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Abstract
Max-plus automata are quantitative extensions of automata designed to associate an integer with
every non-empty word. A pair of distinct words is said to be an identity for a class of max-plus
automata if each of the automata in the class computes the same value on the two words. We
give the shortest identities holding for the class of max-plus automata with two states. For this,
we exhibit an interesting list of necessary conditions for an identity to hold. Moreover, this result
provides a counter-example of a conjecture of Izhakian, concerning the minimality of certain
identities.
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1 Introduction

A natural question when dealing with computational models is to understand which pairs of
inputs can be separated by the model, i.e. lead to different results. Or conversely, which pairs
of distinct inputs will give the same computation. These pairs are called identities for the
model. Regarding finite automata, two words are said to be separated by a given automaton
if one is accepted and the other is rejected. When fixing an automaton, or even considering
the class of automata with at most a certain number of states, we know that some pairs
of distinct words are not separated. It is a simple argument of cardinality: the number of
automata with a bounded number of states is finite and each of them computes a boolean
value on a given word, while the number of words is infinite. However, when considering the
full class, for every pair of distinct words, it is easy to construct an automaton accepting one
and rejecting the other.

When dealing with quantitative extensions of automata, namely weighted automata, the
situation is much more intricate. Weighted automata were introduced by Schützenberger in
[12]. They compute functions from the set of words to the set of values of a semiring, allowing
one to model quantities such as costs, gains or probabilities. The question of separating
words (i.e. computing different values on the words) highly depends on the semiring. For
probabilistic automata, or automata on the usual semiring (R,+,×), it is known that there
is an automaton (with two states) which separates every pair of distinct words.
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48:2 The Shortest Identities for Max-Plus Automata with Two States

In this paper we are interested in max-plus automata, which are weighted automata
over the tropical semiring that compute functions from the set of non-empty words to the
values of the semiring Zmax = (Z ∪ {−∞},max,+). From now on, for simplicity, we may
use the notation Zmax to denote the semiring or the set of its values Z ∪ {−∞}. We note
that some authors prefer to work with min-plus automata, which compute values in the
min-plus semiring Zmin = (Z∪{+∞},min,+). Since the two semirings (Zmax and Zmin) are
isomorphic, the results presented here can be easily translated to the min-plus case.

A max-plus automaton is a finite automaton whose transitions are weighted by integers.
An easy way to think about these weights is to consider them as amounts of money that you
win when you go through a transition. Along a run, you accumulate this money (you sum
the amounts; this sum is called the weight of the run), and your purpose is, given a word w,
to go from an initial state to a final state, by reading w and grabbing the maximal amount
of money you can. The value (or weight) associated with w is the maximum possible amount
that you could win by reading the word w. Max-plus automata are thus particularly suitable
to model gain maximisation, study the worst-case complexity of a program [2] or evaluate
performance of discrete event systems [4, 5]. Let us give two examples on the alphabet {a, b}
(where initial and final states are denoted by ingoing and outgoing arrows respectively):

a : 1

b : 1

A1
a : 0

a : 1

b : 0

b : 0

b : 0

A2

The automaton A1 associates with each word its length. The function computed by the
automaton A2 is more complicated and we begin by describing its behaviour in particular
cases. Consider a word of the form bak1bak2b · · · bak`b where all the ki are positive integers.
Then, the value computed by the automaton is the maximum of the sums ki1 +ki2 + · · ·+kim
where no two ij are consecutive, that is to say, ij+1 > ij + 2 for all j.

Two distinct words u and v are separated by a class of max-plus automata if there is
an automaton in the class that associates two different values on the two words, otherwise
they form an identity for the class, usually denoted u = v. But this question is much more
intricate than in the previous cases of boolean automata and automata weighted over the
usual semiring. We can show that a single max-plus automaton cannot separate all pairs of
distinct words. It is again a simple cardinality argument: if the weights of the transitions
of an automaton are between −m and m, then the value associated to a word of length n
is between −mn and mn, while the number of words of length n on a finite alphabet Σ is
|Σ|n. For n large enough, there must exist two distinct words having the same value. It is
also clear that given two distinct words, one can construct a max-plus automaton (with an
arbitrarily large number of states) separating them. A major open question is the following:

Given a bound d, does there exist an identity for the set
of max-plus automata with at most d states?

