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Abstract
Consider the Maximum Weight Independent Set problem for rectangles: given a family of
weighted axis-parallel rectangles in the plane, find a maximum-weight subset of non-overlapping
rectangles. The problem is notoriously hard both in the approximation and in the parameterized
setting. The best known polynomial-time approximation algorithms achieve super-constant ap-
proximation ratios [5, 7], even though there is a (1+ε)-approximation running in quasi-polynomial
time [2, 8]. When parameterized by the target size of the solution, the problem is W[1]-hard even
in the unweighted setting [12].

To achieve tractability, we study the following shrinking model: one is allowed to shrink each
input rectangle by a multiplicative factor 1 − δ for some fixed δ > 0, but the performance is
still compared against the optimal solution for the original, non-shrunk instance. We prove that
in this regime, the problem admits an EPTAS with running time f(ε, δ) · nO(1), and an FPT
algorithm with running time f(k, δ) · nO(1), in the setting where a maximum-weight solution
of size at most k is to be computed. This improves and significantly simplifies a PTAS given
earlier for this problem [1], and provides the first parameterized results for the shrinking model.
Furthermore, we explore kernelization in the shrinking model, by giving efficient kernelization
procedures for several variants of the problem when the input rectangles are squares.
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1 Introduction

In Maximum (Weight) Independent Set, given a graph, the goal is to select a set of
pairwise non-adjacent vertices with maximum cardinality or total weight. In its full generality,
the problem is NP-hard and intractable both in the approximation and in the parameterized
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42:2 Geometric Independent Set with Shrinking

setting: it is NP-hard to approximate within ratio n1−ε for any ε > 0 [16], and it is W[1]-hard
when parameterized by the solution size [9]. Therefore, many restricted settings were studied.

One well-studied case is to consider a geometric setting where the input consists of
a family of geometric objects, and the goal is to select a maximum-weight subfamily of
pairwise non-overlapping objects. This case reduces to the graph setting by considering the
intersection graph of the objects. These graphs are highly structured, which gives hope for
better results than for general graphs.

This paper concentrates on the variant in which the input objects are axis-parallel
rectangles in the two-dimensional plane. In this variant, Maximum Weight Independent
Set admits much smaller approximation ratios than on general graphs. While no polynomial-
time constant-factor approximation algorithm is known in general, there is an O(log logn)-
approximation algorithm for unweighted rectangles [5], an O(logn/ log logn)-approximation
algorithm for weighted rectangles [7], and a PTAS for squares [6, 10]. If one allows quasi-
polynomial running time, then there is a (1 + ε)-approximation algorithm (a QPTAS) [3, 11].
It remains open whether this can be improved to a PTAS.

From the parameterized perspective, the problem remains W[1]-hard when parameterized
by the size k of the solution, even for unweighted unit squares [12]. Therefore, the existence
of an FPT algorithm with running time f(k) · nO(1) for a computable f is unlikely under
standard assumptions from parameterized complexity; this also excludes the existence of
an EPTAS for the problem [12]. However, the problem admits a faster-than-brute-force
parameterized algorithm with running time nO(

√
k), which is optimal under the Exponential

Time Hypothesis [13]. This algorithm works in the general setting of finding a maximum-
weight independent set of size k in a family of polygons in the plane.

Shrinking model. In order to circumvent some of the many challenges that arise when
designing approximation or parameterized algorithms for geometric Maximum Weight
Independent Set, we investigate the shrinking model introduced by Adamaszek et al. [1].
In this model, one is allowed to shrink each input object by a multiplicative factor 1− δ for
some fixed δ > 0, but the weight of the computed solution is still compared to the optimum
for the original, non-shrunk instance; we give a formal definition later. It is known that the
shrinking model allows for substantially better approximation algorithms than the general
setting: Adamaszek et al. [1] gave a PTAS for axis-parallel rectangles, which was later
generalized by Wiese to arbitrary convex polygons [15]. However, it has not been studied so
far whether shrinking also helps to design parameterized algorithms. One concrete question
would be whether Independent Set for axis-parallel rectangles remains W[1]-hard in the
shrinking model.

Our results. This paper addresses the parameterized complexity of Maximum Weight
Independent Set of Rectangles in the shrinking model, and answers the above questions.
On the way to our two main parameterized contributions, we also improve the PTAS by
Adamaszek et al. [1] to an EPTAS.

Our first main contribution is that Maximum Weight Independent Set of Rect-
angles is fixed-parameter tractable (FPT) in the shrinking model. Formally, for a shrinking
parameter δ, we can decide in (deterministic) time f(k, δ) · (nN)O(1) whether there is an
independent set of k (shrunk) rectangles, or the original family has no independent subfamily
of size k. Here, N is the total bit size of the input and f is some computable function.
The algorithm also works in the weighted setting, where we look for a maximum-weight
subset of at most k non-overlapping rectangles. The reason why we are able to circumvent



Mi. Pilipczuk, E.J. van Leeuwen, and A. Wiese 42:3

the W[1]-hardness for the standard model (i.e., without shrinking) is that the reduction
of Marx [12] relies on tiny differences in the coordinates of the rectangles. However, as
Adamaszek et al. [1] and this paper show, this aspect vanishes in the shrinking model.

