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—— Abstract

Let G be a graph such that each vertex has its list of available colors, and assume that each list
is a subset of the common set consisting of & colors. For two given list colorings of G, we study
the problem of transforming one into the other by changing only one vertex color assignment at
a time, while at all times maintaining a list coloring. This problem is known to be PSPACE-
complete even for bounded bandwidth graphs and a fixed constant k. In this paper, we study
the fixed-parameter tractability of the problem when parameterized by several graph parameters.
We first give a fixed-parameter algorithm for the problem when parameterized by k and the
modular-width of an input graph. We next give a fixed-parameter algorithm for the shortest
variant which computes the length of a shortest transformation when parameterized by k and
the size of a minimum vertex cover of an input graph. As corollaries, we show that the problem
for cographs and the shortest variant for split graphs are fixed-parameter tractable even when
only k is taken as a parameter. On the other hand, we prove that the problem is W[1]-hard when
parameterized only by the size of a minimum vertex cover of an input graph.
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1 Introduction

Recently, the framework of reconfiguration [14] has been extensively studied in the field of
theoretical computer science. This framework models several situations where we wish to
find a step-by-step transformation between two feasible solutions of a combinatorial (search)
problem such that all intermediate solutions are also feasible and each step respects a fixed
reconfiguration rule. This reconfiguration framework has been applied to several well-studied
combinatorial problems. (See a survey [18].)
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Figure 1 A reconfiguration sequence between two L-colorings fo and f; of G.

1.1 Our problem

In this paper, we study a reconfiguration problem for list (vertex) colorings in a graph, which
was introduced by Bonsma and Cereceda [3].

Let C = {ci1,¢2,...,cr} be the set of k colors, called the color set. A (proper) k-coloring
of a graph G = (V, E) is a mapping f: V — C such that f(v) # f(w) for every edge vw € E.
In list coloring, each vertex v € V has a set L(v) C C of colors, called the list of v; sometimes,
the list assignment L: V — 2€ itself is called a list. Then, a k-coloring f of G is called an
L-coloring of G if f(v) € L(v) holds for every vertex v € V. Therefore, a k-coloring of G is
simply an L-coloring of G when L(v) = C holds for every vertex v of G, and hence L-coloring
is a generalization of k-coloring. Figure 1(b) illustrates four L-colorings of the same graph G
in Figure 1(a); the color assigned to each vertex is attached to the vertex.

In the reconfiguration framework, two L-colorings f and f’ of a graph G = (V, E) are
said to be adjacent if [{v € V: f(v) # f'(v)}| = 1 holds, that is, f’ can be obtained from f
by recoloring exactly one vertex. A sequence (fo, f1,..., fe) of L-colorings of G is called a
reconfiguration sequence between fo and fy (of length £) if f;_1 and f; are adjacent for each
i€{1,2,...,¢}. Two L-colorings f and f’ are reconfigurable if there exists a reconfiguration
sequence between them. The LIST COLORING RECONFIGURATION problem is to determine
whether two given L-colorings fy and f; are reconfigurable, or not. Figure 1 shows an
example of a yes-instance of LIST COLORING RECONFIGURATION, where the vertex whose
color assignment was changed from the previous one is depicted by a black circle.

1.2 Known and related results

LIST COLORING RECONFIGURATION is one of the most well-studied reconfiguration problems,
as well as COLORING RECONFIGURATION which is a special case of the problem such that
L(v) ={ec1,¢2,...,cx} holds for every vertex v. These problems have been studied intensively
from various viewpoints [1, 2, 3, 4, 6, 7, 9, 13, 15, 19] including the generalizations [5, 20].

Bonsma and Cereceda [3] proved that COLORING RECONFIGURATION is PSPACE-complete
even for bipartite graphs and any fixed constant k£ > 4. On the other hand, Cereceda et
al. [7] gave a polynomial-time algorithm solving COLORING RECONFIGURATION for any graph
and k < 3; the algorithm can be applied to LIST COLORING RECONFIGURATION, too. In
particular, the former result implies that there is no fixed-parameter algorithm for COLORING
RECONFIGURATION (and hence LIST COLORING RECONFIGURATION) when parameterized by
only k under the assumption of P #% PSPACE.

