
Faster Monte-Carlo Algorithms for Fixation
Probability of the Moran Process on Undirected
Graphs∗

Krishnendu Chatterjee1, Rasmus Ibsen-Jensen2, and
Martin A. Nowak3

1 IST Austria, Klosterneuburg, Austria
krish@ist.ac.at

2 IST Austria, Klosterneuburg, Austria
ribsen@ist.ac.at

3 Program for Evolutionary Dynamics, Harvard University, Cambridge, USA
martin_nowak@harvard.edu

Abstract
Evolutionary graph theory studies the evolutionary dynamics in a population structure given as
a connected graph. Each node of the graph represents an individual of the population, and edges
determine how offspring are placed. We consider the classical birth-death Moran process where
there are two types of individuals, namely, the residents with fitness 1 and mutants with fitness r.
The fitness indicates the reproductive strength. The evolutionary dynamics happens as follows:
in the initial step, in a population of all resident individuals a mutant is introduced, and then
at each step, an individual is chosen proportional to the fitness of its type to reproduce, and the
offspring replaces a neighbor uniformly at random. The process stops when all individuals are
either residents or mutants. The probability that all individuals in the end are mutants is called
the fixation probability, which is a key factor in the rate of evolution. We consider the problem
of approximating the fixation probability.

The class of algorithms that is extremely relevant for approximation of the fixation probab-
ilities is the Monte-Carlo simulation of the process. Previous results present a polynomial-time
Monte-Carlo algorithm for undirected graphs when r is given in unary. First, we present a simple
modification: instead of simulating each step, we discard ineffective steps, where no node changes
type (i.e., either residents replace residents, or mutants replace mutants). Using the above simple
modification and our result that the number of effective steps is concentrated around the expected
number of effective steps, we present faster polynomial-time Monte-Carlo algorithms for undir-
ected graphs. Our algorithms are always at least a factor O(n2/ logn) faster as compared to
the previous algorithms, where n is the number of nodes, and is polynomial even if r is given in
binary. We also present lower bounds showing that the upper bound on the expected number of
effective steps we present is asymptotically tight for undirected graphs.

1998 ACM Subject Classification J.1.1 Biology and genetics, E.1.3 Graphs and networks

Keywords and phrases Graph algorithms, Evolutionary biology, Monte-Carlo algorithms

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.61

∗ Some proofs are missing. See the full version [2]

© Krishnendu Chatterjee, Rasmus Ibsen-Jensen, and Martin A. Nowak;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 61; pp. 61:1–61:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.61
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

61:2 Faster Monte-Carlo Algorithms for Fixation Probability of the Moran Process

1 Introduction

In this work we present faster Monte-Carlo algorithms for approximation of the fixation
probability of the fundamental Moran process on population structures with symmetric
interactions. We start with the description of the problem.

Evolutionary dynamics. Evolutionary dynamics act on populations, where the composition
of the population changes over time due to mutation and selection. Mutation generates
new types and selection changes the relative abundance of different types. A fundamental
concept in evolutionary dynamics is the fixation probability of a new mutant [7, 11, 13, 14]:
Consider a population of n resident individuals, each with a fitness value 1. A single mutant
with non-negative fitness value r is introduced in the population as the initialization step.
Intuitively, the fitness represents the reproductive strength. In the classical Moran process
the following birth-death stochastic steps are repeated: At each time step, one individual is
chosen at random proportional to the fitness to reproduce and one other individual is chosen
uniformly at random for death. The offspring of the reproduced individual replaces the dead
individual. This stochastic process continues until either all individuals are mutants or all
individuals are residents. The fixation probability is the probability that the mutants take
over the population, which means all individuals are mutants. A standard calculation shows
that the fixation probability is given by (1 − (1/r))/(1 − (1/rn)). The correlation between
the relative fitness r of the mutant and the fixation probability is a measure of the effect of
natural selection. The rate of evolution, which is the rate at which subsequent mutations
accumulate in the population, is proportional to the fixation probability, the mutation rate,
and the population size n. Hence fixation probability is a fundamental concept in evolution.

Evolutionary graph theory. While the basic Moran process happens in well-mixed pop-
ulation (all individuals interact uniformly with all others), a fundamental extension is to
study the process on population structures. Evolutionary graph theory studies this phe-
nomenon. The individuals of the population occupy the nodes of a connected graph. The
links (edges) determine who interacts with whom. Basically, in the birth-death step, for
the death for replacement, a neighbor of the reproducing individual is chosen uniformly
at random. Evolutionary graph theory describes evolutionary dynamics in spatially struc-
tured population where most interactions and competitions occur mainly among neighbors
in physical space [12, 3, 8, 15]. Undirected graphs represent population structures where the
interactions are symmetric, whereas directed graphs allow for asymmetric interactions. The
fixation probability depends on the population structure [12, 1, 9, 4]. Thus, the fundamental
computational problem in evolutionary graph theory is as follows: given a population struc-
ture (i.e., a graph), the relative fitness r, and ε > 0, compute an ε-approximation of the
fixation probability.

