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—— Abstract

It is shown that every 2-planar graph is quasiplanar, that is, if a simple graph admits a drawing
in the plane such that every edge is crossed at most twice, then it also admits a drawing in which
no three edges pairwise cross. We further show that quasiplanarity is witnessed by a simple
topological drawing, that is, any two edges cross at most once and adjacent edges do not cross.
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1 Introduction

For k € IN, a graph G = (V, E) is called k-planar if it admits a drawing in the plane such
that every edge is crossed at most k times (such a drawing is called a k-plane drawing of
G). Similarly, G is called k-quasiplanar if it admits a drawing in which no k edges pairwise
cross each other (a k-quasiplane drawing). A planar graph is O-planar and 2-quasiplanar by
definition. A 3-quasiplanar graph is also called quasiplanar, for short. The relation between
k-planarity and ¢-quasiplanarity has been studied only recently. Angelini et al. [6] proved
that for k > 3, every k-planar graph is (k + 1)-quasiplanar. However, the case k = 2 was left
open. In this note, we show that the result extends to & = 2, and prove the following.

» Theorem 1. FEvery 2-planar graph is quasiplanar.

The inclusion is proper because there exists a family of (simple) quasiplanar graphs on
n vertices with 6.5n — O(1) edges [3], whereas every 2-planar graph on n > 3 vertices has
at most 5n — 10 edges [21]. Our proof is constructive, and allows transforming a 2-plane
drawing of an n-vertex graph into a quasiplane drawing in time polynomial in n.

Simple topological drawings. The concept of k-planarity and k-quasiplanarity assumes
that the drawings are topological graphs where the edges are represented by Jordan arcs, edges
may cross each other multiple times, and adjacent edges may cross. In a simple topological
graph, any two edges cross at most once, and no two adjacent edges cross. Excluding the
crossings between adjacent edges is a nontrivial condition [14]. For example, Brandenburg et
al. [8] showed that every graph that admits a 1-plane simple topological drawing also admits
a 1-plane straight-line drawing in which crossing edges meet at a right angle.
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Angelini et al. [6] proved that for k > 3, every k-planar graph admits a (k + 1)-quasiplane
simple topological drawing. A careful analysis of our redrawing algorithm, which transforms
a 2-plane drawing of a graph into a quasiplane drawing, reveals that it produces a quasiplane
simple topological drawing. Thereby we obtain the following strengthening of Theorem 1.

» Theorem 2. Every 2-planar graph admits a quasiplane simple topological drawing.

Related work. Graph planarity is a fundamental concept and a plethora of results has
been obtained for planar graphs. The quest for generalizations has motivated the graph
minor theory [17]. In the same vein, various notions of near-planarity have been studied [19].
The proximity of a graph to planarity may be measured by global parameters, such as the
crossing number [22] or graph thickness and their variations [9, 10], or local parameters such
as the minimum k € INy for which the graph is k-planar or k-quasiplanar. The concept of
k-planarity plays a crucial role in proving the current best constants for the classic Crossing
Lemma [2, 5, 18], and k-quasiplanarity is closely related to Ramsey-type properties of the
intersection graph of Jordan arcs in the plane [4]. However, relations between the latter two
graph classes have been studied only recently [6].

k-planarity. Planar and 1-planar graphs are fairly well-understood [16]. The Crossing
Lemma implies that a k-planar graph on n vertices has at most 4.1v/k - n edges, and this
bound is the best possible apart from constant factors [21]. Tight upper bounds of 4n — 8,
5n — 10, and 5.5n — 11 edges are known for k = 1, 2, and 3, respectively [18, 21], and an
upper bound of 6n — 12 edges is known for k = 4 [2]. For k = 1,2, 3, so-called optimal
k-planar graphs (which have the maximum number of edges on n vertices) have recently
been completely characterized [7], however they have special properties that in general are
not shared by edge-maximal k-planar graphs.

k-quasiplanarity. Pach, Shahrokhi, and Szegedy [20] conjectured that for every k € IN, an
n-vertex k-quasiplanar graph has O(n) edges, where the constant of proportionality depends
on k. The conjecture has been verified for k& < 4 [1]. The current best upper bound that holds
for all k € IN is n(logn)°(°8%) due to Fox and Pach [11]. Improvements are known in several
important special cases. Suk and Walczak [23] prove that every n-vertex k-quasiplanar
graph has O(2*(" nlogn) edges, where a(n) denotes the inverse Ackermann function and
¢ depends only on k, if any two edges intersect in O(1) points. They also show that every
n-vertex k-quasiplanar graph has at most O(nlogn) edges if every two edges intersect at
most once. These bounds improve earlier work by Fox et al. [12, 13].