Bonsma et al. [4] and Johnson et al. [15] independently developed a fixed-parameter
algorithm to solve COLORING RECONFIGURATION when parameterized by k4 ¢, where ¢ is the
upper bound on the length of reconfiguration sequences, and again their algorithms can be
applied to LIST COLORING RECONFIGURATION. In contrast, if COLORING RECONFIGURATION
is parameterized only by ¢, then it is W[1]-hard when k is an input [4] and does not admit a
polynomial kernelization when k is fixed unless the polynomial hierarchy collapses [15].
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Figure 2 All results (including known ones) for LIST COLORING RECONFIGURATION from the
viewpoint of parameterized complexity, where cw, tw, bw, mw, and vc are the upper bounds on the
cliquewidth, treewidth, bandwidth, modular-width, and the size of a minimum vertex cover of an
input graph, respectively.

Hatanaka et al. [13] proved that LIST COLORING RECONFIGURATION is PSPACE-complete
even for complete split graphs, whose modular-width is zero. Wrochna [19] proved that LIST
COLORING RECONFIGURATION is PSPACE-complete even when k and the bandwidth of an
input graph are bounded by some constant; thus the treewidth and the cliquewidth of an
input graph are also bounded.

1.3 Our contribution

To the best of our knowledge, known algorithmic results mostly employed the length £
of reconfiguration sequences as a parameter [4, 15], and no fixed-parameter algorithm
is known when parameterized by graph parameters. Therefore, we study LIST COLORING
RECONFIGURATION when parameterized by several graph parameters, and paint an interesting
map of graph parameters which shows the boundary between fixed-parameter tractability
and intractability. Our map is Figure 2 which shows both known and our results, where an
arrow a — [ indicates that the parameter « is “stronger” than 3, that is, 8 is bounded if «
is bounded. (For relationships of parameters, see, e.g., [10, 16].)

More specifically, we first give a fixed-parameter algorithm solving LIST COLORING
RECONFIGURATION when parameterized by k and the modular-width mw of an input graph.
(The definition of modular-width will be given in Section 2.1.) Note that, according to the
known results [3, 13], we cannot construct a fixed-parameter algorithm for general graphs
when only one of £ and mw is taken as a parameter under the assumption of P # PSPACE.
However, as later shown in Corollary 4, our algorithm implies that the problem is fixed-
parameter tractable for cographs even when only k is taken as a parameter.

We then consider the shortest variant which computes the length of a shortest reconfig-
uration sequence (i.e., the minimum number of recoloring steps) for a yes-instance of LIST
COLORING RECONFIGURATION, and show that it admits a fixed-parameter algorithm when
parameterized by k£ and the size of a minimum vertex cover of an input graph. Moreover, as
a corollary, we show that the shortest variant is fixed-parameter tractable for split graphs
even when only k is taken as a parameter.

Finally, we prove that LIST COLORING RECONFIGURATION is W1]-hard when parameter-
ized only by the size of a minimum vertex cover of an input graph.

Due to the page limitation, several proofs are omitted from this extended abstract.
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Figure 4 An example of substitution operation.

2 Preliminaries

We assume without loss of generality that graphs are simple and connected. Let G = (V, E)
be a graph with vertex set V and edge set E; we sometimes denote by V(G) and E(G) the
vertex set and the edge set of G, respectively. For a vertex v in G, we denote by N(G,v) the
neighborhood {w € V: vw € E} of v in G. For a vertex subset V' C V| we denote by G[V’]
the subgraph of G induced by V', and denote G \ V' = G[V(G) \ V’]. For a subgraph H of
G, we denote G\ H = G\ V(H). Let w(G) be the size of a maximum clique of G. We have
the following simple observation.