Monte-Carlo algorithms. A particularly important class of algorithms for biologists is
the Monte-Carlo algorithms, because it is simple and easy to interpret. The Monte-Carlo
algorithm for the Moran process basically requires to simulate the process, and from the
statistics obtain an approximation of the fixation probability. Hence, the basic question
we address in this work is simple Monte-Carlo algorithms for approximating the fixation
probability. It was shown in [6] that simple simulation can take exponential time on directed
graphs and thus we focus on undirected graphs. The main previous algorithmic result in
this area [5] presents a polynomial-time Monte-Carlo algorithm for undirected graphs when
r is given in unary. The main result of [5] shows that for undirected graphs it suffices to run
each simulation for polynomially many steps.

K. Chatterjee, R. Ibsen-Jensen, and M.A. Nowak 61:3

Table 1 Comparison with previous work, for constant r > 1. We denote by n, ∆, τ , and ε,
the number of nodes, the maximum degree, the random variable for the fixation time, and the
approximation factor, respectively. The results in the column “All steps” is from [5], except that we
present the dependency on ∆, which was considered as n in [5]. The results of the column “Effective
steps” is the results of this paper

All steps Effective steps
#steps in expectation O(n2∆2) O(n∆)
Concentration bounds Pr[τ ≥ n2∆2rx

r−1] ≤ 1/x Pr[τ ≥ 6n∆x
min(r−1,1)] ≤ 2−x

Sampling a step O(1) O(∆)
Fixation algo O(n6∆2ε−4) O(n2∆2ε−2(logn+ log ε−1))

Our contributions. In this work our main contributions are as follows:
1. Faster algorithm for undirected graphs First, we present a simple modification: instead

of simulating each step, we discard ineffective steps, where no node changes type (i.e.,
either residents replace residents, or mutants replace mutants). We then show that the
number of effective steps is concentrated around the expected number of effective steps.
The sampling of each effective step is more complicated though than sampling of each
step. We then present an efficient algorithm for sampling of the effective steps, which
requires O(m) preprocessing and then O(∆) time for sampling, where m is the number
of edges and ∆ is the maximum degree. Combining all our results we obtain faster
polynomial-time Monte-Carlo algorithms: Our algorithms are always at least a factor
n2/ logn times a constant (in most cases n3/ logn times a constant) faster as compared
to the previous algorithm, and is polynomial even if r is given in binary. We present
a comparison in Table 1, for constant r > 1 (since the previous algorithm is not in
polynomial time for r in binary). For a detailed comparison see the full version [2].

2. Lower bounds We also present lower bounds showing that the upper bound on the expec-
ted number of effective steps we present is asymptotically tight for undirected graphs.

Related complexity result. While in this work we consider evolutionary graph theory, a
related problem is evolutionary games on graphs (which studies the problem of frequency
dependent selection). The approximation problem for evolutionary games on graphs is
considerably harder (e.g., PSPACE-completeness results have been established) [10].

Technical contributions. Note that for the problem we consider the goal is not to design
complicated efficient algorithms, but simple algorithms that are efficient. By simple, we
mean something that is related to the process itself, as biologists understand and interpret
the Moran process well. Our main technical contribution is a simple idea to discard ineffect-
ive steps, which is intuitive, and we show that the simple modification leads to significantly
faster algorithms. We show a gain of factor O(n∆) due to the effective steps, then lose a
factor of O(∆) due to sampling, and our other improvements are due to better concentra-
tion results. We also present an interesting family of graphs for the lower bound examples.
Technical proofs omitted due to lack of space are in the full version [2].

2 Moran process on graphs

Connected graph and type function. We consider the population structure represented
as a connected graph. There is a connected graph G = (V,E), of n nodes and m edges, and
two types T = {t1, t2}. The two types represent residents and mutants, and in the technical

MFCS 2017

61:4 Faster Monte-Carlo Algorithms for Fixation Probability of the Moran Process

exposition we refer to them as t1 and t2 for elegant notation. We say that a node v is a
successor of a node u if (u, v) ∈ E. The graph is undirected if for all (u, v) ∈ E we also
have (v, u) ∈ E, otherwise it is directed. There is a type function f mapping each node v
to a type t ∈ T . Each type t is in turn associated with a positive integer w(t), the type’s
fitness denoting the corresponding reproductive strength. Without loss of generality, we will
assume that r = w(t1) ≥ w(t2) = 1, for some number r (the process we consider does not
change under scaling, and r denotes relative fitness). Let W (f) =

∑
u∈V w(f(u)) be the

total fitness. For a node v let deg v be the degree of v in G. Also, let ∆ = maxv∈V deg v
be the maximum degree of a node. For a type t and type function f , let Vt,f be the nodes
mapped to t by f . Given a type t and a node v, let f [v → t] denote the following function:
f [v → t](u) = t if u = v and f(u) otherwise.