The parameterized algorithm is actually a consequence of an EPTAS that we present for
Maximum Weight Independent Set of Rectangles. That is, we give an algorithm
with running time f(ε, δ) · (nN)O(1) that finds a subset of rectangles that do not overlap after
shrinking by factor 1− δ, and whose total weight is at least 1− ε times the optimum without
shrinking. Recall that the standard model does not admit an EPTAS, unless FPT = W[1] [12].

Our EPTAS is based on the same principles as the PTAS of Adamaszek et al. [1].
The idea is to assemble an optimum solution using a bottom-up dynamic-programming
approach pioneered by Erlebach et al. [10]. Each subproblem solved in the dynamic program
corresponds to the maximum weight of an independent set contained in a “box”, and the
computation of the optimum for each such box boils down to enumerating a limited number
of carefully chosen partitions of the box into smaller boxes. Intuitively, the ability to shrink
is used to make sure that rectangles fit nicely into the different boxes. The main challenge is
to ensure that these boxes can be assumed to be simple, and therefore only a limited number
of subproblems is necessary to assemble a near-optimum solution.

The crucial contribution in our approximation algorithm is that we show that rectangular
boxes suffice. In [1], most rectangles were shrunk in only one direction and therefore, the
boxes were axis-parallel polygons with at most g(ε, δ) sides each, for some function g. This
makes the dynamic program very complex, and yields a running time of (nN)g(ε,δ) due to
the sheer number of subproblems solved. In this paper, we fully exploit the properties of the
shrinking model and shrink each rectangle in two directions. This changes the analysis, but
the main advantage is that we only need to consider boxes that are rectangles (i.e., with
only four sides) in our dynamic program. This greatly simplifies the dynamic program, and
we show that we need to consider only f(ε, δ) · (nN)O(1) different subproblems. Hence, our
EPTAS is both substantially faster and significantly simpler than previous work.

Our second main contribution is showing that several important subcases of Maximum
Weight Independent Set of Rectangles with δ-shrinking admit polynomial kernels
when parameterized by k and δ. Intuitively, such a kernel is a polynomial-time computable
subfamily of the input rectangles of size bounded by a polynomial of k and δ that retains
an optimum solution after δ-shrinking; a formal definition is given in Section 4. For unit
squares of non-uniform weight, we construct a kernel of size O(k/δ2), while for squares of
non-uniform size, but of uniform weight, we construct a kernel of size O(k2 · log(1/δ)

δ3 ). As a
direct consequence, we obtain FPT algorithms for the considered variants with running time
(k/δ)O(

√
k) · (nN)O(1) by applying the nO(

√
k)-time algorithm of Marx and Pilipczuk [13] on

the kernels. This subexponential running time is far better than the running time of our FPT
algorithm for the general case.

Organization. In this extended abstract we sketch our EPTAS and present the main ideas
behind the kernelization results. A much broader discussion, including complete proofs of all
results, can be found in the full version available on the arXiv [14]. The proofs of claims
marked with ♠ appear in the full version [14].

2 Preliminaries

We essentially adopt the notation of Adamaszek et al. [1]. Suppose thatR = {R1, R2, . . . , Rn}
is a family of axis-parallel rectangles given in the input. Each rectangle Ri is described as
Ri = {(a, b) : x

(1)
i < a < x

(2)
i and y(1)

i < b < y
(2)
i }, where x

(1)
i < x

(2)
i and y

(1)
i < y

(2)
i
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42:4 Geometric Independent Set with Shrinking

are integers. Thus, the input rectangles are assumed to be open, and their vertices are at
integral points. We assume that the family R is given in the input with all the coordinates
x

(1)
i , x

(2)
i , y

(1)
i , y

(2)
i encoded in binary; thus, the coordinates are at most exponential in the

total bit size of the input, denoted by N . For a rectangle Ri, we define its width gi = x
(2)
i −x

(1)
i

and height hi = y
(2)
i − y

(1)
i . Moreover, each rectangle Ri has an associated weight wi, which

is a nonnegative real. For a subset S ⊆ R, we denote w(S) =
∑
Ri∈S wi.

Fix a constant δ with 0 < δ < 1. For a rectangle Ri, its δ-shrinking R−δi is the rectangle
with x-coordinates x(1)

i + δ
2gi and x

(2)
i − δ

2gi, and y-coordinates y
(1)
i + δ

2hi and y
(2)
i − δ

2hi.
The δ-shrinking retains the weight wi of the original rectangle. For a subset S ⊆ R, we
denote S−δ = {R−δi : Ri ∈ S} to be the family of δ-shrinkings of rectangles from S.

A family of rectangles is independent (or is an independent set) if the rectangles are
pairwise non-overlapping. In the Maximum Weight Independent Set of Rectangles
problem (MWISR) we are given a family of axis-parallel rectangles R = {R1, R2, . . . , Rn},
and the goal is to find a subfamily of R that is independent and has maximum total weight.
This maximum weight will be denoted by OPT(R). In the parameterized setting, we are
additionally given an integer parameter k, and we look for a subfamily of R that has size at
most k, is independent, and has maximum possible weight subject to these conditions. This
maximum weight will be denoted by OPTk(R).