» Observation 1. Let G be a graph with a list L: V(G) — 2°. If G has an L-coloring, then
w(G) <|C|.

A graph is split if its vertex set can be partitioned into a clique and an independent set.
A graph is a cograph (or a Py-free graph) if it contains no induced path with four vertices.

2.1 Modules and modular decomposition

A module of a graph G = (V, E) is a vertex subset M C V such that N(G,v) \ M =
N(G,w)\ M for every two vertices v and w in M. In other words, the module M is a set of
vertices whose neighborhoods in G\ M are the same. For example, the graph in Figure 3(a)
has a module M = {w3,v4} for which N(G,v3) \ M = N(G,v4) \ M = {v1,v2,v6} holds.
Note that the vertex set V' of G, the set consisting of only a single vertex, and the empty set
() are all modules of G; they are called trivial. A graph G is a prime if all of its modules are
trivial; for an example, see Figure 3(b).
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(b) G=CG (D)

Figure 5 (a) A substitution tree T for (b) a graph G.

We now introduce the notion of modular decomposition, which was first presented by
Gallai in 1967 as a graph decomposition technique [11]. For a survey, see, e.g., [12].

We first define the substitution operation, which constructs one graph from more than one
graphs. Let @ be a graph, called a quotient graph, consisting of p (> 2) nodes uq,us, ..., up,
and let F = {G1,G2,...,G,} be a family of vertex-disjoint graphs such that G; corresponds
to u; for every i € {1,2,...,p}. The Q-substitution of F, denoted by Sub(Q, F), is the graph
which is obtained by taking a union of all graphs in F and then connecting every pair of
vertices v € V(G;) and w € V(Gj) by an edge if and only if u; and u; are adjacent in Q.
That is, the vertex set of Sub(Q, F) is U{V(G;): G; € F}, and the edge set of Sub(Q,F)
is the union of | J{E(G;): G; € F} and {vw: v € V(G;),w € V(G,),uu; € E(Q)}. (See
Figure 4 as an example.)

A substitution tree is a rooted tree T such that each non-leaf node x € V(T') is associated
with a quotient graph Q(z) and has |V(Q(x))| child nodes. For each node z € V(T),
we can recursively define the corresponding graph CG(z) as follows: If z is a leaf, CG(x)
consists of a single vertex. Otherwise, let y1,2,...,yp be p = |[V(Q(z))| children of z, then
CG(z) = Sub(Q(x),{CG(y1),CG(y2),...,CG(yp)}). For the root r of T, CG(r) is called the
corresponding graph of T, and we denote CG(T) := CG(r). We say that T is a substitution
tree for a graph G if CG(T') = G, and refer to a node in T in order to distinguish it from a
vertex in G. Figure 5(a) illustrates a substitution tree for the graph G in Figure 5(b); each
leaf z;, i € {1,2,...,11}, corresponds to the subgraph of G consisting of a single vertex v;.
We note that the vertex set V(CG(z)) of each corresponding graph CG(z), x € V(T), forms
a module of CG(T).

A modular decomposition tree T (an MD-tree for short) for a graph G is a substitution
tree for G which satisfies the following three conditions:

Each node x € V(T') applies to one of the following three types:

a series node, whose quotient graph Q(x) is a complete graph;
a parallel node, whose quotient graph Q(z) is an edge-less graph; and
a prime node, whose quotient graph Q(z) is a prime with at least four vertices.

No edge connects two series nodes.

No edge connects two parallel nodes.

It is known that any graph G has a unique MD-tree with O(|V(G)|) nodes, and it can be
computed in time O(|V(G)| + |E(G)]) [17]. We denote by MD(G) the unique MD-tree for a
graph G. The modular-width mw(G) of a graph G is the maximum number of children of
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a prime node in its MD-tree MD(G). The substitution tree T' in Figure 5(a) is indeed the
MD-tree for the graph G in Figure 5(b), and hence mw(G) = 4; note that only 14 is a prime
node in 7.