Moran process on graphs. We consider the following classical Moran birth-death process
where a dynamic evolution step of the process changes a type function from f to f ′ as follows:
1. First a node v is picked at random with probability proportional to w(f(v)), i.e. each

node v has probability of being picked equal to w(f(v))
W (f) .

2. Next, a successor u of v is picked uniformly at random.
3. The type of u is then changed to f(v). In other words, f ′ = f [u→ f(v)].

Fixation. A type t fixates in a type function f if f maps all nodes to t. Given a type
function f , repeated applications of the dynamic evolution step generate a sequence of type
functions f = f1, f2, . . . , f∞. Note that if a type has fixated (for some type t) in fi then it
has also fixated in fj for i < j. We say that a process has fixation time i if fi has fixated
but fi−1 has not. We say that an initial type function f has fixation probability p for a
type t, if the probability that t eventually fixates (over the probability measure on sequences
generated by repeated applications of the dynamic evolution step f)

Basic questions. We consider the following basic questions:
1. Fixation problem Given a type t, what is the fixation probability of t averaged over the

n initial type functions with a single node mapping to t?
2. Extinction problem Given a type t, what is the fixation probability of t averaged over the

n initial type functions with a single node not mapping to t?
3. Generalized fixation problem Given a graph, a type t and an type function f what is the

fixation probability of t in G, when the initial type function is f?

I Remark. Note that in the neutral case when r = 1, the fixation problem has answer 1/n
and extinction problem has answer 1− 1/n. Hence, in the rest of the paper we will consider
r > 1. Also, to keep the presentation focused, in the main article, we will consider fixation
and extinction of type t1. In the full version [2] we also present another algorithm for the
extinction of t2.

Results. We will focus on undirected graphs. For undirected graphs, we will give new
FPRAS (fully polynomial, randomized approximation scheme) for the fixation and the ex-
tinction problem, and a polynomial-time algorithm for an additive approximation of the
generalized fixation problem. There exists previous FPRAS for the fixation and extinction
problems [5]. Our upper bounds are at least a factor of O(n2

logn) (most cases O(n3

logn)) better
and always in Poly(n, 1/ε), whereas the previous algorithms are not in polynomial time for
r given in binary.

K. Chatterjee, R. Ibsen-Jensen, and M.A. Nowak 61:5

3 Discarding ineffective steps

We consider undirected graphs. Previous work by Diaz et al. [5] showed that the expected
number of dynamic evolution steps till fixation is polynomial, and then used it to give a
polynomial-time Monte-Carlo algorithm. Our goal is to improve the quite high polynomial-
time complexity, while giving a Monte-Carlo algorithm. To achieve this we define the notion
of effective steps.

Effective steps. A dynamic evolution step, which changes the type function from f to f ′,
is effective if f 6= f ′ (and ineffective otherwise). The idea is that steps in which no node
changes type (because the two nodes selected in the dynamic evolution step already had the
same type) can be discarded, without changing which type fixates/gets eliminated.

Two challenges. The two challenges are as follows:
1. Number of steps The first challenge is to establish that the expected number of effective

steps is asymptotically smaller than the expected number of all steps. We will establish
a factor O(n∆) improvement (recall ∆ is the maximum degree).

2. Sampling Sampling an effective step is harder than sampling a normal step. Thus it is
not clear that considering effective steps leads to a faster algorithm. We consider the
problem of efficiently sampling an effective step in a later section, see Section 5. We show
that sampling an effective step can be done in O(∆) time (after O(m) preprocessing).

Notation. For a type function f , let Γv(f) be the subset of successors of v, such that
u ∈ Γv(f) iff f(v) 6= f(u). Also, let W ′(f) =

∑
u w(f(u)) · |Γu(f)|

degu .

Modified dynamic evolution step. Formally, we consider the following modified dynamic
evolution step (that changes the type function from f to f ′ and assumes that f does not
map all nodes to the same type):
1. First a node v is picked at random with probability proportional to p(v) = w(f(v))· |Γv(f)|

deg v

i.e. each node v has probability of being picked equal to p(v)
W ′(f) .

2. Next, a successor u of v is picked uniformly at random among Γv(f).
3. The type of u is then changed to f(v), i.e., f ′ = f [u→ f(v)].

In the following lemma we show that the modified dynamic evolution step corresponds
to the dynamic evolution step except for discarding steps in which no change was made.

I Lemma 1. Fix any type function f such that neither type has fixated. Let fd (resp., fm)
be the next type function under dynamic evolution step (resp., modified dynamic evolution
step). Then, Pr[f 6= fd] > 0 and for all type functions f ′ we have: Pr[f ′ = fd | f 6= fd] =
Pr[f ′ = fm].

Potential function ψ. Similar to [5] we consider the potential function ψ =
∑
v∈Vt1,f

1
deg v

(recall that Vt1,f is the set of nodes of type t1). We now lower bound the expected difference
in potential per modified evolutionary step.

