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Abstract
We explain how the downward-closed subsets of a well-quasi-ordering (X,≤) can be represented
via the ideals of X and how this leads to simple and efficient algorithms for the verification of
well-structured systems.
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1 Summary of the talk

Well-structured systems, also known under the acronym “WSTSs”, are a family of infinite-
state models for which generic verification algorithms exist [1, 2, 13, 18, 23]. With WSTSs,
the main ingredient for decidability is the existence of an ordering on configurations that
enjoys two properties:

it is a well-quasi-ordering (a WQO): every infinite sequence c0, c1, c2, . . . of configurations
contains an increasing pair ci ≤ cj with i < j;
transitions are monotonic: if the system can perform a step c → c′ then from any
configuration d ≥ c, a “similar” step is possible, i.e., there is some d→ d′ with d′ ≥ c′.

The most well-known instances of WSTSs are some families of counter machines or vector
addition systems [8, 12]. For simplicity, we shall assume that the WQO set of configurations
for these systems is Conf = (Nd,≤×) for some dimension d ∈ N, where the component-wise
ordering ≤× is given by u = (u1, . . . , ud) ≤× v = (v1, . . . , vd) def⇔ u1 ≤ v1 ∧ · · · ∧ ud ≤ vd.

Another well-known instance are the lossy channel systems [4, 7], where for simplicity we
assume that the set of configurations is (Σ∗,≤∗) for some finite alphabet Σ = {a, b, . . .} of
messages, and where ≤∗ is the subword ordering 1 given by

u ≤ v def⇔ ∃a1, . . . , a` ∈ Σ : ∃v0, . . . , v` ∈ Σ∗ : u = a1a2 · · · a` ∧ v = v0a1v1a2 · · · a`v` .

Algorithms for the verification of safety properties of WSTSs usually involve reasoning
and computing with upward-closed and/or downward-closed sets of configurations. A set
U ⊆ Conf is upward-closed def⇔ c ∈ U ∧ c ≤ c′ =⇒ c′ ∈ U , and there is a similar definition

1 That (Σ∗, ≤∗) is a WQO is known as Higman’s Lemma.
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for downward-closed subsets. These sets are usually infinite (like Conf itself) and symbolic
representations or data structures are needed in algorithms handling them.

For upward-closed subsets, a well-known representation relies on the existence of minimal
bases, i.e., the fact that the set of minimal elements of any subset is finite and unique (modulo
equivalence). This representation is generic: it works for any WQO. Furthermore, it enjoys
several nice algorithmic properties, e.g., testing inclusion between upward-closed subsets
reduces to a quadratic number of comparisons between individual configurations, and the
union of upward-closed sets is very easy to compute. In the case of (Nd,≤×) or (Σ∗,≤∗),
algorithms for computing intersections reduce to easy computations of least upper bounds
between elements.

For downward-closed subsets, one cannot rely on a mirror notion of maximal elements
and this makes symbolic computations harder to envision. The question of finding a generic
approach for computing with downward-closed sets was first raised in [14].

In the case of (Nd,≤×), a symbolic technique was popularized by Karp and Miller with
their classic algorithm for coverability in VAS [19]. They define Nω = N ∪ {ω} —where
the set of natural numbers is completed with a new infinite element ω that is larger than
any finite number— and consider d-tuples over Nω. It turns out that this is exactly what
we need to represent downward-closed subsets of Nd. For σ = (s1, . . . , sd) ∈ Nd

ω, we let
↓σ = {c ∈ Nd | c ≤× σ} denote the downward-closed subset of Nd generated by σ and
call it an ideal of (Nd,≤×). Then downward-closed subsets of Nd can be denoted in a
unique way by finite unions of incomparable ideals. Computing unions and intersections with
such representations, and deciding inclusion between them, use simple algorithms that are
uncannily similar to what happened with the finite-basis representation for upward-closed
subsets.

If we now consider (Σ∗,≤∗), a very elegant representation for downward-closed subsets
was proposed by Abdulla et al. in [3]. They show that any downward-closed D ⊆ Σ∗ can be
represented by a simple regular expression (a SRE), obtained as a union of concatenations of
atoms of the form Γ∗ for a subalphabet Γ ⊆ Σ, or of the form a + ε for some letter a ∈ Σ.
Furthermore, these SREs support simple and efficient algorithms for unions, intersections,
comparisons, and more.

It turns out that concatenations of atoms denote exactly the ideals of (Σ∗,≤∗). Formally,
an ideal of a WQO (X,≤) is a nonempty downward-closed directed subset D ⊆ X. Being
directed means that for all x, y ∈ D there is some z ∈ D with x ≤ z ∧ y ≤ z. Given any
WQO (X,≤), the downward-closed subsets of X can be written as unions of finitely many
pairwise incomparable ideals, and this decomposition is unique. This property explains the
nice algorithmic properties we observed with Nd

ω and the SREs over Σ, and it generalizes to
any WQO where we can provide effective characterizations for the ideals.

In the second part of the talk, we show how such effective characterizations exist for most
of the WQOs one encounters in practice. This is done by considering the most common
ways of constructing new WQOs from previous ones (sequence extension, powerset, but also
substructures and quotients) and characterizing the ideals of the new WQOs in terms of the
ideals of the earlier ones.

We illustrate these constructions with lesser known WSTSs like priority channel systems
and higher-order channel systems [17], or data nets [20] and timed-arc Petri nets [5].

Acknowledgments. This talk is based on joint work with J. Goubault-Larrecq, S. Halfon,
P. Karandikar, K. Narayan Kumar, S. Schmitz, and it has further profited from many
discussions with A. Finkel, J. Leroux and G. Sutre. Most of the presented definitions and
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results can be found in recent works like [6, 9, 10, 11, 16, 21, 22]. A full version of these
notes is in preparation [15].
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