We now define a variant of MD-trees, which will make our proofs and analyses simpler. A
pseudo modular decomposition tree T (a PMD-tree for short) for a graph G is a substitution
tree for G which satisfies the following two conditions:
Each node x € V(T') applies to one of the following three types:
a 2-join node, whose quotient graph Q(x) is a complete graph with exactly two vertices;
a parallel node, whose quotient graph Q(z) is an edge-less graph; and
a prime node, whose quotient graph Q(x) is a prime with at least four vertices.

No edge connects two parallel nodes.

» Proposition 2. For any graph G, there exists a PMD-tree T' with O(|V(G)|) nodes such
that each prime node x € V(T') has at most mw(G) children, and it can be constructed in
polynomial time.

We denote by PMD(G) a PMD-tree for G such that each prime node z € V(T') has at most
mw(G) children. The pseudo modular-width pmw(G) of a graph G is the maximum number
of children of a non-parallel node in its PMD-tree. Notice that pmw(G) = max{2, mw(G)}
holds.

2.2 Other notation

Let G = (V, E) be a graph, and let L: V — 2¢ be a list. For two L-colorings f and f’ of G,
we define the difference dif(f, f') between f and f" as the set {v € V': f(v) # f'(v)}. Notice
that f and f’ are adjacent if and only if |dif(f, f')| = 1.

We express an instance Z of LIST COLORING RECONFIGURATION by a 4-tuple (G, L, fo, ft)
consisting of a graph G, a list L, and initial and target L-colorings fy and f; of G.

Finally, we introduce a notion of “restriction” of mappings and instances. Consider an
arbitrary mapping p: V(G) — S, where G is a graph and S is any set. For a subgraph H of
G, we denote by uf the restriction of p on V(H), that is, u is a mapping from V(H) to S
such that p(v) = u(v) for each vertex v € V(H). Let Z = (G, L, fo, f) be an instance of
LIST COLORING RECONFIGURATION. For a subgraph H of G, we define the restriction TH of
T (on H) as the instance (H, LY, fiI, f#) of LIST COLORING RECONFIGURATION. Notice
that f and f}! are proper L -colorings of H.

3 Fixed-Parameter Algorithm for Bounded Modular-Width Graphs

The following is our main theorem of this section.

» Theorem 3. LIST COLORING RECONFIGURATION is fixed-parameter tractable when para-
meterized by k + mw, where k and mw are the upper bounds on the size of the color set and
the modular-width of an input graph, respectively.

Because it is known that any cograph has modular-width zero, we have the following
result as a corollary of Theorem 3.

» Corollary 4. LIST COLORING RECONFIGURATION is fized-parameter tractable for cographs
when parameterized by the size k of the color set.
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Figure 6 An instance Z = (G, L, fo, ft) of LIST COLORING RECONFIGURATION, and two identical
subgraphs H; and Ho».

Recall that pmw(G) = max{2, mw(G)}, and hence pmw(G) < mw(G) + 2. Therefore, as
a proof of Theorem 3, it suffices to give a fixed-parameter algorithm for LIST COLORING
RECONFIGURATION with respect to k + pmw, where pmw is an upper bound on pmw(G).

3.1 Reduction rule

In this subsection, we give a useful lemma, which compresses an input graph into a smaller
graph with keeping the reconfigurability.