I Lemma 2. Let f be a type function such that neither type has fixated. Apply a modified
dynamic evolution step on f to obtain f ′. Then,

E[ψ(f ′)− ψ(f)] ≥ r − 1
∆ · (r + 1) .

MFCS 2017

61:6 Faster Monte-Carlo Algorithms for Fixation Probability of the Moran Process

Proof. Observe that f differs from f ′ for exactly one node u. More precisely, let v be the
node picked in line 1 of the modified dynamic evolution step and let u be the node picked
in line 2. Then, f ′ = f [u→ f(v)]. The probability to select v is p(v)

W ′(f) . The probability to
then pick u is 1

|Γv(f)| .
We have that
If f(u) = t2 (and thus, since it got picked f(v) = t1), then ψ(f ′)− ψ(f) = 1

degu .
If f(u) = t1 (and thus, since it got picked f(v) = t2), then ψ(f ′)− ψ(f) = − 1

degu .
Below we use the following notations:

E12 = {(v, u) ∈ E | f(v) = t1 and f(u) = t2};E21 = {(v, u) ∈ E | f(v) = t2 and f(u) = t1}.

Thus,

E[ψ(f ′)− ψ(f)] =∑
(v,u)∈E12

(
p(v)
W ′(f) ·

1
|Γv(f)| ·

1
deg u

)
−

∑
(v,u)∈E21

(
p(v)
W ′(f) ·

1
|Γv(f)| ·

1
deg u

)

=
∑

(v,u)∈E12

(
w(f(v))

W ′(f) · (deg u) · (deg v)

)
−

∑
(v,u)∈E21

(
w(f(v))

W ′(f) · (deg u) · (deg v)

)
.

Using that the graph is undirected we get,

E[ψ(f)− ψ(f ′)] =
∑

(v,u)∈E12

(
w(f(v))− w(f(u))

W ′(f) · (deg u) · (deg v)

)

= 1
W ′(f)

∑
(v,u)∈E12

(
r − 1

min(deg u,deg v) ·max(deg u,deg v)

)
≥ r − 1

∆ ·W ′(f)
∑

(v,u)∈E12

1
min(deg u,deg v) = r − 1

∆ ·W ′(f) · S ,

where S =
∑

(v,u)∈E12
1

min(degu,deg v) . Note that in the second equality we use that for two
numbers a, b, their product is equal to min(a, b) ·max(a, b). By definition of W ′(f), we have

W ′(f) =
∑
u

w(f(u)) · |Γu(f)|
deg u =

∑
u

∑
v∈Γu(f)

w(f(u))
deg u =

∑
(v,u)∈E
f(u)6=f(v)

w(f(u))
deg u

=
∑

(v,u)∈E12

(
w(f(u))

deg u + w(f(v))
deg v

)
≤

∑
(v,u)∈E12

w(f(u)) + w(f(v))
min(deg u,deg v) = (r + 1) · S .

Thus, we see that E[ψ(f ′)− ψ(f)] ≥ r−1
∆·(r+1) , as desired. This completes the proof. J

I Lemma 3. Let r = x∆ for some number x > 0. Let f be a type function such that neither
type has fixated. Apply a modified dynamic evolution step on f to obtain f ′. The probability
that |Vt1,f ′ | = |Vt1,f |+ 1 is at least x

x+1 (otherwise, |Vt1,f ′ | = |Vt1,f | − 1).

I Lemma 4. Consider an upper bound `, for each starting type function, on the expected
number of (effective) steps to fixation. Then for any starting type function the probability
that fixation requires more than 2 · ` · x (effective) steps is at most 2−x.

We now present the main theorem of this section, which we obtain using the above
lemmas, and techniques from [5].

K. Chatterjee, R. Ibsen-Jensen, and M.A. Nowak 61:7

c2

c12

c22
c32

c42

c3

c13

c23

c33
c43

c1 v1 v2 v3 v4

v5v6v7v8v9

v10 v11 v12 v13 v14 v15

Figure 1 Example of a member of the family that attains the lower bound for undirected graphs.
(Specifically, it is G6,31)

I Theorem 5. Let t1 and t2 be the two types, such that r = w(t1) > w(t2) = 1. Let ∆ be
the maximum degree. Let k be the number of nodes of type t2 in the initial type function.
The following assertions hold:

Bounds dependent on r
1. Expected steps The process requires at most 3k∆/min(r − 1, 1) effective steps in

expectation, before fixation is reached.
2. Probability For any integer x ≥ 1, after 6xn∆/min(r − 1, 1) effective steps, the

probability that the process has not fixated is at most 2−x, irrespective of the initial
type function.

Bounds independent on r
1. Expected steps The process requires at most 2nk∆2 effective steps in expectation,

before fixation is reached.
2. Probability For any integer x ≥ 1, after 4xn2∆2 effective steps, the probability that

the process has not fixated is at most 2−x, irrespective of the initial type function.
Bounds for r ≥ 2∆
1. Expected steps The process requires at most 3k effective steps in expectation, before

fixation is reached.
2. Probability For any integer x ≥ 1, after 6xn effective steps, the probability that the

process has not fixated is at most 2−x, irrespective of the initial type function.