In that case, a simple cardinality argument fails. This question was first considered in [9]
where it was answered positively for d = 2. The known identity for two states consists of a
pair of words of length 20, but the problem seems very difficult to tackle in the general case.
Shitov [13] proposed an identity for d = 3 consisting of a pair of words of length 1795308.
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Currently no generalisation of these results seems conceivable, the ultimate (very far) goal
being to characterise the complete set of identities. This paper is motivated by the fact that
a better understanding of the identities in the case d = 2 is already a first step for a better
understanding of the general case.

Contribution. We focus on the class of max-plus automata with two states, denoted C. It
is easy to see that if u = v is an identity which holds in C then u and v have the same length
(see for example A1), defining the length of the identity. We give the unique two identities of
minimal length (17) which hold in C.

I Theorem 1. There are two identities (up to a renaming of the letters) of minimal length
which hold in the class of max-plus automata with two states:

a2b3a3babab3a2 = a2b3ababa3b3a2 and ab3a4baba2b3a = ab3a2baba4b3a

To achieve this goal, we give a rather short list of necessary conditions for an identity
to hold which together eliminate all the other possible candidates of length shorter than
18 (Proposition 10, Section 3). This list is short enough that it can be tested by computer.
We also prove that this list is minimal in the sense that each of the conditions eliminates at
least one pair of words, that cannot be eliminated using the other conditions alone. However,
this list is probably not complete, and future works will consist in trying to extend it to
fully characterise the identities holding in C. We then prove that the identities given in the
statement of Theorem 1 hold in C (Proposition 11, Section 4).

Link with matrices. This topic is closely related with the question of identities on semigroups
of matrices over the tropical semiring. We consider matrices with entries in Z ∪ {−∞} and
the product AB for two matrices A,B (provided the number of columns of A and the number
of rows of B coincide, denoted here d) is defined as (AB)i,j = max16k6d(Ai,k +Bk,j).

An identity u = v is said to be satisfied by a semigroup of matrices if for all substitutions
of the letters by matrices in the semigroup, the equality holds.

A max-plus automaton with d states can equivalently be represented by a semigroup of
matrices of dimension d: the states are numbered {1, . . . , d} and for each letter, a square
matrix µ(a) of dimension d is defined such that the (i, j)-coefficient contains the weight of
the transition from state i to state j labelled by a or −∞ if there is no such transition. Then
µ extends to give a semigroup morphism µ : Σ+ → Mn(Zmax). For a non-empty word w,
it is straightforward to verify that µ(w)i,j is the maximum of the weights of the runs from
state i to state j, labelled by w. An initial vector I (resp. final vector F ) with 1 row and
d columns (resp. d rows and 1 column) and entries in {0,−∞} is defined by Ii = 0 (resp.
Fi = 0) if and only if state i is initial (resp. final). The weight of a word w in A is exactly the
value given by Iµ(w)F ∈ Zmax (see for example [11] for more explanations). The max-plus
automaton A1 illustrated on the previous page is represented by µ(a) = (1), µ(b) = (1) and
I = F = (0), while A2 is represented by:

µ(a) =
(

0 −∞
−∞ 1

)
µ(b) =

(
0 0
0 −∞

)
I =

(
0 −∞

)
F =

(
0
−∞

)
Using this representation, it can be easily shown that u = v is an identity which holds

in C if and only if u = v holds for the semigroup of square matrices of dimension 2. Then
Theorem 1 implies the following theorem.

MFCS 2017



48:4 The Shortest Identities for Max-Plus Automata with Two States

I Theorem 2. There are two identities (up to a renaming of the letters) of minimal length
which hold in the semigroup of tropical square matrices of dimension 2:

a2b3a3babab3a2 = a2b3ababa3b3a2 and ab3a4baba2b3a = ab3a2baba4b3a

Using the fact that the identities which hold in the semigroup of tropical square matrices
of dimension 2 are the same as those which hold in the semigroup of tropical square matrices
of dimension 2 with real entries (as explained in Section 2 below), Theorem 2 gives a
counter-example to a conjecture of Izhakian concerning the structure of the identities of
minimal length. Indeed, in [8, Conjecture 5.1] he provides a method of constructing identities
satisfied by every subsemigroup of the semigroup of the tropical square matrices of dimension
d consisting of matrices with maximal (tropical) rank (see [8] for detailed definitions),
conjecturing that certain amongst these are of minimal length, but for d = 2, the shortest
identities produced by this method have length greater than 17.