In the δ-shrinking setting, we relax the requirement of independence to just requiring the
disjointness of δ-shrinkings, but we still compare the weight of the output of our algorithm
with OPT(R), respectively with OPTk(R).

3 Main results

With the above definitions in mind, we can state formally our main results.

I Theorem 1 (FPT for MWISR with δ-shrinking). There is a deterministic algorithm
that, given a weighted family R of n axis-parallel rectangles with total encoding size N
and parameters k and δ, runs in time f(k, δ) · (nN)c for some computable function f and
constant c, and outputs a subfamily S ⊆ R such that |S| ≤ k, S−δ is independent, and
w(S) ≥ OPTk(R).

I Theorem 2 (EPTAS for MWISR with δ-shrinking). There is a deterministic algorithm
that, given a weighted family R of n axis-parallel rectangles with total encoding size N and
parameters δ, ε, runs in time f(ε, δ) · (nN)c for some computable function f and constant c,
and outputs a subfamily S ⊆ R such that S−δ is independent, and w(S) ≥ (1− ε)OPT(R).

In this section we sketch the proof of Theorem 2. Theorem 1 follows by a simple
adjustment of the reasoning, as explained in the full version of the paper [14].

Throughout the proof we fix the input family R = {R1, . . . , Rn}, and we denote OPT(R)
by OPT. We also fix the constants δ and ε, and w.l.o.g. we assume that 1/δ and 1/ε are even
integers larger than 4. For convenience, throughout the proof we aim at finding a solution S
with w(S) ≥ (1− d · ε)OPT for some constant d, for at the end we may rescale the parameter
ε to ε/d. By shifting all the rectangles, we may assume without loss of generality that they
all fit into the square [1, L]× [1, L], where L = (1/δε)` for some integer ` = O(N). That is,
all the coordinates x(1)

i , x
(2)
i , y

(1)
i , y

(2)
i are between 1 and L, so in particular the width and

the height of each rectangle is smaller than L.
We divide our reasoning into two steps. First, like in the PTAS of Adamaszek et al. [1],

in Section 3.1 we describe how to remove some rectangles from R using standard shifting
arguments so that OPT decreases only by an O(ε)-fraction, but the resulting family admits
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some useful properties. Then, we shrink the rectangles in a similar way as in [1]; however, in
contrast to [1] we will shrink each rectangle in both directions which will be important in our
analysis. Second, we show that the properties of the obtained family enable us to compute
an optimum solution using dynamic programming; this algorithm is presented in Section 3.2.

3.1 Sparsifying the family
Intuitively, we will apply shifting techniques to extract some structure in the input family R
while losing only an O(ε)-fraction of OPT. The first goal is to classify the rectangles according
to their widths (respectively, heights) such that rectangles in the same class have similar
widths (respectively, heights), but between the classes the dimensions differ significantly.

IDefinition 3. A subfamilyR′ ⊆ R is well-separated if there exist two partitions (RV
1 , . . . ,RV

p )
and (RH

1 , . . . ,RH
p ) ofR′, with p ≤ `, as well as reals νt, µt for t = 1, 2, . . . , p, with the following

properties satisfied for each t ∈ {1, 2, . . . , p}:
νt ≤ gi < µt for each Ri ∈ RV

t ;
νt ≤ hi < µt for each Ri ∈ RH

t ;
νt/µt−1 = 1/δε (except for t = 1) and µt/νt = (1/δε)(1/ε)−1; and
ν1 ≤ 1, µp ≥ L, and all numbers νt and µt apart from ν1 are integers.

The partitions (RV
t )t=1,...,p and (RH

t )t=1,...,p are called the vertical and horizontal levels,
respectively, whereas the parameters (νt)t=1,...,p and (µt)t=1,...,p are the lower and upper
limits of the corresponding levels. Note that vertical levels partition R′ by width, while the
horizontal levels partition R′ by height.

We now prove that we can find a well-separated subfamily that loses only an O(ε)-
fraction of OPT using a standard shifting technique. Essentially the same step is used in the
PTAS of Adamaszek et al. [1] (see Lemma 6 therein). Henceforth we will use the notation
[q] = {0, 1, . . . , q − 1} for any positive integer q.

I Lemma 4. We can compute a collection of 1/ε subfamilies R′0, . . . ,R′1/ε−1 ⊆ R in polyno-
mial time such that each subfamily is well-separated, and there exists a b∗ ∈ [1/ε] for which
OPT(R′b∗) ≥ (1− 2ε)OPT.

Proof. Recall that the widths and heights of the rectangles from R are integers between 1
and L−1, where L = (1/δε)`. First, create a partition of the rectangles into vertical layers LV

j

for j = 1, 2, . . . , `, where layer LV
j consists of rectangles Ri for which (1/δε)j−1 ≤ gi < (1/δε)j .

