} be a degree d polynomial given by a circuit of size s. Then if
F = Q, in deterministic poly(s, n, d) time we can output the circuits for the irreducible factors
of f . If F is a finite field such that char(F) = p, we obtain a deterministic poly(s, n, d, p)
time algorithm for computing circuits for the irreducible factors of f .

I Remark. We could apply Theorem 12 repeatedly to find all irreducible factors of the
input f ∈ F{X}. However, the problem with that approach is that the circuits for g and
h we computed in the proof of Theorem 12, where f = gh is the factorization, is larger
than the input circuit C for f by a polynomial factor. Thus, repeated application would
incur a superpolynomial blow-up in circuit size. We can avoid that by computing the
required partial derivative of g as a suitable partial derivative of the circuit C directly.
This will keep the circuits polynomially bounded. This idea is from [2] where it is used for
homogeneous noncommutative polynomial factorization. Combined with Theorem 12 this
gives the polynomial-time algorithm of Theorem 13.

5 Conclusion

Motivated by the nonassociative circuit lower bound result shown in [7], we study PIT and
polynomial factorization in the free nonassociative noncommutative ring F{X} and obtain
efficient white-box algorithms for the problems.

Hrubes, Wigderson, and Yehudayoff [7] have also shown exponential circuit-size lower
bounds for nonassociative, commutative circuits. It would be interesting to obtain an
efficient polynomial identity testing algorithm for that circuit model too. Even a randomized
polynomial-time algorithm is not known.

Obtaining an efficient black-box PIT in the ring F{X} is also an interesting problem. Of
course, for such an algorithm the black-box can be evaluated on a suitable nonassociative
algebra. To the best of our knowledge, there seems to be no algorithmically useful analogue
of the Amitsur-Levitzki theorem [1].

References
1 Avraham Shimshon Amitsur and Jacob Levitzki. Minimal identities for algebras. Proceed-

ings of the American Mathematical Society, 1(4):449–463, 1950.
2 Vikraman Arvind, Pushkar S. Joglekar, and Gaurav Rattan. On the complexity of non-

commutative polynomial factorization. In Mathematical Foundations of Computer Science
2015 - 40th International Symposium, MFCS 2015, Milan, Italy, August 24-28, 2015, Pro-
ceedings, Part II, pages 38–49, 2015. doi:10.1007/978-3-662-48054-0_4.

3 Vikraman Arvind, Partha Mukhopadhyay, and Srikanth Srinivasan. New results on non-
commutative and commutative polynomial identity testing. Computational Complexity,
19(4):521–558, 2010. doi:10.1007/s00037-010-0299-8.

4 Vikraman Arvind and S. Raja. Some lower bound results for set-multilinear arithmetic
computations. Chicago J. Theor. Comput. Sci., 2016 (6), 2016.

http://dx.doi.org/10.1007/978-3-662-48054-0_4
http://dx.doi.org/10.1007/s00037-010-0299-8

V. Arvind, R. Datta, P. Mukhopadhyay, and S. Raja 38:13

5 E. R. Berlekamp. Factoring polynomials over large finite fields*. In Proceedings of the
Second ACM Symposium on Symbolic and Algebraic Manipulation, SYMSAC’71, pages
223–, New York, NY, USA, 1971. ACM. doi:10.1145/800204.806290.

6 P.M. Cohn. Noncommutative unique factorization domains. Transactions of the American
Math. Society, 109(2):313–331, 1963.

7 Pavel Hrubes, Avi Wigderson, and Amir Yehudayoff. Relationless completeness and sep-
arations. In Proceedings of the 25th Annual IEEE Conference on Computational Com-
plexity, CCC 2010, Cambridge, Massachusetts, June 9-12, 2010, pages 280–290, 2010.
doi:10.1109/CCC.2010.34.

8 Laurent Hyafil. The power of commutativity. In 18th Annual Symposium on Foundations
of Computer Science (FOCS), Providence, Rhode Island, USA, 31 October - 1 November
1977, pages 171–174, 1977. doi:10.1109/SFCS.1977.31.

9 Erich Kaltofen. Factorization of polynomials given by straight-line programs. Randomness
in Computation, vol. 5 of Advances in Computing Research:375–412, 1989.

10 Swastik Kopparty, Shubhangi Saraf, and Amir Shpilka. Equivalence of polynomial identity
testing and polynomial factorization. Computational Complexity, 24(2):295–331, 2015. doi:
10.1007/s00037-015-0102-y.

11 Guillaume Lagarde, Guillaume Malod, and Sylvain Perifel. Non-commutative computa-
tions: lower bounds and polynomial identity testing. Electronic Colloquium on Computa-
tional Complexity (ECCC), 23:94, 2016. URL: http://eccc.hpi-web.de/report/2016/
094.

12 Noam Nisan. Lower bounds for non-commutative computation (extended abstract). In
STOC, pages 410–418, 1991. doi:10.1145/103418.103462.

13 Ran Raz and Amir Shpilka. Deterministic polynomial identity testing in non-commutative
models. Computational Complexity, 14(1):1–19, 2005. doi:10.1007/s00037-005-0188-8.

14 Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and
open questions. Foundations and Trends in Theoretical Computer Science, 5(3-4):207–388,
2010. doi:10.1561/0400000039.

15 Joachim von zur Gathen and Victor Shoup. Computing frobenius maps and factoring
polynomials. Computational Complexity, 2:187–224, 1992.

MFCS 2017

http://dx.doi.org/10.1145/800204.806290
http://dx.doi.org/10.1109/CCC.2010.34
http://dx.doi.org/10.1109/SFCS.1977.31
http://dx.doi.org/10.1007/s00037-015-0102-y
http://dx.doi.org/10.1007/s00037-015-0102-y
http://eccc.hpi-web.de/report/2016/094
http://eccc.hpi-web.de/report/2016/094
http://dx.doi.org/10.1145/103418.103462
http://dx.doi.org/10.1007/s00037-005-0188-8
http://dx.doi.org/10.1561/0400000039

	Introduction
	Outline of the proofs
	Organization

	Preliminaries
	Identity Testing in FX
	Polynomial Factorization in FX
	Conclusion