Organization. We prove Theorems 1 and 2 in Section 2: We describe a redrawing algorithm
in Section 2.1, parameterized by two functions, f and g, that are defined on pairwise crossing
triples of edges. In Section 2.3 we analyze local configurations that may produce a triple
of pairwise crossing edges after redrawing. In Sections 2.4 and 2.5, we choose suitable
functions f and g, and show that our rerouting algorithm with these parameters produces
a quasiplane drawing for a 2-planar graph. In Section 2.6, we extend the analysis of our
redrawing algorithm and show that it produces a simple topological quasiplane drawing. We
conclude in Section 3 with a review of open problems. Due to space limitations, many proofs
are omitted; they can be found in the full paper [15].
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(a) tangled (b) untangled (c) region

Figure 1 Tangled and untangled 3-crossings and their associated regions.

2 Proof of Theorem 1

Let G = (V, E) be a 2-planar graph. Assume without loss of generality that G is connected.

We need to show that G admits a quasiplane drawing. Note that this quasiplane drawing
to be constructed need not—and in general will not—be 2-plane. We may assume, without
loss of generality, that G is edge-maximal, in the sense that no new edge can be added (to
the abstract graph) without violating 2-planarity. Since G is 2-planar, it admits a 2-plane
drawing. We show that it also admits a simple topological 2-plane drawing.

» Lemma 3. Every 2-planar graph admits a 2-plane simple topological drawing. Specifically,
a 2-plane drawing of a graph G with the minimum number of crossings (among all 2-plane
drawings of G) is a simple topological graph.

Note that a 2-plane drawing may contain a 3-crossing, that is, a triple of pairwise
crossing edges. A 3-crossing in a drawing is untangled if the six endpoints of the edges lie
on the same face of the arrangement formed by the three edges; otherwise the 3-crossing is
tangled, see Figure la and 1b for an example. Angelini et al. showed [6, Lemma 2] that
every 2-planar graph admits a 2-plane drawing in which every 3-crossing is untangled. Their
proof starts from a 2-plane drawing and rearranges tangled 3-crossings without introducing
any new edge crossings. Therefore, in combination with our Lemma 3 we may start from
a 2-plane drawing D of G with the following properties: (i) every 3-crossing is untangled,
(ii) no two edges cross more than once, and (iii) no two adjacent edges cross.

If there is no 3-crossing in D, then G is quasiplanar by definition. Otherwise we construct
a quasiplane drawing D’ of G as described below.

Every 3-crossing in D spans a (topological) hexagon in the following sense. Let H be
the set of unordered triples of edges in E that form a 3-crossing in D. In every triple h € H,
each edge crosses both other edges of the triple, and so it cannot cross any edge in F \ h.
Consequently, the triples in H are pairwise disjoint [6, Observation 1]. For each triple h € H,
let V(h) denote the set that consists of the six endpoints of the three edges in h. Since h is
untangled in D, all six vertices of V(h) lie on a face fj, of the arrangement induced by the
edges of h as drawn in D. Any two vertices of V(h) that are consecutive along the boundary
of f; can be connected by a Jordan arc that closely follows the boundary of f and does not
cross any edges in D; see Figure 1c. Together these arcs form a closed Jordan curve, which
partitions the plane into two closed regions: let R(h) denote the region that contains the
edges of h, and let OR(h) denote the boundary of R(h). We think of OR(h) as both a closed
Jordan curve and as a graph that is a 6-cycle. As the triples in H are pairwise disjoint, we
may assume that the regions R(h), h € H, have pairwise disjoint interiors.

» Observation 4. For every h € H, every pair of consecutive vertices of the 6-cycle OR(h)
are connected by an edge in G, and this edge is crossing-free in D.
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Proof. Let u,v € V be two consecutive vertices of a 6-cycle OR(h) for some h € H.

We show that wv is an edge in G. Indeed, if uv is not an edge of GG, then we can augment
G with the edge e = uv, and insert it into the drawing D as a crossing-free Jordan arc along
OR(h) to obtain a 2-plane drawing D’ of G U {e}. This contradicts our assumption that G is
edge-maximal and no edge can be added to G without violating 2-planarity.