In a symmetric manner, partition R into horizontal layers LH
j for j = 1, 2, . . . , `, where layer

LH
j consists of rectangles Ri for which (1/δε)j−1 ≤ hi < (1/δε)j .
For each offset b ∈ [1/ε] we construct a subfamily R′b from R by removing all rectangles

contained in those vertical layers LV
j and those horizontal layers LH

j , for which j ≡ b

mod (1/ε). It is easy to see that each subfamily R′b constructed in this manner is well-
separated: each vertical level RV

t ⊆ R′b consists of (1/ε) − 1 consecutive vertical layers
between two removed ones, with the exception of the first and the last level, for which
the start/end of the sequence of layers delimits the level. A symmetric analysis yields the
partition into horizontal levels. It is straightforward to compute in polynomial time the
partition into horizontal/vertical levels, as well as to choose their lower and upper limits.

Suppose that we choose b uniformly at random from the set [1/ε]. Fix any optimum
solution S in R, that is, an independent set of rectangles such that w(S) = OPT. Observe
that for any rectangle Ri ∈ S, the probability that the vertical layer it belongs to is removed
during the construction of R′b, is equal to ε. Similarly, the probability that the horizontal
layer to which Ri belongs is removed when constructing R′b, is also ε. Hence, Ri is not

MFCS 2017



42:6 Geometric Independent Set with Shrinking

included in R′b with probability at most 2ε. This means that the expected value of w(S \R′b),
the total weight of rectangles from S that did not survive in R′b, is at most 2ε ·OPT. Hence,
in expectation we have that w(S \ R′b) ≤ 2ε · OPT. Therefore, there exists a subfamily R′b∗
with b∗ ∈ [1/ε] such that OPT(R′b∗) ≥ (1− 2ε)OPT. J

We now execute the rest of the algorithm on R′b for each b ∈ [1/ε], and output the best
solution obtained overall. This increases the running time of the algorithm by a factor 1/ε.
From Lemma 4, however, we know that OPT(R′b) ≥ (1 − 2ε)OPT for b = b∗, and thus we
lose at most a factor (1− 2ε) in this way. From now on, let R′ = R′b for some b ∈ [1/ε].

Hierarchical grid structure. For any integer a, we describe a hierarchical grid structure and
remove rectangles along it. We then execute the rest of the algorithm for a bounded number
of values of a, losing at most an additional factor (1− 6ε) in this way. Given a value of a, the
grid structure is constructed as follows. We first divide the horizontal lines into p levels (p as
in Definition 3) corresponding to the horizontal levels RH

t . For level t, define the level-t unit
as ut = δνt/2. Thus, for t > 1, we have ut = µt−1/(2ε), and hence ut is an integer for t > 1,
since 1/ε is even. For each level t ∈ {1, 2, . . . , p} we define a set of horizontal grid lines GH

t ,
consisting of the horizontal lines with y-coordinates from the set {a+ b · ut : b ∈ Z}. In other
words, we take horizontal lines that are ut apart from each other, and we shift them so that
there is a line with y-coordinate a. We define vertical grid lines GV

t of levels t = 1, 2, . . . , p
in a symmetric manner, using the same shift parameter a and the same units for all levels.
Define the grid of level t to be Gt = GH

t ∪GV
t . Note that any line of Gt is also a line of Gt′

for all t′ < t. Thus, the grid of each level t′ refines the grid of each larger level t.
Before we proceed, we describe the intuition of the next step; this step is also present

in the PTAS of Adamaszek et al. [1] (see Lemma 7 therein). Rectangles belonging to RV
t′

for t′ ≥ t have width not smaller than νt. On the other hand, the lines of GV
t are spaced

at distance ut = δνt/2 apart, which means that there are Ω(1/δ) vertical grid lines of GV
t

crossing each rectangle of vertical level t or larger. Intuitively, GV
t provides a fine grid for

those vertical levels, so that their rectangles can be snapped to the lines of GV
t via shrinking

by a multiplicative factor of at most 1 − δ. On the other hand, the rectangles of vertical
levels t − 1 or smaller have widths not larger than µt+1 = νt · (δε). Hence, the grid lines
of GV

t are at much larger distance to each other than the maximum possible width of such
rectangles; more precisely, larger by a multiplicative factor at least 1/(2ε). Consequently, if
we were to choose a ∈ [L] uniformly at random, then the probability that a rectangle Ri will
be crossed by a vertical line of level larger than its vertical level, or a horizontal line of level
larger than its horizontal level, will be O(ε). If we exclude such rectangles, then we lose only
an O(ε)-fraction of OPT in expectation. We now formalize the above intuition and use it to
derive an existential statement and a deterministic algorithm.

We need the following definition. Let Ri ∈ R′, and suppose that Ri ∈ RV
s ∩RH

t . We say
that Ri is abusive if Ri is crossed by a vertical line of level larger than s, or Ri is crossed by
a horizontal line of level larger than t; see Figure 1. A family of rectangles without abusive
rectangles (with respect to the hierarchical grid structure for a) is called well-behaved (for a).

I Lemma 5. Let U :=
∑p
t=1 ut. We can compute a collection of (1/δε)1/ε subfamilies

R′′0 , . . . ,R′′(1/δε)1/ε−1 ⊆ R
′ in (1/δε)1/ε · (nN)O(1) time such that, for each c ∈ [(1/δε)1/ε], the

subfamily R′′c is well-separated and well-behaved for c · U , and there exists a c∗ ∈ [(1/δε)1/ε]
for which OPT(R′′c∗) ≥ (1− 6ε)OPT(R′).