Organisation of the paper. In Section 2, we give first properties. In particular, we make
some comments about working with weights in Z rather than N, Q or R, restricting the
automata to have only one initial and one final state and considering only 2-letter alphabets.
In Section 3, we give the list of conditions allowing us to eliminate all the pairs of words up
to length 17 except two (up to renaming of the letters). In Section 4, we prove that these
pairs do indeed form identities.

2 First properties

Given a word w and a letter a, we write |w| to denote the length of w and |w|a to denote
the number of occurrences of the letter a in w. If w = w0w1 · · ·w` with w0, w1, . . . , w`
letters, the positions of w are 0, 1, . . . ` and wi is said to be the letter at position i. In a
max-plus automaton A, a run labelled by w from a state p to a state q with weight α will be
denoted p w : α−−−→ q. We denote by [[A]] the function (from the set of non-empty words over a
finite alphabet Σ to Zmax) computed by A. Let us recall that C denotes the class of all the
max-plus automata with two states. More generally, for any positive integer d, we denote by
Cd the class of all the max-plus automata with d states (so that C2 = C). An identity over Σ,
that is to say a pair of two distinct non-empty words over Σ, denoted u = v, holds in Cd if
and only if for all A ∈ Cd, [[A]](u) = [[A]](v). For now, we fix an integer d > 2.

Content. If Σ = {a1, . . . an}, the content of a word w is the n-tuple (|w|a1 , . . . , |w|an
) of

the number of occurrences of each of the letters in w.

I Lemma 3. If u = v holds in Cd, then u and v have the same content. In particular u and
v have the same length.

Proof. The number of occurrences of a letter a can be computed by a max-plus automaton
with one state (both initial and final) with one transition for each letter of Σ, where the
transition labelled by a has weight 1 and all other transitions have weight 0. (Note that this
can be seen as a max-plus automaton with d states by simply adding states, and possibly
transitions with weight 0). Thus, if the content of u and v differs then there exist an
automaton in Cd computing two different values on these two words. J



L. Daviaud and M. Johnson 48:5

Initial and final states. In the rest of the paper, we will freely use the following fact:

I Lemma 4. An identity u = v holds in Cd if and only if it holds in the class of max-plus
automata with d states having exactly one initial and one final state.

Proof. Denote by C′d the class of max-plus automata with d states and exactly one initial
and one final state. Clearly, if u = v holds in Cd, it must also hold in C′d. Conversely, suppose
u = v holds in C′d and let A ∈ Cd. Consider now the set S of the max-plus automata in C′d
obtained from A with a unique initial state chosen from amongst the initial states of A and a
unique final state chosen from amongst the final states of A. Since u = v holds in C′d, we get:

[[A]](u) = max
B∈S

([[B]](u)) = max
B∈S

([[B]](v)) = [[A]](v)

and thus u = v holds in Cd. J

Weights. The set of identities which hold in Cd does not change when restricting the weights
to have values in N or when allowing them to take values in Q or R. Some directions are
clear by definitions. We give ideas for the others.

From Z to N. Consider an identity u = v which holds in the class of d-state max-plus
automata with weights in N. It follows from the proof of Lemma 3 that |u| = |v|. Now
let A ∈ Cd and consider the max-plus automaton Ak obtained from A by adding the same
integer k to the weight of all transitions in A. Since A has finitely many transitions it
is clear that we can choose k large enough so that Ak has weights in N. Then we get,
[[A]](u) = [[Ak]](u)− k|u| = [[Ak]](v)− k|v| = [[A]](v), from which it follows that u = v holds
for all A ∈ Cd.

From Q to Z. Consider an identity u = v that holds in Cd and let A be a d-state max-plus
automaton with weights in Q. By multiplying all the weights on the transitions of A by a
suitable non-zero integer k (e.g. the lcm of the denominators), we get a max-plus automaton
Ak with weights in Z, such that [[A]](u) = 1

k [[Ak]](u) = 1
k [[Ak]](v) = [[A]](v).