Let Z = (G, L, fo, f:) be an instance of LIST COLORING RECONFIGURATION. For each
vertex v € V(G), we define a vertex assignment A(v) as a triple (L(v), fo(v), fi(v)) consisting
of a list, and initial and target color assignments of v. Let H; and Hy be two induced
subgraphs of G such that |V (H;)| = |V(H2)| and V(Hy1) NV (H2) = 0. Then, H; and Hs
are identical (on T) if there exists a bijective function ¢: V(Hy) — V(Hz) which satisfies
the following two conditions:

1. H; and Hy are isomorphic under ¢, that is, vw € E(Hy) if and only if ¢(v)p(w) € E(Ha).
2. For all vertices v € V(Hy),

a. N(G,v)\ V(H1) = N(G,¢(v)) \ V(Hz); and

b. A(v) = A(6(v)), that is, L(v) = L(6(v)), fo(v) = fo(é(v)) and fu(v) = fi(6(v)-

We note that the condition 2-a implies that there is no edge between H; and Hs. Figure 6
shows an example of identical subgraphs H; and Hy on Z = (G, L, fo, f:), where the bijective
function maps each vertex in H; to a vertex in Hy with the same shape.

We now prove the following key lemma, which holds for any graph.

» Lemma 5. (Reduction rule) Let T = (G, L, fo, ft) be an instance of LIST COLORING
RECONFIGURATION, and let Hy and Hs be two identical subgraphs of G. Then, ZG\2 js q
yes-instance if and only if T is.

3.2 Kernelization

Let 7 = (G, L, fo, f+) be an instance of LIST COLORING RECONFIGURATION. Suppose that
the color set C' has at most k colors, G is a connected graph with pmw(G) < pmw, and all
vertices of G are totally ordered according to an arbitrary binary relation <.

3.2.1 Sufficient condition for identical subgraphs

We first give a sufficient condition for which two nodes in a PMD-tree PMD(G) for G
correspond to identical subgraphs. Let € V(PMD(G)) be a node, let p := |V (CG(z))|, and
assume that all vertices in V(CG(x)) are labeled as v1,v9, ..., v, according to <; that is,
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v; < v; holds for each 4,7 with 1 <4 < j < p. Let m > p be some integer which will be
defined later. We now define an (m + 1) x m matrix M, (z) as follows:

1 ifi,7 <pand v;v; € E(CG(x));
0 ifi,7 <pand v;v; ¢ E(CG(x));
0 ifp<i<morp<j<m
A(vj) ifi=m+1andj<p;

0 otherwise,

(M (2))ij =

where (M,,,(x));; denotes an (i, j)-element of M,,(z). Notice that M,,(x) contains the
adjacency matrix of CG(z) at its upper left p x p submatrix, and the bottommost row
represents the vertex assignment of each vertex in V(CG(z)). We call M,,(x) an m-ID-
matriz of . For example, consider the node z;3 in Figure 5(a). Then, p = 2, and a
4-ID-matrix of x13 is as follows:

My (z13) =

S O = O
S O O =
= O O O O
=2 O O O O

A(ws)  A(ra)

» Lemma 6. Let y1 and yo be two children of a parallel node x in PMD(G), and let m be an
integer with m > max{|V(CG(y1))|, [V(CG(y2))[}. If Mm(y1) = Mm(y2) holds, then CG(y1)
and CG(y2) are identical.

3.2.2 Kernelization algorithm

We now describe how to kernelize an input instance. Our algorithm traverses a PMD-tree
PMD(G) of G by a depth-first search in post-order starting from the root of PMD(G), that
is, the algorithm processes a node of PMD(QG) after its all children are processed.

Let x € V(PMD(G)) be a node which is currently visited. If x is a non-parallel node,
we do nothing. Otherwise (i.e., if x is a parallel node,) let Y be the set of all children of
x, and let m := maxy ey |V(CG(y))|. We first construct m-ID-matrices of all children of z.
If there exist two nodes y; and ys such that M., (y1) = M, (y2), then CG(y1) and CG(y2)
are identical; and hence we remove CG(y2) from G by Lemma 5. Then, we modify PMD(G)
in order to keep it still being a PMD-tree for the resulting graph as follows. We remove a
subtree rooted at yo from PMD(G), and delete a node corresponding to ys from a quotient
graph Q(z) of z. If this removal makes x having only one child y in the PMD-tree, we
contract the edge xy into a new node z’ such that Q(z') = Q(x).