4 Lower bound for undirected graphs

In this section, we will argue that our bound on the expected number of effective steps is
essentially tight, for fixed r.

We construct our lower bound graph G∆,n, for given ∆, n (sufficiently large), but fixed
r > 1, as follows. We will argue that fixation of G∆,n takes Ω(k∆) effective steps, if there are
initially exactly k members of type t2. For simplicity, we consider ∆ > 2 and n > 4∆ (it is

MFCS 2017

61:8 Faster Monte-Carlo Algorithms for Fixation Probability of the Moran Process

easy to see using similar techniques that for lines, where ∆ = 2, the expected fixation time is
Ω(k) - basically because t1 is going to fixate with pr. ≈ 1−1/r, using a proof like Lemma 6,
and converting the k nodes of type t2 takes at least k efficient steps). There are two parts
to the graph: A line of ≈ n/2 nodes and a stars-on-a-cycle graph of ≈ n/2. There is 1 edge
from the one of the stars in the stars-on-a-cycle graph to the line. More formally, the graph
is as follows: Let x := bn/(2∆− 2)c. There are nodes VC = {c1, . . . , cx}, such that ci is
connected to ci−1 and ci+1 for 1 < i < x. Also, c1 is connected to cx. The nodes VC are
the centers of the stars in the stars-on-a-cycle graph. For each i, such that 2 ≤ i ≤ x, the
node ci is connected to a set of leaves V iC = {c1i , . . . , c∆−2

i }. The set VC ∪
⋃x
i=2 V

i
C forms the

stars-on-a-cycle graph. Note that c1 is only connected to c2 and cx in the stars-on-a-cycle
graph. We have that the stars-on-a-cycle graph consists of s = (x− 1) · (∆− 1) + 1 ≈ n/2
nodes. There are also nodes VL = {`1, . . . , `n−s}, such that node `i is connected to `i−1 and
`i+1 for 1 < i < n/2. The nodes VL forms the line and consists of n− s ≥ n/2 nodes. The
node c1 is connected to `1. There is an illustration of G6,31 in Figure 1.

We first argue that if at least one of V ′L = {`dn/4e, . . . , `n−s} is initially of type t1,
then with pr. lower bounded by a number depending only on r, type t1 fixates (note that
|V ′L| ≥ n/4 and thus, even if there is only a single node of type t1 initially placed uniformly
at random, it is in V ′L with pr. ≥ 1/4).

I Lemma 6. With pr. above 1−1/r
2 if at least one of V ′L is initially of type t1, then t1 fixates.

The proof is based on applying the gambler’s ruin twice. Once to find out that the pr. that
VL eventually becomes all t1 is above 1−1/r

2 (it is nearly 1 − 1/r in fact) and once to find
out that if VL is at some point all t1, then the pr. that t2 fixates is exponentially small with
base r and exponent n− s. See the full version [2] for the proof.

Whenever a node of V iC , for some i, changes type, we say that a leaf-step occurred. We
will next consider the pr. that an effective step is a leaf-step.

I Lemma 7. The pr. that an effective step is a leaf-step is at most r
∆ .

The proof is quite direct and considers that the probability that a leaf gets selected for
reproduction over a center node in the stars-on-a-cycle graph. See the full version [2] for the
proof.

We are now ready for the theorem.

I Theorem 8. Let r > 1 be some fixed constant. Consider ∆ > 2 (the maximum degree
of the graph), n > 4∆ (sufficiently big), and some k such that 0 < k < n. Then, if there
are initially k members of type t2 placed uniformly at random, the expected fixation time of
G∆,n is above k∆(1−1/r)

32r effective steps.

Proof. Even if k = n − 1, we have that with pr. at least 1
4 , the lone node of type t1 is

initially in V ′L. If so, by Lemma 6, type t1 is going to fixate with pr. at least 1−1/r
2 . Note

that even for ∆ = 3, at least n
4 nodes of the graphs are in V ′ :=

⋃x
i=2 V

i
C (i.e. the leaves of

the stars-on-a-cycle graph). In expectation k
4 nodes of V ′ are thus initially of type t2. For

fixation for t1 to occur, we must thus make that many leaf-steps. Any effective step is a
leaf-step with pr. at most r

∆ by Lemma 7. Hence, with pr. 1
4 ·

1−1/r
2 (1

4 is the probability that
at least one node of type t1 is in V ′L and 1−1/r

2 is a lower bound on the fixation probability
if a node of V ′L is of type t1) we must make k∆

4r effective steps before fixation in expectation,
implying that the expected fixation time is at least k∆(1−1/r)

32r effective steps. J

K. Chatterjee, R. Ibsen-Jensen, and M.A. Nowak 61:9

5 Sampling an effective step

In this section, we consider the problem of sampling an effective step. It is quite straightfor-
ward to do so in O(m) time. We will present a data-structure that after O(m) preprocessing
can sample and update the distribution in O(∆) time. For this result we assume that a
uniformly random number can be selected between 0 and x for any number x ≤ n · w(t) in
constant time, a model that was also implicitly assumed in previous works [5]1.