Proof. For each c ∈ [(1/δε)1/ε], the family R′′c is obtained from R′ by removing all rectangles
that are abusive with respect to the hierarchical grid structure for a = c · U . Hence, R′′c is
well-behaved for c · U . Since we are only removing rectangles, R′′c is still well-separated.
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us
us+1

Figure 1 The vertical grid. The dashed vertical lines are the vertical grid lines of GV
s , the bold

vertical lines are the lines in the set GV
s+1. All shown rectangles are from level RV

s . The crossed out
rectangles are abusive since they intersect lines from GV

s+1.

It remains to show the existence of c∗. Let Ri ∈ RV
s . As Ri ∈ RV

s , we have that
gi < µs = νs+1 · (δε) = us+1 · 2ε. Hence,

gi∑s
r=1 ur

≤ gi
us

<
us+1 · 2ε

us
= 2ε · (1/δε)1/ε. (1)

Note that this inequality holds regardless of the choice of a for the construction of the
hierarchical grid structure. Now consider the hierarchical grid structure for a = c · U for
some c ∈ [(1/δε)1/ε]. Rectangle Ri is crossed by a vertical line of level larger than s if and
only if it is crossed by a vertical line of level s + 1. Lines of GV

s+1 are spaced at distance
us+1 from each other, which means that Ri is crossed by a line of GV

s+1 if and only if the
remainder of c · U modulo us+1 is among a set Γi of gi − 1 consecutive remainders from
[us+1], being the remainders of the x-coordinates of vertical lines that cross Ri. By (1), Γi
contains at most 2ε · (1/δε)1/ε + 2 ≤ 3ε · (1/δε)1/ε multiples of

∑s
r=1 ur. On the other hand,

observe that 0 ≤ c ·
∑s
r=1 ur < us+1 for all c ∈ [(1/δε)1/ε], and that ur divides ur+1 for

each r. Hence, c · U gives remainder c ·
∑s
r=1 ur modulo us+1, which is always a multiple of∑s

r=1 ur. In particular, it follows that the multiples of
∑s
r=1 ur contained in Γi constitute

at most a 3ε-fraction of all the remainders modulo us+1 that c · U attains for c ∈ [(1/δε)1/ε].
Suppose now that c ∈ [(1/δε)1/ε] is chosen uniformly at random. Let Ri ∈ RV

s ∩RH
t . By

the previous observation, Ri is crossed by a vertical line of level larger than s with probability
at most 3ε. A similar analysis shows that Ri is crossed by a horizontal line of level larger
than t with probability at most 3ε. Therefore, Ri is abusive with probability at most 6ε, and
the total expected weight of the abusive rectangles in OPT(R′) with respect to a = c · U is
bounded by 6ε ·OPT(R′). Hence, the value c∗, as claimed in the lemma statement, exists. J

We now execute the rest of the algorithm on R′′c for each c ∈ [(1/δε)1/ε], and output the
best solution obtained overall. This increases the running time of the algorithm by a factor
(1/δε)1/ε. From Lemma 5, we know that OPT(R′′c ) ≥ (1− 6ε)OPT(R′) for c = c∗, and thus
we lose at most a factor (1− 6ε). From now on, let R′′ = R′′c for some c ∈ [(1/δε)1/ε].

Snapping by shrinking. When considering R′′, the lines of GV
t provide a fine division of

every rectangle from vertical level t or larger, while no rectangle of smaller vertical level is
crossed by them; symmetrically for horizontal grid lines. The idea now is to shrink each
rectangle Ri ∈ R′′ so that its vertical sides are aligned with some vertical grid lines of the
vertical level of Ri, while the horizontal sides are aligned with some horizontal grid lines of
the horizontal level of Ri. This is formalized in the next lemma, which is also similar to
Adamaszek et al. [1]. However, in this step there is a subtle but crucial difference. Consider a
rectangle Ri ∈ R′′, and suppose Ri ∈ RV

s ∩RH
t . In [1], Ri is shrunk in the vertical dimension

only if s ≥ t and in the horizontal dimension only if t ≥ s. Here we always do both, which
will be important for our dynamic programming.

MFCS 2017



42:8 Geometric Independent Set with Shrinking

I Lemma 6. In polynomial time we can compute a well-behaved family of axis-parallel
rectangles Q that contains one rectangle Qi for each Ri ∈ R′′, of the same weight wi as Ri
and satisfying the following conditions:

R−δi ⊆ Qi ⊆ Ri for each Ri ∈ R′′; and
if Ri ∈ RV

s ∩RH
t , then both vertical sides of Qi are contained in some vertical grid lines

of GV
s , and both horizontal sides of Qi are contained in some horizontal grid lines of GH

t .

Proof. Take any Ri ∈ R′′, and suppose Ri ∈ RV
s ∩RH

t . We define Qi as the rectangle cut
from the plane by the following four lines:

the left-most and the right-most vertical grid lines of GV
s that cross Ri;

the bottom-most and the top-most horizontal grid lines of GH
t that cross Ri.