We then show that e is crossing free in D. Indeed, if e crosses any other edge in D, we
can redraw e as a Jordan arc along OR(h), which is crossing-free. The resulting drawing D’
of G is 2-plane and has fewer crossings than D. This contradicts our assumption that D has
a minimum number of crossings among all 2-plane drawings of G. <

By Observation 4 any two consecutive vertices along dR(h) of a hexagon h € H are
connected by an edge e in G. Note that this does not necessarily imply that e is drawn along
OR(h) in D. It is possible that the cycle formed by the edge e in D and the copy of e drawn
along OR(h) (which is not part of D) contains other parts of the graph.

» Observation 5. (a) Two distinct hexagons in H share at most five vertices; and (b) three
distinct hexagons in H share at most two vertices.

Angelini et al. proved [6, Lemma 3 and 4] that there exists an injective map f: H — V
that maps every hexagon h € H to a vertex v € V(h). For each hexagon h € H, exactly one
edge in h is incident to the vertex f(h). Let g(h) be one of the two edges in h not incident to
f(R). Then for any such choice g : H — E is an injective function (because the triples in H
are pairwise disjoint). We complete the construction using a rerouting algorithm that for each
hexagon h € H, reroutes the edge g(h) “around” the vertex f(h). The algorithm—described
in detail below—is very similar to the one of Angelini et al., but with a few subtle changes
to make it work for 2-planar graphs, rather than k-planar graphs, for k£ > 3.

2.1 Rerouting algorithm

We are given a 2-planar graph G = (V| E), and a 2-plane drawing D of G with properties
(i)—(iii), as described above. Let the functions f : H — V and g : H — E be given. (We will
determine suitable choices for f and g later.) The algorithm consists of two phases.

Phase 1. For each hexagon h € H, we perform the following changes in D. Let h = {a, b, c}
such that the edge a is incident to f(h) and b = g(h) = uv, where u is adjacent to f(h) along
OR(h). Keep the original drawing of the edges a and ¢. Then arrange (possibly redraw) the
edge b inside R(h) so that the oriented Jordan arc uv crosses a before c¢. Finally, redraw the
edge b = g(h) = wv to go around vertex f(h) as follows. See Figure 2.
1. Erase the portion of b in a small neighborhood of the crossing a N b to split b into two
Jordan arcs: an arc v, from v to a point x close to a N b, and another arc v, from z to u.
2. Keep 7, as part of the new arc representing b, but discard =, and replace it by a new
Jordan arc from x to w. This arc first closely follows the edge a towards f(h), then
goes around the endpoint f(h) of a until it reaches the edge f(h)u (which exists by
Observation 4 and is crossing-free in D). The arc then closely follows the edge f(h)u
without crossing it to reach u.

As a result, edges a and b no longer cross and the 3-crossing induced by h is eliminated.
However, the rerouting may create new crossings between g(h) and edges incident to f(h)
(but not a and wf(h)). These new crossings are of no consequence, unless they create a
3-crossing. Hence we have to analyze under which circumstances 3-crossings can arise as a
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(d)

(a) (b)

Figure 3 The hexagon h is a home for the two edges that are shown by a dashed red arc. These
edges (if present in G) can be safely drawn inside R(h).

result of the reroutings. But first we eliminate some potentially troublesome edge crossings
in a second phase of the algorithm.

For an edge e € E a hexagon h € H is a home for e if e is both incident to f(h) and
adjacent to g(h). If h is a home for e, then e can be drawn inside R(h) so that it has at most
one crossing, with the edge ¢ € h (see Figure 3).

Phase 2. As long as there exists an edge e € E so that (1) e has a home h € H, (2) there is
no home b’ € H\ {h} of e so that e is drawn inside R(h'), and (3) e has at least one crossing
in the current drawing, we reroute e to be drawn inside R(h).

Note that each h € H is a home for at most two edges and conversely an edge can have at
most two homes (one for each endpoint because f is injective). Also note that an edge may
be rerouted in both Phase 1 and Phase 2. This completes the description of the rerouting
algorithm. Let D(f,g) denote the drawing that results from applying both phases of the
rerouting algorithm to the original drawing D of G.

2.2 Properties of D(f,g)

The edges of G fall into three groups, depending on how they are represented in D(f, g) with
respect to D: (1) nonrerouted edges have not been rerouted in either phase and remain
the same as in D; (2) edges that have been rerouted in Phase 2 we call safe (regardless
of whether or not they have also been rerouted in Phase 1); and (3) edges that have been
rerouted in Phase 1 but not in Phase 2 we call critical. An edge is rerouted if it is either
safe or critical. Let us start by classifying the new crossings that are introduced by the
rerouting algorithm. Without loss of generality we may assume that in every hexagon h € H
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(a) twin (b) fan

Figure 4 The redrawing may produce 3-crossings in form of twins or fans.

of D the edge g(h) intersects the other two edges of h in the order described in the first
paragraph of Phase 1 above. (If not, then redraw the edge g(h) within R(h) accordingly.)