I Remark. If we consider a weaker model, that requires constant time for each random bit,
then we need O(logn) random bits in expectation and additional O(∆) amortized time, using
a similar data-structure (i.e., a total of O(∆ + logn) amortized time in expectation). The
argument for the weaker model is presented in the full version [2]. In this more restrictive
model [5] would use O(logn) time per step for sampling.

Sketch of data-structure. We first sketch a list data-structure that supports (1) inserting
elements; (2) removing elements; and (3) finding a random element; such that each operation
takes (amortized or expected) O(1) time. The idea based on dynamic arrays is as follows:
1. Insertion Inserting elements takes O(1) amortized time in a dynamic array, using the

standard construction.
2. Deletion Deleting elements is handled by changing the corresponding element to a

null-value and then rebuilding the array, without the null-values, if more than half the
elements have been deleted since the last rebuild. Again, this takes O(1) amortized time.

3. Find random element Repeatedly pick a uniformly random entry. If it is not null,
then output it. Since the array is at least half full, this takes in expectation at most 2
attempts and thus expected O(1) time.

At all times we keep a doubly linked list of empty slots, to find a slot for insertion in O(1)
time.

Data-structure. The idea is then as follows. We have 2∆ such list data-structures, one for
each pair of type and degree. We also have a weight associated to each list, which is the
sum of the weight of all nodes in the list, according to the modified dynamic evolution step.
When the current type function is f , we represent each node v as follows: The corresponding
list data-structure contains |Γv(f)| copies of v (and v keeps track of the locations in a doubly
linked list). Each node v also keeps track of Γv(f), using another list data-structure. It is
easy to construct the initial data-structure in O(m) time (note:

∑
v |Γv(f)| ≤ 2m).

Updating the data-structure. We can then update the data-structure when the current
type function f changes to f [u → t] (all updates have that form for some t and u), by
removing u from the list data-structure (f(u), deg u) containing it and adding it to (t,deg u).
Note that if we removed x′ copies of u from (f(u), deg u) we add deg u−x′ to (t,deg u). Also,
we update each neighbor v of u (by deleting or adding a copy to (f(v), deg v), depending on
whether f(v) = t). We also keep the weight corresponding to each list updated and Γv(f)
for all nodes v. This takes at most 4∆ data-structure insertions or deletions, and thus O(∆)
amortized time in total.

1 The construction of [5] was to store a list for t1 and a list for t2 and then first decide if a t1 or t2 node
would be selected in this step (based on r and the number of nodes of the different types) and then pick
a random such node. This works when all nodes of a type has the same weight but does not generalize
to the case when each node can have a distinct weight based on the nodes successors like here

MFCS 2017

61:10 Faster Monte-Carlo Algorithms for Fixation Probability of the Moran Process

Sampling an effective step. Let f be the current type function. First, pick a random list
L among the 2∆ lists, proportional to their weight. Then pick a random node v from L.
Then pick a node at random in Γv(f). This takes O(∆) time in expectation.

I Remark. Observe that picking a random list among the 2∆ lists, proportional to their
weight takes O(∆) time to do naively: E.g. consider some ordering of the lists and let wi
be the total weight of list i (we keep this updated so it can be found in constant time).
Pick a random number x between 1 and the total weight of all the lists (assumed to be
doable in constant time). Iterate over the lists in order and when looking at list i, check
if x <

∑i
j=1 wj . If so, pick list i, otherwise continue to list i + 1. By making a binary,

balanced tree over the lists (similar to what is used for the more restrictive model, see the
full version [2]), the time can be brought down to O(log ∆) for this step - however the naive
approach suffices for our application, because updates requires O(∆) time.

This leads to the following theorem.

I Theorem 9. An effective step can be sampled in (amortized and expected) O(∆) time after
O(m) preprocessing, if a uniformly random integer between 0 and x, for any 0 < x ≤ n·w(t),
can be found in constant time.

6 Algorithms for approximating fixation probability

We present the algorithms for solving the fixation, extinction, and generalized fixation prob-
lems.