Clearly, we have that Qi ⊆ Ri and the second condition of the statement is satisfied. We are
left with proving that R−δi ⊆ Qi.

Consider first the left side of Qi, which is contained in the left-most vertical grid line
of GV

s that crosses Ri. Since Ri ∈ RV
s , we have that gi ≥ νs, while the grid lines of GV

s

are spaced at distance ut = δνs/2 apart. This means that the left-most vertical grid line
crossing Ri has the x-coordinate not larger than x(1)

i + δνs/2, which in turn is not larger
than x(1)

i + δgi/2. This means that the left side of Qi is either to the left or at the same
x-coordinate as the left side of R−δi . An analogous reasoning can be applied to the other
three sides of Qi, thereby proving that R−δi ⊆ Qi.

Note that since Q is obtained only by shrinking rectangles from R′′, it is still the case
that no rectangle of Q is abusive. J

By Lemma 4 and Lemma 5, OPT(Q) ≥ OPT(R′′) ≥ (1 − 6ε)OPT(R′) ≥ (1 − 8ε)OPT
if R′ = R′b∗ and R′′ = R′′c∗ . Hence, the optimum solution for Q indeed has large enough
weight. Moreover, by the first condition of Lemma 6, for any independent set of rectangles
in Q, the corresponding rectangles in R−δ are also independent. Hence, any solution for
MWISR on Q projects to a solution of the same weight for MWISR with δ-shrinking on R.

From now on we focus on the familyQ. For each t ∈ {1, 2, . . . , p}, letQV
t = {Qi : Ri ∈ RV

t }
and QH

t = {Qi : Ri ∈ RH
t }.

3.2 Dynamic programming
We now present a dynamic programming algorithm that, given the family Q constructed in
the previous section, computes the value OPT(Q). An optimum solution can be recovered
from the run of the dynamic program using standard methods, and hence for simplicity we
omit this aspect in the description.

We describe the algorithm as backtracking with memoization. That is, subproblems are
solved by recursion, but once a subproblem has been solved once, the optimum value for
it is stored in a map (is memoized), and further calls to solving this subproblem will only
retrieve the memoized optimum value, rather than solve the subproblem again. Solving each
subproblem (excluding recursive subcalls) takes time f(δ, ε) · nO(1) for some computable
function f , and we argue that at most g(δ, ε) · (nN)O(1) subproblems are solved in total, for
some other computable function g. This ensures the promised running time of the algorithm.

We first define subproblems. A subproblem is a tuple I = (s, t, x1, x2, y1, y2), where the
meaning of the entries is as follows. The pair (s, t) ∈ {1, . . . , p} × {1, . . . , p} is the level of
the subproblem, which consists of the vertical level s and the horizontal level t. The numbers
x1, x2, y1, y2 are integers satisfying x1 < x2 ≤ x1 + (1/δε)1/ε and y1 < y2 ≤ y1 + (1/δε)1/ε.
Integers x1, x2 are the lower and upper vertical offsets, respectively, while y1, y2 are the
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lower and upper horizontal offsets, respectively. The area covered by subproblem I =
(s, t, x1, x2, y1, y2) is the rectangle

AI = (a+ x1 · us, a+ x2 · us)× (a+ y1 · ut, a+ y2 · ut).

In other words, (x1, x2, y1, y2) define the offsets of the four grid lines – two from GV
s and two

from GH
t – that cut out AI from the plane.

For a subproblem I, let QI be the family of all rectangles from Q that are contained in
AI . The next check follows from a simple calculation of parameters.

I Lemma 7 (♠). If subproblem I has level (s, t), then QI ⊆
⋃
s′≤s, t′≤tQV

s′ ∩QH
t′ .

For a subproblem I, we define the value of I, denoted Value(I), as the maximum weight of
a subfamily of QI that is independent. We show that there is a subproblem that encompasses
the whole instance. Then, we show how to solve each subproblem I, that is, to compute
Value(I), using recursion.

I Lemma 8 (♠). There is a subproblem Iall of level (p, p), computable in constant time, such
that AIall ⊇ (1, L)× (1, L). Consequently, OPT(Q) = Value(Iall).

Next comes the crucial point: we show how to solve each subproblem I, that is, to
compute Value(I), using recursion.

I Lemma 9 (♠). A subproblem I of level (s, t) can be solved using f(δ, ε) calls to solving
subproblems of levels (s− 1, t), (s, t− 1), and (s− 1, t− 1), for some computable function f .
Moreover, the time needed for this computation, excluding the time spent in the recursive
calls, is at most f(δ, ε) · n.

Proof sketch. Consider all vertical lines of level s and all horizontal lines of level t that
cross the rectangle AI ; their number is bounded by (1/δε)1/ε. These lines partition AI into
at most (1/δε)2/ε smaller cells in a natural manner. Consider an independent set S ⊆ QI
such that w(S) = Value(I). By obtaining a well-behaved family and applying the snapping
procedure, we have the following structure; see Figure 2. Each rectangle from S of level (s, t)
just occupies a rectangle of cells, each of them entirely. Whenever a rectangle from S is of
level (s′, t) for some s′ < s, it is contained in a single column of cells, and its horizontal sides
are aligned with some horizontal lines of the grid of cells. A symmetrical claim holds for
rectangles from S of level (s, t′) for any t′ < t. Finally, any rectangle of S of level (s′, t′) for
s′ < s and t′ < t is contained in a single cell.