From R to Q. Consider an identity u = v that holds in the class of d-state max-plus
automata with weights in Q and let A be a d-state max-plus automaton with weights in R.
Let (Am)m∈N be a sequence of max-plus automata constructed from A by changing all the
real weights to rational weights in such a way that for every transition of A weighted by α,
the sequence of weights αm ∈ Q of the corresponding transitions in Am tends to α. Since
limits can be commuted with maximum and sum over finite sets, we have:

[[A]](u) = lim
m→∞

[[Am]](u) = lim
m→∞

[[Am]](v) = [[A]](v)

Finally, we show that we need only to consider full automata. An automaton is said to be
full if for every pair of states p, q and every letter a, there is a transition from p to q labelled
by a.

I Lemma 5. An identity u = v holds in Cd if and only if it holds in the subclass of Cd
consisting of full automata.

Proof. The if direction is clear by definition. For the converse direction, consider an identity
u = v which holds in the subclass of Cd consisting of full automata. Suppose for contradiction
that A ∈ Cd is an automaton falsifying the identity. For each integer k, construct the full
automaton Ak from A by adding in any missing transitions and weighting these by k. If
[[A]](u) = −∞ (meaning that there is no accepting run on u) then for all k, the accepting runs
on u in Ak necessarily take a transition weighted by k (we suppose that A has at least one

MFCS 2017



48:6 The Shortest Identities for Max-Plus Automata with Two States

initial and one final state). By assumption, [[A]](v) must be finite (otherwise A does not falsify
the identity) and by construction, necessarily for all k, [[Ak]](v) > [[A]](v) (since A is contained
in Ak). Let us denote by m the maximal weight on a transition of A. Then, consider k
less than [[A]](v) − (|u| − 1)m. We get [[Ak]](v) = [[Ak]](u) 6 k + (|u| − 1)m < [[A]](v),
which leads to a contradiction. The same reasoning holds if [[A]](v) = −∞. Otherwise,
if [[A]](u) and [[A]](v) are both finite, and by considering k large and negative enough,
[[A]](u) = [[Ak]](u) = [[Ak]](v) = [[A]](u), since each maximal accepting run will avoid the
transitions weighted by k. J

Number of letters. An identity on a 2-letter alphabet can be seen as an identity over a
larger alphabet and it is easy to see that for all k > 2 the identity holds in the class of
d-state max-plus automata over two letters if and only if it holds in the class of d-state
max-plus automata over k letters. Suppose now that u = v is an identity holding in Cd over
an alphabet Σ containing at least three letters. Since u and v are distinct, they must differ in
some position, i say. Suppose then that ui 6= vi. Now, consider ū and v̄ obtained from u and
v by replacing every letter, except vi, by ui. By construction ū and v̄ are distinct. We are
going to prove that ū = v̄ holds in the class of max-plus automata over Σ. Indeed, consider
a d-state max-plus automaton A over Σ. Construct first an automaton A′ obtained from
A by removing all the transitions not labelled by ui or vi. Then construct an automaton
B over Σ obtained from A′, by adding copies of the transitions labelled by ui for all the
other letters, except vi, i.e. for every transition p ui : α−−−−→ q, and every letter c 6= vi, add the
transition p c : α−−−→ q. Then,

[[A]](ū) = [[A′]](ū) since ū contains only ui’s and vi’s
= [[B]](ū) since ū contains only ui’s and vi’s
= [[B]](u) since every letter c 6= vi mimics ui in B
= [[B]](v) since u = v is an identity over Σ holding in Cd
= [[B]](v̄) since every letter c 6= vi mimics ui in B
= [[A]](v̄) since v̄ contains only ui’s and vi’s

Thus, if an identity over Σ holds in Cd then an identity of the same length using just two
letters must also hold in Cd. Since we are interested in minimal length identities, in the rest
of the paper we will consider only 2-letter alphabets.

3 Minimality

As explained at the end of the previous section, from now on we fix a 2-letter alphabet
Σ = {a, b}. In this section, we provide a list of conditions which must all be satisfied by
the identities holding in C. Thanks to this list and aided by a computer, we are left with
exactly two pairs of words (up to exchanging a and b) of length shorter than 18 which are
still candidates to be identities in C. In the next section, we prove that they are indeed
identities in C.