The Meta-simulation algorithm. Similar to [5], the algorithms are instantiating the fol-
lowing meta-simulation algorithm, that takes a distribution over initial type functions D,
type t and natural numbers u and z as input:

Function MetaSimulation(t,z,u,D)
Let y ← 0;
for (i ∈ {1, . . . , z}) do

Initialize a new simulation I with initial type function f picked according to D;
Let j ← 0;
while (I has not fixated) do

if (j ≥ u) then
return Simulation took too long;

Set j ← j + 1;
Simulate an effective step in I;

if (t fixated in I) then
Set y ← y + 1;

return y/z;

Basic principle of simulation. Note that the meta-simulation algorithm uses O(uz∆) time
(by Theorem 9). In essence, the algorithm runs z simulations of the process and terminates
with “Simulation took too long” iff some simulation took over u steps. Hence, whenever the
algorithm returns a number it is the mean of z binary random variables, each equal to 1 with

K. Chatterjee, R. Ibsen-Jensen, and M.A. Nowak 61:11

probability Pr[Ft | Eu], where Ft is the event that t fixates and Eu is the event that fixation
happens before u effective steps, when the initial type function is picked according to D (we
note that the conditional part was overlooked in [5], moreover, instead of steps we consider
only effective steps). By ensuring that u is high enough and that the approximation is tight
enough (basically, that z is high enough), we can use Pr[Ft | Eu] as an approximation of
Pr[Ft], as shown in the following lemma.

I Lemma 10. Let 0 < ε < 1 be given. Let X , E be a pair of events and x a number, such
that Pr[E] ≥ 1− ε·Pr[X]

4 and that x ∈ [(1− ε/2) Pr[X | E], (1 + ε/2) Pr[X | E]]. Then

x ∈ [(1− ε) · Pr[X], (1 + ε) · Pr[X]] .

The value of u: uz,r. Consider some fixed value of z. The value of u is basically just picked
so high that Pr[Eu] ≥ 1− ε·Pr[Ft]

4 (so that we can apply Lemma 10) and such that after taking
union bound over the z trials, we have less than some constant probability of stopping. The
right value of u is thus sensitive to r, but in all cases at most O(n2∆2 max(log z, log ε−1)),
because of Theorem 5. More precisely, we let

uz,r =


30n ·max(log z, log ε−1) if r ≥ 2∆

30n∆
min(r−1,1) ·max(log z, log ε−1) if 1 + 1

n·∆ ≤ r < 2∆
20n2∆2 ·max(log z, log ε−1) if r < 1 + 1

n·∆ .

Algorithm Algo1. We consider the fixation problem for t1. Algorithm Algo1 is as follows:
1. Let D be the uniform distribution over the n type functions where exactly one node is t1.
2. Return MetaSimulation(t1,z,uz,r,D), for z = 48 · nε2 .

Algorithm Algo2. We consider the extinction problem for t1. Algorithm Algo2 is as follows:
1. Let D be the uniform distribution over the n type functions where exactly one node is t2.
2. Return MetaSimulation(t1,z,uz,r,D), for z = 24/ε2.

Algorithm Algo3. We consider the problem of (additively) approximating the fixation
probability given some type function f and type t. Algorithm Algo3 is as follows:
1. Let D be the distribution that assigns 1 to f .
2. Return MetaSimulation(t,z,uz,r,D), for z = 6/ε2.

I Theorem 11. Let G be a connected undirected graph of n nodes with the highest degree
∆, divided into two types of nodes t1, t2, such that r = w(t1) > w(t2) = 1. Given 1

2 > ε > 0,
let α = n2 ·∆ · ε−2 ·max(logn, log ε−1) and β = n ·∆ · ε−2 · log ε−1. Consider the running
times:

T (x) =


O(x) if r ≥ 2∆
O(x·∆

min(r−1,1)) if 1 + 1
n·∆ ≤ r < 2∆

O(n ·∆2 · x) if 1 < r < 1 + 1
n·∆ .

Fixation (resp. Extinction) problem for t1 Algorithm Algo1 (resp. Algo2) is an
FPRAS algorithm, with running time T (α) (resp. T (β)), that with probability at least 3

4
outputs a number in [(1− ε) · ρ, (1 + ε) · ρ], where ρ is the solution of the fixation (resp.
extinction) problem for t1.

MFCS 2017

61:12 Faster Monte-Carlo Algorithms for Fixation Probability of the Moran Process

Generalized fixation problem Given an initial type function f and a type t, there is an
(additive approximation) algorithm, Algo3, with running time T (β), that with probability
at least 3

4 outputs a number in [ρ − ε, ρ + ε], where ρ is the solution of the generalized
fixation problem given f and t.

I Remark. There exists no known FPRAS for the generalized fixation problem and since
the fixation probability might be exponentially small such an algorithm might not exist. (It
is exponentially small for fixation of t2, even in the Moran process (that is, when the graph
is complete) when there initially is 1 node of type t2)

Alternative algorithm for extinction for t2. We also present an alternative algorithm for
extinction for t2 when r is big. This is completely different from the techniques of [5]. The
alternative algorithm is based on the following result where we show for big r that 1/r is a
good approximation of the extinction probability for t2, and thus the algorithm is polynomial
even for big r in binary.

I Theorem 12. Consider an undirected graph G and consider the extinction problem for t2
on G. If r ≥ max(∆2, n)/ε, then 1

r ∈ [(1 − ε) · ρ, (1 + ε) · ρ], where ρ is the solution of the
extinction problem for t2.