The running time of this kernelization can be estimated as follows. For each node
z € V(PMD(G)), the construction of m-ID-matrices can be done in time O(|Y] - m?) =
O(|V(G@)|?). We can check if M,,(y1) = M,,(y2) for each pair of children y; and ya of
z in time O(m?) = O(|V(G)]?). Moreover, a modification of PMD(G), which follows an
application of Lemma 5, can be done in polynomial time. Recall that the number of children
of z and the size of a PMD-tree PMD(G) are both bounded linearly in |V(G)[, and hence
our kernelization can be done in polynomial time.

3.2.3 Size of the kernelized instance

We finally prove that the size of the obtained instance Z' = (G’, L', f{, f{) depends only on
k + pmw; recall that pmw is the upper bound on pmw(G). By Observation 1, we can assume



T. Hatanaka, T. lto, and X. Zhou

that the maximum clique size w(G’) is at most k. In addition, G’ is connected since G is

connected and an application of Lemma 5 does not affect the connectivity of the graph.

Therefore, it suffices to prove the following lemma.

» Lemma 7. The graph G’ has at most hy pmw(w(G")) vertices, where hi, pmw (1) s recursively
defined for an integer i > 1 as follows:

1 ifi=1;
. Promu G=1) ok 2\ he pm (i—1) .
pPMW - Ao pmw (i — 1) - /2 (28 - k2)epmw otherwise.

hk,pmw(i) = {

In particular, hy pmw(w(G")) depends only on k + pmw.

Finally, we prove Theorem 3. By the above discussions, we can compute the kernelized
instance 7/ = Z¢ of LIST COLORING RECONFIGURATION in polynomial time. Because

the size of 7" depends only on k + pmw, we can solve Z’ by enumerating all LG/—colorings.

The running time for this enumeration depends only on k& + pmw, and hence we obtain a
fixed-parameter algorithm for LIST COLORING RECONFIGURATION.
This completes the proof of Theorem 3.

4  Shortest Variant

In this section, we study the shortest variant, LIST COLORING SHORTEST RECONFIGURATION.

We note that the shortest length can be expressed by a polynomial number of bits, because
there are at most k™ colorings for a graph with n vertices and k colors. Therefore, the answer
can be output in polynomial time. The following is our result.

» Theorem 8. LIST COLORING SHORTEST RECONFIGURATION is fized-parameter tractable
when parameterized by k 4 vc, where k and vc are the upper bounds on the sizes of the color
set and a minimum vertex cover of an input graph, respectively.

As a corollary, we have the following result.

» Corollary 9. LIST COLORING SHORTEST RECONFIGURATION is fized-parameter tractable
for split graphs when parameterized by the size k of the color set.

As a proof of Theorem 8, we give such a fixed-parameter algorithm. Our basic idea is
the same as the fixed-parameter algorithm in Section 3. However, in order to compute the
shortest length, we consider a more general “weighted” version of LIST COLORING SHORTEST
RECONFIGURATION, which is defined as follows. Let Z = (G, L, fo, f;) be an instance of
LIST COLORING RECONFIGURATION, and assume that each vertex v € V(G) has a weight
w(v) € N, where N is the set of all positive integers. For two adjacent L-colorings f and f’ of
a graph G, we define the gap gap,,(f, f') between f and f’ as the weight w(v) of v, where v
is a unique vertex in dif (f, f'). The length len,,(S) of a reconfiguration sequence S = (fy, f1,

.., fe) is defined as len,(S) = Zle gap,,(fi—1, fi). We denote by OPT(Z,w) the minimum
length of a reconfiguration sequence between fy and f; we define OPT(Z,w) = +o0 if 7
is a no-instance of LIST COLORING RECONFIGURATION. Then, LIST COLORING SHORTEST
RECONFIGURATION can be seen as computing OPT(Z, w) for the case where every vertex has
weight one. Thus, to prove Theorem 8, it suffices to construct a fixed-parameter algorithm
for the weighted version when parameterized by k + vc.