» Lemma 6. Consider a crossing ¢ of two edges e; and eg in D(f, g) that is not a crossing
in D. After possibly exchanging the roles of e1 and ea, the crossing c is of exactly one of
the following two types: (a) ey is safe and drawn in R(h) for a home h € H with es € h
nonrerouted; or (b) ey is critical and rerouted around an endpoint of es.

» Lemma 7. Consider a safe edge e in D(f,g), and let h € H denote the home of e so that
e = f(h)z, for z € V(h), is drawn inside R(h). Then
(i) e is not part of a 3-crossing;
(ii) e does not cross any edge more than once; and
(iii) e crosses an adjacent edge €' only if €' is critical, incident to f(h), and rerouted around

z = f(K), for some hexagon h' € H\ {h}, with g(h') = ¢€'.
» Lemma 8. No two adjacent critical edges cross in D(f,g).

We are ready to completely characterize the 3-crossings in D(f, g). The characterization
allows us to then eliminate these 3-crossings by selecting the functions f and ¢ suitably.

» Definition 9. Let D(f, g) be a drawing of a graph G = (V, E) with functions f : H =V
and g : H — FE as defined above. Three edges e1,e3,e3 € E form a ...
twin configuration in D(f,g) if they are in two distinct hexagons hy, he € H, where
e1 =g(h1), e2 = g(h2) and e3 € ha \ {e2}, such that edge ey is incident to f(hs2), edge e3
is incident to f(h1) but not to f(hs2), and es is drawn inside R(hs3). See Figure 4a.
fan configuration in D(f, g) if they are in three pairwise distinct hexagons hy, ha, hs € H,
where e; = g(h1), e2 = g(hs), and es = g(hs3), such that edge e; is incident to f(hs),
edge ey is incident to f(hs), and edge e3 is incident to f(hy). See Figure 4b.

» Lemma 10. Every 3-crossing in D(f,g) forms a twin or a fan configuration.

Theorem 1 is an immediate corollary of the following lemma, which we prove in Section 2.5.
» Lemma 11. There exist functions f : H — V and g : H — E for which D(f,g) is a
quasiplane drawing of G.

2.3 Conflict digraph

We define a plane digraph K = (V, A) that represents the interactions between the hexagons
in H. The conflict graph depends on G, on the initial drawing D, and on the function
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(a) twin (b) fan

Figure 5 Twin and fan configurations induce cycles in the conflict graph.

f:H — V, but it does not depend on the function g. For every hexagon h € H, we create
five directed edges that are all directed towards f(h) and drawn inside R(h). These edges
start from the five vertices on OR(h) other than f(h); see Figure 5. Note that two vertices in
V may be connected by two edges with opposite orientations lying in two different hexagons
(for instance, in a twin configuration as shown in Figure 5a). However, K contains neither
loops nor parallel edges with the same orientation because f is injective and so every vertex
can have incoming edges from at most one hexagon.

» Observation 12. Let K be the conflict graph for G = (V, E) and the drawing D(f, g).

(i) K is a directed plane graph.

(ii) At every vertex v € V, the incoming edges in K are consecutive in the rotation order of
incident edges around v.

(iii) If e1 = viva, €2 = vous, and es = vsvy form a fan configuration in D(f,g), then the
conflict digraph contains a 3-cycle (v1,vq,v3).

(iv) If e; = g(h1), ea = g(ha), and e3 € hy form a twin configuration in D(f,g), then the
conflict digraph contains a 2-cycle (f(h1), f(h2)).

Proof. (i) The edges of K lie in the regions R(h), h € H. Since these regions are interior-
disjoint, edges from different regions do not cross. All edges in the same region R(h), h € H,
are incident to f(h); so they do not cross, either. (ii) For each vertex v € V, there is at
most one h € H such that v = f(h). All incoming edges of v lie in the region R(h), and
all edges lying in R(h) are directed towards v = f(h) by construction. (iii-iv) Both claims
follow directly from the definition of fan and twin configurations and the definition of K. <«

Relations between cycles in K. We observed that K is a plane digraph, where every twin
configuration induces a 2-cycle and every fan configuration induces a 3-cycle. So in order
to control the appearance of twin and fan configurations in the drawing D(f,g), we need
to understand the structure of 2- and 3-cycles in the conflict digraph K. In the following
paragraphs we introduce some terminology and prove some structural statements about
cycles in K.