Proof sketch. We present a proof sketch, and details are in the full version [2]. We have
two cases:

By [5, Lemma 4], we have ρ ≥ 1
n+r . Thus, (1 + ε) · ρ ≥ 1

r , as desired, since n/ε ≤ r.
On the other hand, the probability of fixation for t2 in the first effective step is at most

1
r+1 <

1
r (we show this in the full version [2]). The probability that fixation happens for

t2 after the first effective step is at most ε/r because of the following reason: By Lemma 3,
the probability of increasing the number of members of t2 is at most p := 1

r/∆+1 and
otherwise it decrements. We then model the problem as a Markov chain M with state
space corresponding to the number of members of t1, using p as the probability to
decrease the current state. In M the starting state is state 2 (after the first effective
step, if fixation did not happen, then the number of members of t1 is 2). Using that
∆2/ε ≤ r, we see that the probability of absorption in state 0 of M from state 2 is less
than ε/r. Hence, ρ is at most (1 + ε)/r and (1− ε)ρ is thus less than 1/r. J

I Remark. While Theorem 12 is for undirected graphs, a variant (with larger r and which
requires the computation of the pr. that t1 goes extinct in the first step) can be established
even for directed graphs, see the full version [2].

Concluding remarks. In this work we present faster Monte-Carlo algorithms for approxim-
ating fixation probability for undirected graphs (see the full version [2] for detailed compar-
ison). An interesting open question is whether the fixation probability can be approximated
in polynomial time for directed graphs.

References
1 B. Adlam, K. Chatterjee, and M. A. Nowak. Amplifiers of selection. Proceedings of the

Royal Society of London A: Mathematical, Physical and Engineering Sciences, 471(2181),
2015. doi:10.1098/rspa.2015.0114.

2 Krishnendu Chatterjee, Rasmus Ibsen-Jensen, and Martin Nowak. Faster monte-carlo
algorithms for fixation probability of the moran process on undirected graphs. CoRR,
abs/1706.06931, 2017. URL: http://arxiv.org/abs/1706.06931.

http://dx.doi.org/10.1098/rspa.2015.0114
http://arxiv.org/abs/1706.06931

K. Chatterjee, R. Ibsen-Jensen, and M.A. Nowak 61:13

3 F. Débarre, C. Hauert, and M. Doebeli. Social evolution in structured populations. Nature
Communications, 2014.

4 Josep Díaz, Leslie Ann Goldberg, George B. Mertzios, David Richerby, Maria Serna, and
Paul G. Spirakis. On the fixation probability of superstars. Proceedings of the Royal Society
A: Mathematical, Physical and Engineering Science, 469(2156), 2013.

5 Josep Díaz, Leslie Ann Goldberg, George B. Mertzios, David Richerby, Maria Serna, and
Paul G. Spirakis. Approximating Fixation Probabilities in the Generalized Moran Process.
Algorithmica, 69(1):78–91, 2014 (Conference version SODA 2012).

6 Josep Díaz, Leslie Ann Goldberg, David Richerby, and Maria Serna. Absorption time of
the Moran process. Random Structures & Algorithms, 48(1):137–159, 2016.

7 W.J. Ewens. Mathematical Population Genetics 1: I. Theoretical Introduction. Interdis-
ciplinary Applied Mathematics. Springer, 2004.

8 Marcus Frean, Paul B. Rainey, and Arne Traulsen. The effect of population structure on
the rate of evolution. Proceedings of the Royal Society B: Biological Sciences, 280(1762),
2013.

9 Andreas Galanis, Andreas Göbel, Leslie Ann Goldberg, John Lapinskas, and David Rich-
erby. Amplifiers for the Moran Process. In 43rd International Colloquium on Automata,
Languages, and Programming (ICALP 2016), volume 55, pages 62:1–62:13, 2016.

10 Rasmus Ibsen-Jensen, Krishnendu Chatterjee, and Martin A Nowak. Computational
complexity of ecological and evolutionary spatial dynamics. Proceedings of the National
Academy of Sciences, 112(51):15636–15641, 2015.

11 Samuel Karlin and Howard M. Taylor. A First Course in Stochastic Processes, Second
Edition. Academic Press, 2 edition, April 1975.

12 Erez Lieberman, Christoph Hauert, and Martin A. Nowak. Evolutionary dynamics on
graphs. Nature, 433(7023):312–316, January 2005. doi:10.1038/nature03204.

13 P. A. P. Moran. The Statistical Processes of Evolutionary Theory. Oxford University Press,
Oxford, 1962.

14 Martin A. Nowak. Evolutionary Dynamics: Exploring the Equations of Life. Harvard
University Press, 2006.

15 Paulo Shakarian, Patrick Roos, and Anthony Johnson. A review of evolutionary graph
theory with applications to game theory. Biosystems, 107(2):66–80, 2012.

MFCS 2017

http://dx.doi.org/10.1038/nature03204

	Introduction
	Moran process on graphs
	Discarding ineffective steps
	Lower bound for undirected graphs
	Sampling an effective step
	Algorithms for approximating fixation probability