As with Section 3, we again use the concept of kernelization to prove Theorem 8. More
precisely, for a given instance (Z, w), we first construct an instance (Z' = (G', L/, f§, f),w') in
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polynomial time such that the size of Z' depends only on k+vc, and OPT(Z’, w’) = OPT(Z, w)
holds. Then, we can compute OPT(Z’, w’) by computing a (weighted) shortest path between
fi and f] in an edge-weighted graph defined as follows: the vertex set consists of all L'-
colorings of G/, and each pair of adjacent L’-colorings are connected by an edge with a weight
corresponding to the gap between them.

4.1 Reduction rule for the weighted version

In this subsection, we give the counterpart of Lemma 5 for the weighted version.

Let (Z = (G, L, fo, fi),w) be an instance of the weighted version, and assume that there
exist two identical subgraphs H; and Hs of G, both of which consist of single vertices, say,
V(Hy) = {v1} and V(Hz) = {va}. We now define a new instance (Z’,w’) as follows:

T’ = 7G\H2; and

w'(v1) = w(vy) + w(ve) and w'(v) = w(v) for any v € V(G) \ {v1,v2}.

Intuitively, vy is merged into vy together with its weight. Then, we have the following lemma.

» Lemma 10. OPT(Z,w) = OPT(Z', w').

4.2 Kernelization

Finally, we give a kernelization algorithm as follows.

Let (Z = (G, L, fo, ft),w) be an instance of the weighted version such that G has a
vertex cover of size at most vc. Because such a vertex cover can be computed in time
0(2'¢ - |[V(@)]) [8], we now assume that we are given a vertex cover Vi of size at most vc.
Notice that Vi := V \ Vi forms an independent set of G. Suppose that there exist two
vertices vy, vy € V7 such that N(G,v1) = N(G,v2) and A(vy) = A(vz) hold. Then, induced
subgraphs G[{v1}] and G[{vz}] are identical. Therefore, we can apply Lemma 10 to remove
vg from G, and modify a weight function without changing the optimality. As a kernelization,
we repeatedly apply Lemma 10 for all such pairs of vertices in V7, which can be done in
polynomial time. Let G’ be the resulting subgraph of G, and let V/ := V(G’) \ V. Since Ve
is of size at most vc, it suffices to prove the following lemma.

» Lemma 11. |V/| < 2v¢.2F . k2,

This completes the proof of Theorem 8.

5 W]J[1]-Hardness

Because even the shortest variant is fixed-parameter tractable when parameterized by k + vc,
one may expect that vc is a strong parameter and the problem is fixed-parameter tractable
with only vc. However, we prove the following theorem in this section.

» Theorem 12. LIST COLORING RECONFIGURATION is W([1]-hard when parameterized by
vec, where vc is the upper bound on the size of a minimum vertex cover of an input graph.

Recall that LIST COLORING RECONFIGURATION is PSPACE-complete even for a fixed constant
k > 4. Therefore, the problem is intractable if we take only one parameter, either k or vc.

In order to prove Theorem 12, we give an FPT-reduction from the INDEPENDENT SET
problem when parameterized by the solution size s, in which we are given a graph H and an
integer s > 0, and asked whether H has an independent set of size at least s. This problem
is known to be W([1]-hard [8].
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Figure 7 (a) An instance H of INDEPENDENT SET, and (b) the graph G and the list L. The
set Vior contains vertices of (%, j; p, q)-forbidding gadgets for all (i,5) € {(1,2),(1,3),(2,3)} and
all (p,q) € {(1,1), (2,2), (3,3), (4,4), (5,5), (1,2), (2,1), (1,3), (3, 1), (1,4), (4, 1), (2, 5), (5,2)}; thus
|Wor| = 39.