3.1 Triangular identities
A max-plus automaton with two states p and q is said to be triangular if there is no transition
either from p to q or from q to p. We denote by CT this class of automata. An identity
holding in C must also hold in CT . Identities holding in the class of triangular automata
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are much easier to study. They are fully characterised in [3], where it is proved that they
are exactly the identities holding in the bicyclic monoid. More generally, several works
[6, 7, 10, 1, 3] study identities holding in the class of triangular max-plus automata with d
states, which correspond to the semigroup of upper-triangular matrices, where it has been
proved that such an identity always exists.

Let us recall that if u = v holds in CT , then u and v have the same content (since the
automata constructed in Lemma 3 are indeed triangular).

Beginning and end of a word. The first (resp. second, last, penultimate) block of a word w
is the first (resp. second, last, penultimate) maximal block of the same consecutive letter of
w. For example, for w = a3b2a6b7a4b, these blocks are respectively a3, b2, b and a4.

I Lemma 6. If u = v is an identity holding in CT , then u and v have the same first, second,
last and penultimate blocks respectively.

Triangular identities. We give here a variant of a property in [3, Th 3.3 and Cor 3.4]. We
show that the identities u = v which hold in CT are exactly those such that u and v have
the same content, the same first and last blocks, and which hold in the class of max-plus
automata of one of the following shape, where α and β are integers either both positive or
both negative:

Aα,β
a : α

b : 0

a : 0

b : β

a : 0

Bα,β
a : α

b : 0

a : 0

b : β

b : 0

If an identity holds for the class of all the max-plus automata of the form Aα,β and
Bα,β for all integers α, β either both positive or both negative, the identity is said to be a
triangular identity.

Checking triangular identities. Checking if a given identity u = v is triangular can be done
by symbolic computation using the shape of the automata above. More precisely, for any
position i in a word w, we denote by w<i (resp. w>i) the prefix of w strictly before position
i (resp. the suffix of w strictly after position i). We get:

[[Aα,β ]](w) = max
wi=a

(α|w<i|a + β|w>i|b) and [[Bα,β ]](w) = max
wi=b

(α|w<i|a + β|w>i|b)

The identity u = v is triangular if and only if for all integers α, β of the same sign,
[[Aα,β ]](u) = [[Aα,β ]](v) and [[Bα,β ]](u) = [[Bα,β ]](v). It is proved in [3, Th 8.3] that it can be
checked in polynomial time with respect to the sum of the lengths of u and v (even for a
larger number of states). Another easy way to check a triangular identity in a reasonable
time for identities of small length is to note that the parameters can be bounded:

I Lemma 7. Given two words u and v of the same length `, [[Aα,β ]](u) = [[Aα,β ]](v) (resp.
[[Bα,β ]](u) = [[Bα,β ]](v)) holds for all integers α, β either both positive or both negative if and
only if it holds for all such α, β with |α|, |β| bounded by 2`2.

MFCS 2017
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3.2 Block-permutation

Two words u and v are said to be block-permuted if u and v are composed of the same
maximal blocks of the same consecutive letter but possibly in a different order. For example,
a3b2a4b and b2a3ba4 are block-permuted but a3b2a4b and a2baba4b are not.

I Lemma 8. If u = v is an identity which holds in C, then u and v are block-permuted.

Proof. Consider an identity u = v which holds in C. Suppose that u and v are not block-
permuted, and that the maximal blocks of occurrences of the letter a are different (the proof
for the letter b is similar). Let us write n1 > n2 > . . . > n` for the lengths (with multiplicities)
of the maximal blocks of consecutive a in u (resp. m1 > m2 > . . . > m`′ for v). By Lemma 3,
u and v have the same content and so there must exist an index i ∈ {1, . . . ,min(`, `′)} such
that nj = mj for all j < i, whilst ni 6= mi. Without loss of generality, suppose that ni > mi

and consider the following automaton where m = ni − 1.