It can be then easily seen that the whole grid of cells admits a partition into “boxes” such
that each rectangle of S fits into a single box. Each box that is not contained in one column
or in one row must be filled with a single rectangle of level (s, t), and we can greedily take the
heaviest such rectangle. Each other box defines a subproblem of level (s′, t′) where s′ ≤ s,
t′ ≤ t, and one of these inequalities is strict. Hence, an optimum solution for such a box can
be computed using a recursive call. Therefore, the algorithm enumerates all partitions of the
cells into boxes, and for each of them computes a candidate value using recursive subcalls;
the value of I is the largest among the candidates. J

Finally, to bound the running time of the algorithm, we prove that there is only a small
number of subproblems I for which QI is nonempty. Obviously, only such subproblems are
necessary to solve, as the others have value 0.

I Lemma 10 (♠). The number of subproblems I for which QI is nonempty is at most
81 · (1/δε)4/ε · |Q|p2.

MFCS 2017
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Figure 2 The partition of AI into large, horizontal, vertical, and small cells. The figure is a
slightly modified figure from [1].

Having gathered all the tools, we can describe the algorithm. To compute OPT(Q), it
is sufficient to compute Value(Iall) for the subproblem Iall given by Lemma 8. For this we
use backtracking with memoization. Starting from Iall, we recursively solve subproblems as
explained in Lemma 9. Whenever Value(I) has been computed for some subproblem I, then
this value is memoized in a map, and further calls to solving I will only return the value
retrieved from the map, instead of recomputing the value again. Furthermore, whenever we
attempt to compute Value(I) for a subproblem I for which QI is empty, we immediately
return 0 instead of applying the procedure of Lemma 9. Therefore, the total running time of
the algorithm is upper bounded by the number of subproblems I for which QI is nonempty,
times the time spent on internal computations for each of them, including checking whether
the respective family QI is empty and whether Value(I) has already been memoized. The
first factor is bounded by 81 · (1/δε)4/ε · |Q|p2 ≤ 81 · (1/δε)4/ε · nN2 due to Lemma 10. The
second factor is bounded by f(δ, ε) · nd for some constant d, due to Lemma 9. Hence, the
running time of the whole algorithm is f(δ, ε) · (nN)c for some computable function f and
constant c. As mentioned before, the algorithm can be trivially adjusted to also compute an
independent set of weight Value(Iall) by storing the value of each subproblem together with
some independent set that certifies this value.

Summarizing, the dynamic programming described above computes an independent
set in Q of weight OPT(Q) in time f(δ, ε) · (nN)c. As argued in the previous section,
such an independent set projects to an independent set of the same weight in R−δ, and
OPT(Q) ≥ (1− 8ε)OPT holds. This concludes the proof of Theorem 2.

4 Kernelization results

In this section we discuss kernelization for the case when the input family consists of squares.
We first clarify the definition of a kernel, and then present the results.

Definition of kernel. The classic definition of kernelization is tailored to decision problems.
Extending it to optimization problems in a weighted setting is often problematic, and making
it compatible with the δ-shrinking model complicate it even more. Hence, we explicitly define
kernelization for MWISR in the shrinking model, bearing in mind the main principle of
kernelization: solving the kernel should project to a solution for the original instance.
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I Definition 11. Let k be a non-negative integer, let δ ∈ (0, 1), and let R be a family
of axis-parallel rectangles. Then, a kernel for (R, k, δ) is a polynomial-time computable
subfamily Q ⊆ R such that |Q| ≤ f(k, δ) for a computable function f , called the size of the
kernel, and:

OPTk(Q−δ) ≥ OPTk(R).

Thus, MWISR on R with the δ-shrinking relaxation may be solved by solving MWISR
on Q−δ (without the δ-shrinking relaxation). If one wishes to use an algorithm for the
shrinking relaxation on the kernel, then applying it to Q−δ with parameter δ will yield a
subfamily S of size k such that S−2δ is independent and w(S) ≥ OPTk(Q−δ) ≥ OPTk(R).
Hence, this solves the original problem for 2δ-shrinking and we can rescale δ accordingly.

Definition 11 lacks one aspect of the classic notion of kernelization. Namely, the weights
and the coordinates of the rectangles in the kernel are inherited from the original instance,
so their bit encoding may not be bounded in terms of k and δ. We prefer to work with Defin-
ition 11, because it focuses our efforts on the core combinatorial aspects of our kernelization
procedures. However, in the full version we argue that the sizes of the bit encodings of both
the weights and the coordinates essentially can be reduced to polynomials in k and 1/δ [14].

Results. The following theorem summarizes our kernelization results.

I Theorem 12 (♠). Given a non-negative integer k, δ ∈ (0, 1), and a family of axis-parallel
squares R, the following kernels for (R, k, δ) can be computed in polynomial time:
1. If R consists of unit squares of uniform weight, then there is a kernel of size ≤ 16k/δ2.
2. If R consists of unit squares of non-uniform weight, then there is a kernel of size ≤ 64k/δ2.
3. If R consists of squares of non-uniform size, but of uniform weight, then there is a kernel

of size O(k2 · log(1/δ)
δ3 ).