For a cycle ¢ in K, let int(c) denote the interior of ¢, let ext(c) denote the exterior of ¢,
let R(c) denote the closed bounded region bounded by ¢, and let V(¢) denote the vertex
set of ¢. We use the notation i ®1:=14 (i mod k) and i ©1:=14 ((k+i— 2) mod k) to
denote successors and predecessors, respectively, in a circular sequence of length k that is
indexed 1,...,k. Let ¢; and ¢y be two cycles in the conflict graph K. We say that ¢; and ¢y
are interior-disjoint if int(c) Nint(c2) = 0. We say that ¢; contains ¢, if R(co) C R(c1).
See Figure 6a for an example. In both cases, ¢; and ¢ may share vertices and edges, but
they may also be vertex-disjoint.
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(a) A smooth 3-cycle contains a smooth 2-cycle. (b) A nonsmooth 3-cycle.

Figure 6 Examples: smooth cycles and containment.

» Lemma 13. If a vertex v € V is incident to two interior-disjoint cycles in K, then these
cycles have opposite orientations (clockwise vs. counterclockwise). Consequently, every vertex
v € V is incident to at most two interior-disjoint cycles in K.

Ghosts. A cycle in the conflict digraph K is short if it has length two or three. We say
that a 3-cycle in K is a ghost if two of its vertices induce a 2-cycle in K. Let C be the set
of all short cycles in K that are not ghosts. Intuitively, we do not worry about a ghost cycle
¢ so much. It will turn out later that by taking care of the 2-cycle ¢’ that makes c a ghost,
we also take care of ¢ at the same time.

» Lemma 14. A short cycle in K is uniquely determined by its vertex set.
» Lemma 15. Let ¢1,c0 € C. If V(c1) Nint(co) # 0, then ¢ contains ;.

Proof. Suppose to the contrary that there exist short cycles ¢1,co € C such that vy €
V(c1) Nint(c2) but co does not contain ¢;. Then some point along ¢; lies in ext(cg). Since K
is a plane graph, an entire edge of ¢; must lie in ext(ce). Denote this edge by (ve, v3). Recall
that ¢y is short (that is, it has at most three vertices), consequently, ¢; = (v1,v2,v3). Since
¢1 has points in both int(ce) and ext(cs), the two cycles intersect in at least two points. In
a plane graph, the intersection of two cycles consists of vertices and edges. Consequently
V(e1) N V(e2) = {va,v3}. Recall that ¢y is also short, and so it has a directed edge between
any two of its vertices. However, (vq, v3) lies in ext(cs2), so the reverse edge (vs, ve) is present
in ¢y. That is, {vs,v3} induces a 2-cycle in K. Hence both ¢; and ¢y are ghosts, contrary to
our assumption. |

Smooth cycles. In order to avoid twin and fan configurations in D(f,g), we would like to
choose an injective function f : H — V, with f(h) € V(h), that avoids short cycles in K,
except for a special type of cycles (called smooth) to be defined next.

» Definition 16. Let ¢ = (v1,...,vx) be a simple short cycle in the conflict graph K. Recall
that every edge in K lies in a region R(h), h € H, and is directed to f(h). So the cycle ¢
corresponds to a cycle of hexagons (hq,. .., hx), such that the vertex v; = f(h;) lies on the
boundary of hexagons h; and h;g1, for i = 1,..., k. We say that the hexagons hy, ..., hy are
associated with c¢. The cycle ¢ is smooth if none of the associated hexagons has a vertex in
int(c). (For example, the cycles in Figure 6a are smooth, but the 3-cycle in Figure 6b is not.)

Note that a smooth cycle in K may contain many vertices of various hexagons in its
interior; the restrictions apply only to those (two or three) hexagons that are associated with
the cycle. For instance, there could be several hexagons in the white regions between the
hexagons in Figure 6. Let Cs denote the set of all smooth cycles in C, that is, the set of all
short smooth nonghost cycles in K. In Section 2.4, we show how to choose f such that all
cycles in C are smooth, that is, C = Cs.
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Properties of smooth cycles. The following three lemmata formulate some important
properties of smooth cycles that hold for any injective function f : H — V', where f(h) € V(h)
for all h € H.