p q

a : 0

b : 0

a : 1

b : −m

b : −m

b : 0

There are four options to read a word of the form bak (ignoring initial and final states for
the moment): (1) around p with weight 0, (2) from p to q with weight −m+ k, (3) around q
with weight −m+ k, or (4) from q to p with weight 0. Thus, if a maximal block of a is of
length greater than m (except possibly the first or the last one), it should be read around
q, otherwise, it should be read around p. By Lemma 6, u and v must have the same first
and last blocks. For each k = 1, . . . , `, let N(k) be the set of indices from 1 6 t 6 k such
that ant is not the first block of u and v, nor the last block of u and v. It is now easy to see
that the weight of u must be greater than or equal to

∑
j∈N(i)(nj −m), while the weight of

v is
∑
j∈N(i−1)(nj −m), which is smaller than the weight of u. Since this contradicts the

fact that u = v holds in C, we conclude that ni = mi for all i; or in other words, u and v are
block-permuted. J

I Corollary 9. If u = v is an identity that holds in C, then u and v each contain at least 7
maximal blocks of the same consecutive letter.

Proof. Consider an identity u = v with u = ak1bk2ak3bk4ak5bk6 . If it holds in C, then by
Lemma 6, v must start with ak1bk2 and end with ak5bk6 . Finally, by Lemma 8, necessarily u
and v are the same word. J

3.3 Counting and parity conditions

Finally the last conditions we consider involve a finite number of max-plus automata with
weights within {0, 1} dealing in some sense with parity and counting conditions.

(C1). The number of occurrences of the letter a in an even position. This value is computed
by the following automaton:
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a : 1, b : 0

a : 0, b : 0

Note that, if two words have the same content, then the equality of this parameter for the
two words implies the equality of all the other variants (number of b’s in an odd position...).
Indeed, the number of a’s in an odd position is equal to the difference between the total
number of a’s and the number of a’s in an even position. The number of b’s in an even
position is the difference between the total number of even positions and the number of a’s
in an even position.

(C2). The number of occurrences of the letter a after an even number of b, and the number of
occurrences of the letter b after an even number of a. These values are computed respectively
by the following automata:

a : 1 a : 0
b : 0

b : 0

b : 1 b : 0
a : 0

a : 0

As in the previous condition, providing two words have the same content, the equality
on these parameters implies the equality on the other variants (number of a’s after an odd
number of b’s, etc.). Indeed, the number of a’s after an odd number of b’s is equal to the
difference between the total number of a’s and the number of a’s after an even number of
b’s...

The two last conditions are more difficult to explain.

(C3). We consider the following automata, and in each case the automata obtained such
that exactly one of the states is both initial and final, as well as those obtained by exchanging
a and b.

a : 0
a : 0, b : 0

a : 0, b : 1

p q

a : 0
a : 0, b : 1

a : 0, b : 0

It can be checked that the words ab3ababa3b3a2 and ab3a3babab3a2 cannot be separated
by any of the previously discussed conditions. However the automaton on the right, taking
p to be both initial and final is able to do so, as we shall now show. The beginning of the
two words are read deterministically until reaching the factor a3. There, a non-deterministic
choice is made to optimise the weight obtained by reading the end of the word. This choice is
made at different positions in the two words leading to two different weights. More precisely,
the maximal run for the word ab3ababa3b3a2 is as follows:

p
ab3 : 1−−−−→ p

ababa : 0−−−−−−→ q
a2 : 0−−−−→ p︸ ︷︷ ︸

non-det choice

b3 : 2−−−−→ q
a2 : 0−−−−→ p

MFCS 2017



48:10 The Shortest Identities for Max-Plus Automata with Two States

while the one for ab3a3babab3a2 is as follows:

p
ab3 : 1−−−−→ p

a2 : 0−−−−→ q︸ ︷︷ ︸
non-det choice

ababa : 2−−−−−−→ p
b3 : 2−−−−→ q

a2 : 0−−−−→ p

(C4). We consider the following automata, and in each case the automata obtained such
that exactly one of the states is both initial and final, as well as those obtained by exchanging
a and b.