We now briefly sketch the main ideas. Consider first the simplest case of unit squares of
uniform weight. Suppose two squares Ri and Rj are very close to each other: their centers
are at distance less than δ/2 in the `∞-metric (we will say that Ri and Rj are (δ/2)-close).
Then it is not hard to prove that R−δj ⊆ Ri, so intuitively, in the δ-shrinking model Rj is
always a valid substitute for Ri. This allows for the following greedy strategy. Compute an
inclusion-wise maximal subfamily Q ⊆ R such that the centers of squares in Q are pairwise
at distance at least δ/2. By maximality, for every square Ri ∈ R, there is a square φ(Ri) ∈ Q
that is (δ/2)-close to Ri. By the observation above, the mapping φ maps every independent
set in R to a subset of Q of the same size that is independent after δ-shrinking. Consequently,
OPTk(Q−δ) ≥ OPTk(R) and we may work with Q instead. However, the fact that squares
of Q have centers pairwise far from each other immediately shows that the intersection graph
of Q−δ has maximum degree bounded by a function of 1/δ (similar to [4]). Then it is a
standard exercise to give a linear kernel for Independent Set.

For unit squares of non-uniform weight, we follow the same strategy, but we construct Q
greedily by iteratively taking the heaviest square and removing all squares that are (δ/2)-close
to it. This ensures that the substitute φ(Ri) is always at least as heavy as Ri. The maximum
degree of the intersection graph of Q−δ can be bounded in the same manner. There is
also a linear kernel for Maximum Weight Independent Set on bounded degree graphs,
following the observation: Iterate k times the procedure of picking the heaviest vertex and
removing all vertices at distance at most 2 from it. Then there is some maximum-weight
independent set of size at most k that is contained in the removed vertices.
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Finally, in the case of squares of non-uniform size and uniform weight, the following
observation is crucial: if there are two squares Ri and Rj whose sizes differ by a multiplicative
factor at least 2/δ, then either one is contained in the other, or they become disjoint after
δ-shrinking. Observe that we may assume that the input does not contain any pair of squares
where one is contained in the other, since the smaller one can be always selected instead
of the larger. Hence, squares of very different sizes become disjoint after δ-shrinking. We
partition the squares into levels according to the magnitude of their side lengths, and apply
the following win-win approach. If many levels are non-empty, then we can find k of them
so that picking one square from each yields an independent set of size k after δ-shrinking.
Otherwise, only few levels are non-empty, and we can treat each level separately using
essentially the same methods as for unit squares.

We conclude by discussing some applications. By composing our kernelization algorithms
with the parameterized algorithm of Marx and Pilipczuk [13] for finding the heaviest k-
independent set of polygons in the plane, we obtain algorithms with running time (k/δ)O(

√
k) ·

(nN)O(1) for all the problems encompassed by Theorem 12; this is much faster than the
algorithm of Theorem 1. Also, some of our intermediate tools can be combined with the
results of Alber and Fiala [4], yielding algorithms with running time 2Oδ(

√
k) · (nN)O(1) for

unit squares of non-uniform weight. We also obtain a faster EPTAS than Theorem 2 for
squares of uniform size or uniform weight, for which the exponent depends only linearly on
1/ε. A precise description of these results can be found in the full version [14].

5 Conclusions

In this paper we have initiated the study of the shrinking model for parameterized geometric
Independent Set, by giving FPT algorithms and polynomial kernels for the most basic
variants. Most importantly, we have showcased that the shrinking model leads to robust
tractability of problems that without this relaxation are hard from the parameterized
perspective. We hope that this is the start of an interesting research direction, as our work
raises several concrete open problems. Can our FPT algorithm and EPTAS for axis-parallel
rectangles (Theorems 2 and 1) be generalized to arbitrary convex polygons, as is the case
for the PTAS [15]? Recall that it was important for our algorithm that via shrinking we
can align all edges of each rectangle with grid lines of suitable granularity. Then we could
partition the plane recursively along these grid lines. Such an alignment is no longer possible
for polygons, not even if each polygon is essentially a diagonal straight line segment. Instead,
the PTAS in [15] crucially relies on guessing separators described via Oε(1) input polygons
(and additionally Oε(1) grid lines). The total number of candidates for such separators is
nOε(1), which leads to the running time of nOε(1) of the algorithm. Further, is it possible to
improve the running time of our FPT algorithm to subexponential, that is, 2o(k) ·(nN)O(1) for
every fixed δ? What about polynomial kernels, i.e., kernelization procedures with polynomial
output guarantees, for more complex objects than squares? Here, it seems that our arguments
apply mutatis mutandis to e.g. (unit) disks instead of (unit) squares, but it is conceivable that
even the general setting of convex polygons can be treated, for an appropriate definition of
shrinking. Also, is there a polynomial kernel for squares of non-uniform size and non-uniform
weight? This is not addressed in its full generality by our kernelization algorithms. Finally,
can one give limits to tractability in the shrinking model, by showing W[1]-hardness or the
nonexistence of polynomial kernels?
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