» Lemma 17. Let ¢ € Cs and let u € int(c) be a vertex of G. Then there is no edge (u,v) in
K for any v € V(c).

Proof. Suppose for the sake of a contradiction that (u,v) is an edge of K with v € V(c).
Let h be the hexagon with f(h) = v. All edges towards v are drawn inside h so that, in
particular, u € V(h). As h is associated with ¢, this contradicts the assumption that c is
smooth. <

» Lemma 18. Let ¢1,co € Cs so that ¢y # ¢ and ca contains ¢1. Then V(c1) NV (ez) = 0.

Proof. Suppose to the contrary that there exists a vertex v € V(c1) N'V(ce). We claim that
V(c1) Nint(co) = 0. To see this, consider a vertex v € V(c1) Nint(cz). Then following ¢; from
v to u we find an edge (x,y) of K so that x € int(c3) and y € V(ez). However, such an edge
does not exist by Lemma 17. Hence there is no such vertex v and V(ep) Nint(c2) = 0. Given
that co contains ¢y, it follows that V(c1) C V(c2).

If ¢; is a 3-cycle, then so is ¢o and Lemma 14 contradicts our assumption ¢; # co. Hence
c1 is a 2-cycle and cs is a 3-cycle. But then ¢y is a ghost, in contradiction to ¢y € Cs. |

» Lemma 19. Any two cycles in Cy are interior-disjoint or vertex disjoint.

Proof. Let ¢1,co € Cg with ¢1 # co. Suppose, to the contrary, that int(cy) Nint(co) # () and

V(er) NV (ce) # 0. Without loss of generality, an edge (u1,us) of co lies in the interior of c;.

We may assume that u; and us are common vertices of ¢; and co. Indeed, if u; and uq

were not common vertices of the cycles, then a vertex of co would lie in the interior of c;.

Then ¢; contains ¢o by Lemma 15, and V(e1) N V(cz) = @ by Lemma 18.
We may further assume that both ¢; and ¢ are 3-cycles. Indeed, if the vertex set of one

of them contains that of the other, then one of them is a 3-cycle and the other is a 2-cycle.

Since both ¢; and ¢y are present in C, one of them would be a ghost cycle in C, contradicting
the definition of C.

Since (u1,u2) is a directed edge of ¢y that lies in the interior of ¢;, and ¢; is a 3-cycle
that has an edge between any two of its vertices, the edge (uz,u1) is present in ¢;. This
implies that c3 = (u1,u2) is a 2-cycle in K. Therefore ¢3 € C, and both ¢; and ¢y are ghost
cycles in C, contradicting the definition of C, C O Cs. This confirms that c1,co € Cs, ¢1 # 2,
are interior-disjoint or vertex disjoint, as claimed. |

2.4 Choosing the special vertices f(h)

As noted above, Angelini et al. proved [6, Lemmata 3 and 4] that there exists an injective
map [ : H — V that maps every hexagon h € H to a vertex v € V(h). We review their
argument (using Hall’s matching theorem), and then strengthen the result to establish some
additional properties of the function f: H — V.

Hall's condition. Let A C H be a subset of hexagons, and let V(A) C V be the set of
vertices incident to the hexagons in A. Following Angelini et al. [6, Lemma 4] we obtain
Hall’s condition via double counting.

» Lemma 20. For every subset A C H, we have |V(A)| > 2|A| + 2.
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» Corollary 21. There exists an injective map f : H — V that maps every hexagon h € H
to a vertex v € V(h).

» Corollary 22. For every nonempty subset A C H, we have [V(A)| > |A| + 5.

Proof. If |A] = 1, then |A| + 5 = 6 and a single hexagon has 6 distinct vertices. If |A| = 2,
then |A|+5 = 7; and two distinct hexagons have at least 7 distinct vertices by Observation 5a.
Otherwise |A| > 3, and Lemma 20 yields |[V(A)| > 2|A| +2 > |A| + 5. <

» Lemma 23. There exists an injective function f : H — V such that f(h) € V(h), for
every h € H, and every cycle in C is smooth.

2.5 Choosing the special edges g(h)

Let f:H — V be a function as described in Lemma 23. That is, in the following we assume
C = Cs (all short nonghost cycles in K are smooth). We use Hall’s theorem to show that
there is a matching of the cycles in C to the vertices in V such that each cycle is matched to
an incident vertex. For a subset B C C, let V(B) denote the set of all vertices incident to
some cycle in B.