a : 0 a : 1
a : 0, b : 0

b : 1

p q

a : 1 a : 0
a : 0, b : 0

b : 1

The words ab2a2ba2ba4b3a and ab2a4ba2ba2b3a cannot be separated by any of the previ-
ously discussed conditions, whilst the automaton on the right, taking q to be both initial
and final is able to do so. The beginning of the two words are read deterministically until
reaching the factor a2 in the middle of the two words. This determinism forces to read the
two first blocks of a with weight 0, while the other ones will be read with weight 1. This
leads to different results because of the commutation of the blocks a2 and a4 in the two
words. More precisely, a maximal run for the word ab2a2ba2ba4b3a is as follows:

q
ab2a2b : 2−−−−−−→ p

a2 : 1−−−−→ q︸ ︷︷ ︸
non-det choice

b : 1−−−→ p
a4 : 4−−−−→ p

b3a : 1−−−−→ q

while the one for ab2a4ba2ba2b3a is as follows:

q
ab2a4b : 2−−−−−−→ p

a2 : 1−−−−→ q︸ ︷︷ ︸
non-det choice

b : 1−−−→ p
a2 : 2−−−−→ p

b3a : 1−−−−→ q

An identity u = v is said to satisfy (C1), (C2), (C3) or (C4) if the same values is
computed on u and v by the automata given above.

I Proposition 10. There are exactly four triangular identities u = v of length shorter than
18 satisfying (C1), (C2), (C3) and (C4) in which u and v are block-permuted and have
the same first and last blocks.

We have checked all these conditions assisted by a computer, with a program listing all
the pairs of words not eliminated by one of these conditions.

Moreover, this list of conditions is in some sense minimal since for each of them, there are
examples of pairs that are not eliminated when removing the condition from the list. These
examples are also exhibited by our program.

We remark that if the block-permutation condition holds then the only automata we
need to consider which involve weights not within {0, 1} are the ones corresponding to the
triangular conditions. This list of conditions is probably not sufficient to characterise fully the
identities which hold in C, however, one can ask if we can extend it and keep this distinction
between the triangular conditions with arbitrary weights and the other conditions involving
only weights in {0, 1}.

There are exactly four remaining candidates:

a2b3a3babab3a2 = a2b3ababa3b3a2, ab3a4baba2b3a = ab3a2baba4b3a

and the ones obtained by exchanging the roles of a and b. In the next section, we prove that
they indeed hold in C.
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4 The shortest identities

In this section, we conclude the proof of Theorem 1 by proving that the remaining candidate
identities hold in C. By exchanging the role of a and b, it is sufficient to prove the following
proposition:

I Proposition 11. The following two identities hold in C:

(I1) a2b3a3babab3a2 = a2b3ababa3b3a2 and (I2) ab3a4baba2b3a = ab3a2baba4b3a

For a word u = a0 · · · a` of length `+ 1, let us denote by ũ = a` · · · a0 the reverse of u.

I Lemma 12. Let u ∈ Σ+. If [[A]](u) > [[A]](ũ) for all A in C, then u = ũ is an identity
which holds in C.

Proof. Consider an automaton A in C. By hypothesis, [[A]](u) > [[A]](ũ). Construct now
B obtained from A by reversing the transitions, i.e. there is a transition p

c : α−−−→ q in
A if and only if there is a transition q

c : α−−−→ p in B. Moreover the initial (resp. final)
states of B are defined from the final (resp. initial) states of A. By this construction,
[[A]](ũ) = [[B]](u) > [[B]](ũ) = [[A]](u). Thus [[A]](ũ) = [[A]](u) for all A in C and hence u = ũ

holds in C. J

Remark that the two identities (I1) and (I2) are of the form u = ũ.

I Lemma 13. Given two words u and v of the same content, [[A]](u) > [[A]](v) for all A in
C if and only if [[B]](u) > [[B]](v) for all B of one of the following two forms, where α, β, γ,
δ, η are integers:

Aα,β,γ,δ,η
a : α a : 0

b : β b : 0

a : 0, b : δ

a : γ, b : η

Bα,β,γ,δ,η
a : α a : 0

b : β b : 0

a : 0, b : δ

a : γ, b : η

Proof. The if direction is clear by definition. Conversely, denote by C′ the class of automata
described in the statement of the proposition. Suppose that [[B]](u) > [[B]](v) for all B ∈ C′.
Consider A ∈ C. First, by the proof of Lemma 5, we can suppose that A is full and by
Lemma 4, that A has exactly one initial and one final state. Suppose that these two states
are different. If not, a similar reasoning will hold, involving Aα,β,γ,δ,η instead of Bα,β,γ,δ,η.
We represent A in the following picture:

p q

a : n a : m

b : n′ b : m′

a : k, b : k′

a : `, b : `′

First, construct A′ from A by removingm (resp. m′) from all the weights of the transitions
labelled by a (resp. b). Then construct B from A′ by removing k −m from the weights of
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the transitions labelled by a and b from p to q and adding k −m from the weights of the
transitions labelled by a and b from q to p. By construction, B is in C′. We get:

[[A]](u) = [[A′]](u) +m′|u|b +m|u|a by construction
= [[B]](u) + (k −m) +m′|u|b +m|u|a since p is initial and q final, thus on an

accepting run, the transitions from
p to q are taken (in total) exactly once
more than the transitions from q to p

> [[B]](v) + (k −m) +m′|v|b +m|v|a since B is in C′ and
u and v have the same content

> [[A′]](v) +m′|v|b +m|v|a for the same reason as above
> [[A]](v) by construction

J

Let us consider (I1) and denote u = a2b3a3babab3a2. By Lemmas 12 and 13, for proving
that (I1) holds in C, it is sufficient to prove that for all integers α, β, γ, δ, η, [[Aα,β,γ,δ,η]](u) >
[[Aα,β,γ,δ,η]](ũ) and [[Bα,β,γ,δ,η]](u) > [[Bα,β,γ,δ,η]](ũ). Consider Bα,β,γ,δ,η. Aided by computer,
we compute symbolically the values on u and on its reverse in Bα,β,γ,δ,η as a tropical
polynomial in α, β, γ, δ, η. Each monomial term corresponds to the weight of an accepting
(but not necessarily maximal weight) run. For example, the monomial term 8α + 8β
corresponds to an accepting run on u (when reading u around the initial state and going to
the final state on the last transition) and in fact on ũ also. We denote by Mu, Mũ and M
the set of monomials appearing only in the computation of u, only in the computation of ũ
or for both, respectively. We compute these three sets aided by a computer.

Finally, we prove that for each monomial inMũ and each choice of parameters α, β, γ, δ, η ∈
Z, there is a monomial in Mu ∪M which is greater on the values α, β, γ, δ, η. This concludes
the proof that [[Bα,β,γ,δ,η]](u) > [[Bα,β,γ,δ,η]](ũ) for all integers α, β, γ, δ, η. To do so, there
is no need to consider the monomials in Mũ in which neither γ nor η appears. Indeed, we
already checked in the previous section that (I1) satisfies the triangular conditions. Thus,
u = ũ holds for triangular automata. Consider B′α,β,δ constructed from Bα,β,γ,δ,η by removing
the transitions from the final state to the initial state. A monomial in Mũ in which neither
γ nor η appears corresponds to an accepting run in B′α,β,δ, and hence is bounded above
by B′α,β,δ(ũ) = B′α,β,δ(u), since this automaton is triangular. The latter is clearly bounded
above by Bα,β,γ,δ,η(u). So for all monomials in Mũ in which neither γ nor η and each choice
of parameters α, β, γ, δ, η ∈ Z, there is necessarily a monomial in Mu ∪M which is greater
on the values α, β, γ, δ, η. Finally, the set Mũ without these monomials is of reasonable size
and we are able to complete the computations by hand.

Similar computations hold for Aα,β,γ,δ,η and for (I2).

5 Conclusion

In this paper, we give the shortest identities which hold in the class of max-plus automata
with two states. We hope that a better understanding of this case is a first step towards
a better understanding of the general case. In particular, we give an interesting list of
conditions which are sufficient to achieve this goal. Future works will consist in trying to
understand better these conditions and how to extend this list to fully characterise the sets
of identities for max-plus automata with two states. In particular, we remark that under the
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block-permutation condition, the only automata we need to consider which involve weights
not within {0, 1} are the ones corresponding to the triangular conditions. We ask if we can
generalise this list of conditions to get the shortest identities for a larger number of states,
and keep this distinction between the triangular conditions with arbitrary weights and the
other conditions involving only weights in {0, 1}.
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