5.1 Construction

Let H be a graph with n vertices wui,us,...,un, and s be an integer as an input for
INDEPENDENT SET. Then, we construct the corresponding instance (G, L, fo, f;) of LIST
COLORING RECONFIGURATION as follows. (See also Figure 7.)

We first create s vertices vy, vs, ..., Vs, which are called selection vertices; let Vi be the
set of all selection vertices. For each i € {1,2,...,s}, we set L(v;) = {c*,cl,c?,...,c"}. In
our reduction, we will construct G and L so that assigning the color ¢, p € {1,2,...,n}, to

v; € Ve corresponds to choosing the vertex u, € V(H) as a vertex in an independent set
of H. Then, in order to make a correspondence between a color assignment to Vg and an
independent set of size s in H, we need to construct the following properties:

For each p € {1,2,...,n}, we use at most one color from {c},cb,...,cP}; this ensures
that each vertex u, € V(H) can be chosen at most once in an independent set.

For each p,q € {1,2,...,n} with uy,u, € E(H), we use at most one color from
{c, 8, ... ek, cf,cd ... cl}; then, no two adjacent vertices in H are chosen in an inde-

pendent set.
To do this, we define an (4, 7;p, q)-forbidding gadget for 4,5 € {1,2,...s} and p,q €
{1,2,...,n}. The (i,7;p,q)-forbidding gadget is a vertex w which is adjacent to v; and
v; and has a list L(w) = {c],c}}. Observe that the vertex w forbids that v; and v; are
simultaneously colored with ¢! and c?, respectively. In order to satisfy the desired properties
above, we now add our gadgets as follows: for all i,5 € {1,2,...s} with i < j,

add an (¢, j; p, p)-forbidding gadget for every vertex u, € V(H); and

add (4, j; p, ¢)- and (3, j; ¢, p)-forbidding gadgets for every edge u,u, € E(H).
We denote by Vi, the set of all vertices in the forbidding gadgets. We finally create an edge
consisting of two vertices w; and wsy such that L(wy) = {a,b} and L(ws) = {a,b,c¢*}, and
connect wy with all selection vertices in V.

Finally, we construct two L-colorings fy and f; of G as follows:

for each v; € Veel, fo(vi) = fe(vi) = ¢*;

for each w € Vior, fo(w) and fi(w) are arbitrary chosen colors from L(w); and

fo(wi) = fi(we) = a, and fi(w1) = fo(wz) = b.
Note that both fy and f; are proper L-colorings of G. This completes the construction of
(Gv Lv an ft)
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5.2 Correctness of the reduction

In this subsection, we prove the following three statements:
(G, L, fo, ft) can be constructed in time polynomial in the size of H.
The upper bound vc on the size of a minimum vertex cover of G depends only on s.
H is a yes-instance of INDEPENDENT SET if and only if (G, L, fo, f¢) is a yes-instance of
LIST COLORING RECONFIGURATION.

In order to prove the first statement, it suffices to show that the size of (G, L, fo, fi) is
bounded polynomially in n = |V (H)|. From the construction, we have |V (G)| = |Veel| +
|Vior| + [{w1, wo}| < s+ 5% x (|V(H)|+2|E(H)|) +2 = O(n*). In addition, each list contains
O(n) colors. Therefore, the construction can be done in time O(n?™).

The second statement immediately follows from the fact that {ws} UV is a vertex cover
in G of size s + 1; observe that G \ ({wa} U Vi) = G[{w1} U V4| contains no edge.

Finally, we prove the third statement as follows.

» Lemma 13. H is a yes-instance of INDEPENDENT SET if and only if (G, L, fo, ft) is a
yes-instance of LIST COLORING RECONFIGURATION.

This completes the proof of Theorem 12.

6 Conclusion

In this paper, we have studied LIST COLORING RECONFIGURATION from the viewpoint
of parameterized complexity, in particular, with several graph parameters. We painted
an interesting map of graph parameters in Figure 2 which shows the boundary between
fixed-parameter tractability and intractability.
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