» Lemma 24. For cvery set By C C of pairwise interior-disjoint cycles, |Bo| < |V(Bo)].

Proof. We use double counting. Let I be the set of all pairs (v,¢) € V' x By such that v is
incident to c. Every cycle is incident to > 2 vertices, hence |I| > 2|By|. By Lemma 13, every
vertex is incident to at most two interior-disjoint cycles. Consequently, |I| < 2|V (Bp)|. The
combination of the upper and lower bounds for |I| yields |By| < [V (Bo)|. <

» Lemma 25. For every set B C C of cycles, we have |B|] < |V(B)].

» Lemma 26. There exists an injective function s : C — V that maps every cycle in C to
one of its vertices.

We are ready to define the function g : H — E, that maps every hexagon h € H to one
of its edges.

» Lemma 27. There is a function g : H — E such that
for every h € H, g(h) € h and g(h) is not incident to f(h);
for every 2-cycle (f(h1), f(h2)) in K, the edges g(h1) and g(hs) do not cross in D(f,g);
for every 3-cycle (f(h1), f(h2), f(hs)) in K, at least two of the edges g(hy1), g(ha), and
g(hs) do not cross in D(f,g).

Proof. By Lemma 26, there is an injective function s : C — V that maps every cycle ¢ € C
to one of its vertices. For each cycle ¢ € C, vertex s(c) is the endpoint of some directed
edge (¢q(c), s(c)) in the conflict graph. Consequently, there is a hexagon h € H such that
s(c) = f(h) and ¢(c) € V(h). We say that h is assigned to the cycle c. We distinguish two
types of hexagons, depending on whether or not they are assigned to a 2-cycle of C.

Hexagons that are not assigned to 2-cycles. For every hexagon h that is not assigned to
any cycle, choose g(h) to be an arbitrary edge in h that is not incident to the vertex f(h).
For every hexagon h that is assigned to a 3-cycle ¢ € C, choose g(h) to be the (unique) edge
in h that is incident to neither ¢(c¢) nor s(c). If ¢ = (f(h1), f(h2), f(hs)) and without loss
of generality s(c) = f(h2), then g(hs) is not incident to f(hy) = ¢(c), consequently g(h1)
is disjoint from g(hs). (Note that g(h) is not incident to f(hs) = s(c¢) because this would
induce a 2-cycle in K, making ¢ a ghost.)
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(a) (b)

Figure 7 In Case 1 of Lemma 27, the edge g(h2) is incident to f(h1). We set g(h1) so that it is
incident to f(h2). Regardless of how f(hi)f(hz) is drawn, the edge separates g(h1) and g(h2) and
ensures that they are disjoint.

Hexagons assigned to 2-cycles. Consider a 2-cycle ¢ € C, and let hy and hy denote the
associated hexagons so that without loss of generality s(c) = f(hy). Suppose without loss of
generality that c is oriented clockwise. We distinguish three cases.

Case 1: g(hy) has already been selected and g(hg) is incident to f(hq). Then let g(h1) be
the unique edge in h; incident to f(hs) (Figure 7). We claim that g(h1) and g(hz) do not cross
in D(f,g). As both edges are critical, by Lemma 6 they can only cross in the neighborhood
of f(h1) or f(hz2). Let a; be the edge of h; incident to f(h;), for i € {1,2}. The edge
g(h;), for i € {1,2}, follows a; towards the neighborhood of f(h;) and then crosses the edges
incident to f(h;) following a; in clockwise order (the orientation of ¢) until reaching the edge

f(h1)f(ha). Then g(h;) follows f(h1)f(hz2) to its other endpoint, without crossing the edge.

Therefore, the path formed by the edges ai, f(h1)f(he), and as splits the neighborhoods of

f(hy1) and f(he) into two components so that g(h;) and g(hz) are in different components.

Thus g(hy) and g(hs) do not cross, as claimed.

Case 2: g(ho) has already been selected and g(hs) is not incident to f(h1). Then let g(hq)
be the unique edge in h; incident to neither f(hy) nor f(he) (Figure 8a). We claim that
g(h1) and g(he) do not cross in D(f,g). As both edges are critical, by Lemma 6 they can
only cross in the neighborhood of f(h1) or f(he). But as g(h;) is not incident to f(hs), there
is a neighborhood of f(hy) that is disjoint from g(h;), and so g(hy) and g(ha) do not cross
there. Similarly, there is a neighborhood of f(h) that is disjoint from g(hs), and so g(h;)
and g(ha) do not cross there, either. Thus g(hy) and g(hs) do not cross in D(f, g).

Case 3: no hexagon h; is assigned to a 2-cycle so that g(hs) has already been selected.

Then we are left with hexagons that correspond to 2-cycles and form cycles L = (hy, ..., hy)
such that (f(h;), f(hig1)) is a 2-cycle in C, for i = 1..., k. These cycles are interior-disjoint

by Lemma 19, and any two consecutive cycles in L have opposite orientations by Lemma 13.

It follows that k is even.

Since every 2-cycle in L is smooth, the three vertices f(hio1), f(h;), and f(vie1) are
consecutive along OR(h;). For every odd i € {1,...,k}, let g(h;) be the (unique) edge in h;
incident to f(h;g1) (and incident to neither f(h;) nor f(h;e1)). Similarly, for every even
i€{1,...,k}, let g(h;) be the edge in h; incident to f(hig1) (and incident to neither f(h;)
nor f(h;s1)). Refer to Figure 8b.
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(a) (b)

Figure 8 (a) In Case 2 of Lemma 27, the edge g(h2) is not incident to f(hi). We set g(h1) so
that it is not incident to f(hz2), to ensure that g(h1) and g(hz) are disjoint. (b) In Case 3 we face a
cycle of 2-cycles. We consistently select edges to be rerouted in even (red edge) and odd (blue edge)
hexagons so that they are pairwise disjoint.

For every odd index i € {1,...,k}, the rerouted edges g(h;) and g(h;g1) are incident to
neither f(hig1) nor f(h;). Similarly, for every even index i € {1,...,k}, the rerouted edges
g(h;) and g(h;g1) are incident to f(hig1) and f(h;), respectively. In both cases, the rerouted
edges g(h;) and g(h;g1) are disjoint.

Ghost cycles. It remains to consider ghost cycles. Let ¢; be a ghost cycle in K. Without
loss of generality, assume that ¢; = (v1, ve, v3), where v1 = f(h1), va = f(h2), and v3 = f(hs),
and ¢y = (v1, v2) is a 2-cycle in C. Recall that ¢g is smooth (cf. Lemma 23). By construction,
g(h1) and g(he) do not cross in D(f, g). Hence at least two of the edges in {g(h1), g(h2), g(hs3)}
do not cross in D(f, g), as required. <

The combination of Lemma 10, Lemma 23, and Lemma 27 proves Lemma 11, which
completes the proof of Theorem 1.

2.6 Quasiplane simple topological drawings

The redrawing algorithm in Section 2.1 transformed a 2-plane drawing D with properties
(i)—(iii), and rerouted some of the edges in two phases to obtain a quasiplane drawing D(f, g).
In this section, we show that the algorithm produces a simple topological drawing, that is,
any two edges cross at most once, and no two adjacent edges cross.

» Theorem 2. Every 2-planar graph admits a quasiplane simple topological drawing.

3 Conclusions

We have proved that every 2-planar graph is quasiplanar (Theorem 1) by showing that a
2-plane topological graph can be transformed into a quasiplane topological graph, in which
no three edges pairwise cross. Theorem 2 strengthens the result to produce a quasiplane
simple topological graph (any two edges cross at most once and adjacent edges do not cross).

In Section 2.4, we have shown that we can choose one vertex f(h) for each hexagon
h € H such that all 2- and 3-cycles in the conflict graph K have some special properties. It
is unclear, however, whether 2- and 3-cycles can be avoided altogether by a suitable choice of
the function f. We formulate an open problem to this effect: Given a set H of interior-disjoint
(topological) hexagons in the plane on a vertex set V, is there an injective function f : H — V
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such that the conflict digraph K contains no 2-cycles (alternatively, neither 2- nor 3-cycles)?
Several fundamental problems remain open for k-quasiplanar graphs:

What is the computational complexity of recognizing k-quasiplanar graphs? Is there
a polynomial-time algorithm that decides whether a given graph is quasiplanar (or
k-quasiplanar for a given constant k)?

Is there a constant ¢ for every k € IN such that an n-vertex k-quasiplanar graph has at
most ¢xn edges [20]7 Affirmative answers are known for k£ < 4 only [1].

By Theorem 1 and the main result in [6], every k-planar graph is (k + 1)-quasiplanar,
where k € IN, k > 2. Angelini et al. [6] ask whether this result can be improved for large k:
Denote by ¢(k) € IN the minimum integer such that every k-planar graph is ¢-quasiplanar.
Prove or disprove that ¢(k) = o(k).
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